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A B S T R A C T

The main focus of this pilot study is to develop a statistical approach that is suitable to model data obtained by
different detection methods. The methods used in this study examine the possibility to detect early breast cancer
(BC) by exhaled breath and urine samples analysis.

Exhaled breath samples were collected from 48 breast cancer patients and 45 healthy women that served as a
control group. Urine samples were collected from 37 patients who were diagnosed with breast cancer based on
physical or mammography tests prior to any surgery, and from 36 healthy women. Two commercial electronic
noses (ENs) were used for the exhaled breath analysis. Urine samples were analyzed using Gas-Chromatography
Mass-Spectrometry (GC-MS).

Statistical analysis of results is based on an artificial neural network (ANN) obtained following feature
extraction and feature selection processes. The model obtained allows classification of breast cancer patients with
an accuracy of 95.2%� 7.7% using data of one EN, and an accuracy of 85% for the other EN and for urine
samples.

The developed statistical analysis method enables accurate classification of patients as healthy or with BC based
on simple non-invasive exhaled breath and a urine sample analysis. This study demonstrates that available
commercial ENs can be used, provided that the data analysis is carried out using an appropriate scheme.
1. Introduction

Breast cancer (BC) is the most commonly diagnosed malignancy
among females and the leading cause of death around the world. In 2016,
breast cancer constituted 29% of all the identified new cases of cancer in
the US, and 14% of the deaths caused by cancer [1]. The mortality of
cancer in general, and BC in particular, is strongly connected with the
sensitivity of tumor detection methods used [2]. Consequently, the
development of new early tumor detection methods has been a highly
active area of research for several decades. Development of new tumor
detection schemes requires improved accuracy that can lead to detection
of smaller tumors. However, the new scheme has also to be simple and
inexpensive for implementation. Screening mammography is currently
the main approach for early detection and has been proven to reduce
breast cancer mortality. However, mammography has limitations that are
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associated with its ability to detect small tumors in dense breast tissue.
The overall sensitivity of mammography is 75%–85%, which can
decrease to 30%–50% in dense breast tissue [3]. Thus, new methods that
can overcome these limitations are needed to identify tumor develop-
ment at earlier stages of the cancer. One such method is the Dual-energy
digital mammography [4,5]. This approach consists of high- and
low-energy digital mammograms following administration of an iodine
based contrast agent. In this method, the breast is exposed to the low- and
high-energy X-ray beams during a single breast compression in
mediolateral-oblique (MLO) projection. The breast is then released from
compression, and the contrast agent is injected. Following a 3min delay,
the breast is compressed again, and another low- and high-energy ex-
posures is performed to create pre- and post-contrast dual-energy images.
These images allow to evaluate the contrast agent kinetics of uptake and
washout. Subtraction of the images allows canceling the soft-tissue
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contrast common to both images and to isolate the iodine signal in the
region of angiogenesis. Dual-energy acquisitions are chosen to maximize
and minimize, respectively, the ratio of the attenuation of the breast
tissue to that of the iodine. Dual-energy enhanced mammography is an
inexpensive technique useful in identification of lesions in dense breasts
and capable of demonstrating cancers that are not visible at standard
mammography. However, the improved resolution of this method is
achieved by the exposure of the breast to an increased dose of X-ray
irradiation.

An additional method for breast cancer detection is based on mag-
netic resonance imaging (MRI) imaging [6]. MRI imaging became
increasingly important in the detection and delineation of breast cancer
in daily practice. The main diagnostic value of MRI relies on specific
situations such as detecting cancer in dense breast tissue and recognition
of an occult primary breast cancer in patients presenting with cancer
metastasis in axillary lymph nodes, among others. Nevertheless, the
development of new MRI technologies such as diffusion-weighted im-
aging, proton spectroscopy and higher field strength 7.0 T imaging offer a
new perspective in providing additional information in breast abnor-
malities. However, a major drawback of the MRI imaging technique is its
high cost.

After tumor detection, in most cases a detailed analysis of the tumor
tissue is performed following biopsy [7,8]. This procedure is invasive,
and requires a high level of expertise and expensive equipment. More-
over, this approach can be used only to confirm BC after the tumor was
identified. Another possibility is to use serum for the identification of BC
biomarkers [9–15]. These methods are invasive, require very high degree
of expertise, and can be implemented only in specialized laboratories.

Recently there have been attempts to detect various cancers including
BC using analysis of exhaled breath and urine samples [16–24]. This type
of diagnostic methods has important advantages. They are non-invasive,
usually easy to implement and in many cases inexpensive. The analysis of
body fluids can be performed using different techniques. One possibility
is to examine the chemical composition and to identify biomarkers of the
illness studied. This can be achieved using either gas or liquid chroma-
tography coupled to mass spectrometry [16,23–25]. Other possibilities
are to use electrochemical sensors [26] or different gas sensors (elec-
tronic noses, ENs) [16,20–22,27,28]. In this approach, the measurement
of the exhaled breath sample yields a set of signals, the output of the
sensors on the EN used, without details related to the chemical compo-
sition of the sample. The association between the outcome of all mea-
surement types and the medical state of the individual examined is
achieved by performing statistical analysis of the data collected. A wide
variety of statistical methods can be utilized in the data analysis,
including multivariate regression [29], principle component analysis
[20,30,31], artificial neural networks (ANN) [32–35], fuzzy logic [19,
35] and other methods.

The present article describes a scheme for data analysis based on
artificial neural networks (ANN) that can be used to develop a reliable
predictive model. The method is applied to results obtained in a pilot
study in which samples of urine and exhaled breath were analyzed from
women with initial stages of BC and from a control group of healthy
individuals. In this pilot study, the breath samples were analyzed using
two different commercial electronic noses. The urine samples were
analyzed using gas chromatography with mass spectroscopy (GC-MS)
and detected the volatile compounds in the urine. The main goal of the
study is to demonstrate that analysis of the raw data leads to very poor
models while application of feature extraction and feature selection to
the measured data leads to highly accurate models that allow to detect
early stages of BC.

2. Experimental and computational methods

2.1. Electronic noses

The exhaled breath analysis was performed using two different
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commercial ENs. Both ENs contain sensors whose electrical conductivity
changewhen they are exposed to different gas mixtures. The first EN used
was the MK4 model (E-Nose Pty Ltd) that contains 12 solid state oxide
sensors that have different sensitivities to various gases. The second EN
used was the Cyranose 320 (by Sensigent Intelligent Sensing Solutions)
that has 32 polymer-based sensors each with a different sensitivity to
various gases. The two ENs were attached to a mask through which
exhaled breath of the patient was introduced into the ENs. For the MK4
EN, the patient breathes through the mask for a duration of 20 s while for
Cyranose 320 the duration was 40 s. The two ENs differ in their sampling
rates, the MK4 sampling rate is 0.25 Hz and EN output signal was
collected during 416 s. The sampling rate of Cyranose 320 is approxi-
mately 2 Hz and the duration of EN output signal collection was 330 s. It
should be noted that the shape of the sensor signals for patients and
controls are similar with differenced only in their magnitude, rise and fall
rate and similar characteristic parameters.

2.2. Urine sample analysis

Urine samples were collected from 37 sick and 36 healthy women.
However, both urine and exhaled breath samples were obtained only
from 35 sick and 31 healthy women. Gas Chromatography – Mass
Spectrometry (GC-MS) analysis was performed using an Agilent 6890
series GC system (Agilent, USA) connected to Agilent 5973 network mass
selective detector (Agilent). Further details of the urine sample GC-MS
analysis are described in the Supplementary materials section.

2.3. Subjects

The sick women's samples were taken from patients who were diag-
nosed having breast with cancer based on physical or mammography
tests prior to any surgery, irradiation or chemotherapy. All samples taken
from sick patients were collected in the Breast Health Center in Soroka
Medical Center. All the sick women were identified as having breast
cancer by biopsy test after samples were collected. The control group
consisted of healthy women who did not present any kind of cancer,
pregnancy or acute inflammation when samples were collected. All
women were asked to complete a questionnaire that contains the
following questions: age, smoking or not, did they have cancer in the
past, and if yes - when, known medical problems and medications used.

2.4. Data analysis method

Artificial Neural Network (ANN) is a non-linear modeling algorithm
[32–35] that was used to analysis the data. The ANN architecture used is
comprised of three layers-input, hidden and output feed forward, fully
inter-connected with appropriate weights. The input data, also called
features, are fed into the input layer. Additional details of the ANN used
are presented in the Supplementary section.

The calculations reported here were carried out using the TURBO-
NEURON [36] code in which the initial connection weights are assigned
by the assumption of a linear relationship between the inputs and the
outputs. To avoid being trapped in local minima during the training, the
code incorporates a scheme of escape from such situations [33]. Addi-
tional details are presented in the supplementary materials section.

3. Results and discussion

3.1. Exhaled breath data

The signals obtained from the sensors in the two ENs used have quite
different shapes. Typical signals are shown in Figs. SM-1 and SM-2 in the
Supplementary materials section. The signal preprocessing started with
subtraction of the sensor's initial conductivity from the entire signal. This
leads, in most cases, to a zero baseline for all sensors in the ENs. Elimi-
nation of the baseline also allows to connect the signals obtained by the



Fig. 2. Fitted analytic model (red) for typical measured signal. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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different sensors in an EN to obtain a string of signals for each patient
examined. Next, signal smoothing was performed using the smooth
Matlab function (local quadratic regression) to remove noise. An example
of a typical signal before and after the smoothing process is shown in
Fig. 1. Clearly, this procedure of signal smoothening is not good enough.

As the next step, a feature extraction process was applied with the aim
to completely eliminate the noise and to reduce the number of features
(input values) describing the signals. The feature extraction method used
is based on a simple fitting of the sensor response to the exhaled breath
using an analytic model that describes the time dependence of the sensor
response to its exposure to a gas mixture. The analytic model was
adapted, with some modifications, from a simple description of the
sensor electrical conductivity changes when it is exposed to a gas mixture
[37]. Per this model, the sensor response is given by the expression,

RiðtÞ ¼
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where: ti is the time when the signal starts to rise; T is the time interval
between beginning of the signal (ti) until it reaches the maximum value
and τi is the decay time constant of the signal. The quantity βι is calcu-
lated by
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Since this model is not differentiable everywhere, the Matlab function
fminsearch (function minimum search based on a simplex search method)
was used to obtain the best fit of the required parameters. Since all the
parameters required in the model described above have physical mean-
ing it was possible to supply the fitting function with good initial guesses
of the various parameters. Figs. 2–3 compare the fitting outcome for
typical signals.
Fig. 1. Typical Cyranose 320 sensor response (blue) and the smoothened signal
(red). (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 3. Fitted analytic model (red) for typical measured signal. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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The fitted model clearly describes well the sensor signal decay, but
inaccurately the initial rising part. If the fitting procedure is applied again
only to the rising part of the measured signal one can obtain a very good
representation of the whole sensor signal. The result of this double fitting
process is presented in Figs. 4 and 5 for the signals shown in Figs. 2 and 3.

The application of this fitting process separately to the rising and
decaying parts of the signal yields a very good noiseless description of the
measured signals. Hence, the feature extraction process allows us to
represent very accurately smooth sensor signals using only eight pa-
rameters. Three additional parameters were included:

Rmax – the difference between the signal's peak and baseline
(maximum height); Aleft the area under the curve left of its maximum
value (area under the signal rising part); and Asignal the area under the
entire signal.

Besides these features, two additional patient related features were
included – the number of years since the first time the patient was
diagnosed having breast cancer (zero if she did not have breast cancer



Fig. 4. Final fitted analytic model (red) for typical measured signal (blue). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 5. Final fitted analytic model (red) for typical measured signal. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Table 1
Validation results of the ANN models obtained for the two sets of data “Group 1”
and “Group 2” using both the raw data and the one following feature extraction
(FE).

Type of EN “Group” Data
type

Accuracy
[%]

Sensitivity
[%]

Specificity
[%]

MK4 1 raw 67.5� 21.6 67.5� 18.5 67.5� 33.4
MK4 1 FE 70.4� 19.1 73.5� 22.6 67.5� 23.7
MK4 2 raw 73.8� 24.6 68.3� 28.8 80� 28.1
MK4 2 FE 76.2� 18.5 74.17� 25 78.3� 15.3
Cyranose
320

1 raw 60.9� 22.8 56� 29.1 66.7� 23.6

Cyranose
320

1 FE 57.4� 22 67� 29.7 46.7� 26.7

Cyranose
320

2 raw 51.7� 22.1 51.7� 21.4 52.5� 36.0

Cyranose
320

2 FE 55� 22.2 48.3� 18.8 61.7� 31.2
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before, most of the cases) and how many cigarettes the patient smokes
every day (zero if she is a non-smoker). Thus, each sensor signal was
described by 14 features, giving a total of 134 features for the MK4 EN
and 354 features for the response of the Cyranose 320 EN. These values
should be compared with 1248 features for the MK4 EN and 21,120
features of the Cyranose 320 EN used when the raw ENs output was
employed to represent the EN signals.

The data obtained for exhaled breath analysis using the two ENs were
used to form ANNmodels. Table 1 below summarizes the accuracy of the
ANN models obtained when the preprocessed raw data is used (marked
as “raw”) for both ENs and the same data after using the analytical
expression for feature extraction (FE). Moreover, we also examined the
influence of “bad” sensor responses (signal shape highly distorted and
containing multiple narrow peaks) on the accuracy of the models ob-
tained. To do so we considered all the exhaled breath samples collected, a
total of 85 (46 sick and 39 healthy women) samples examined by both
ENs as “group 1”. When all the samples that contain “bad” sensor signals
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are eliminated we remain for both ENs with a total of 65 samples for both
ENs (33 sick and 32 healthy women), this set will be termed as “group 2”.
A detailed description of the method to obtain: accuracy, sensitivity and
specificity is given in section 2 of the Supplementary material.

Inspection of the results in Table 1 shows that there is a marked
difference between the two ENsa. In the case of MK4, performing the
feature extraction leads to some improvement in model performance for
both raw data and the FE data. The elimination of samples containing
“bad” signals results in a further improvement in model performance.
However, models corresponding to data collected using the Cyranose
320 EN exhibited markedly lower performance in all cases. In this case,
both feature extraction and removal of “bad” signals did not lead to any
noticeable improvement of the model performance.

The performance of all the models presented in Table 1 is better than
what one would get by random assignment of samples as “sick” or
“healthy” (for a large enough statistical ensemble). However, for such
models to be useful, one would like to improve these results and obtain
much better performance. A possible reason for the low performance of
the models might be due to existence of strong similarities between
features that hinders the ANN training from reaching a good model. To
overcome such a problem one can perform a feature selection process.
Feature selection is aimed to produce a smaller set of features that
accurately represents the original set but with reduced similarity among
features. The feature selection method used is based on measuring the
similarity between features among different samples, reducing the
redundancy, allowing development of a simpler and more accurate
classification model. The feature selection method employed is described
in detail elsewhere [38]. In this method, a new similarity measure, called
maximum information compression index between features X and Y,
λ2ðX;YÞ, was used together with the Pearson correlation measure ðρx;yÞ
defined by:

ρx;y ¼
covðX; YÞ
σXσY

¼ EððX � μXÞðY � μY ÞÞ
σXσY

(4)

where cov(X,Y) is the covariance of X and Y, σX and σY are the standard
deviation of X and Y sets while μX and μY are the corresponding mean
values. The symbol E denotes expectation value. The sets X and Y are
vectors containing the values of two different features in all the samples
(all the patients in the present case). Thus, the size of the X and Y vectors
is given by the number of patients. The maximum information
compression index is calculated using the expression:

λ2ðX; YÞ ¼ 1
2
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Table 3
Validation results of the ANN models obtained for the urine analysis by GC-MS.
Here, “Raw” correspond the raw output obtained by the GC-MS while “Following
FS” correspond the model obtained after feature selection.

Data type Accuracy [%] Sensitivity [%] Specificity [%]

Raw 45.2� 24.5 48.3� 28 44.2� 36.2
Following FS 85.2� 9.7 86.7� 14.3 85� 21.1
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where var(X) is the variance of feature X. The maximum information
compression index is a scalar whose magnitude is zero if X and Y are
linearly dependent. Increasing values of λ2ðX;YÞ are obtained when the
two features become linearly independent.

The feature selection process requires two steps, partitioning of the
original feature set into a number of subsets followed by selection of
representative features from each subset. The partitioning step is based
on the Pearson correlation measure described above. To carry out this
part, one computes the j nearest features to each feature. The feature
having the most compact subset is selected and its j neighboring features
are removed. The magnitude of the parameter j has to be defined to
perform the selection process. For larger j values an increased number of
features are removed and smaller number of features selected. Here, we
used the algorithm described in details by Mitra et. Al. [39]. In the k-fold
cross validation process the feature selection step is performed before
each one of the k-fold ANN training processes. In each case the j value
yielding the best model performance is chosen. The results of the models
obtained after feature selection for the data collected by the two ENs are
presented in Table 2.

Inspection of the results presented in Table 2 shows that the perfor-
mance of all models improves dramatically when feature selection is
included prior to model training. The performance of the MK4 EN is still
noticeably better than that of the Cyranose 320 electronic nose. The re-
sults clearly demonstrate that both feature extraction and removal of
“bad” signals lead to a markedly improved model performance of both
ENs. The accuracy achieved in the models reported in Table 2 suggests
that commercial ENs can be used for early breast cancer diagnosis if the
statistical analysis is properly performed.

3.2. Urine data

The chemical composition of the urine samples was examined using
GC-MS analysis. A typical chromatogram is shown in the Supplementary
materials section, Fig. SM-1.

The data that were used in the statistical analysis is a feature vector
that contains a list of all the peaks identified by the system software in the
chromatogram. Each peak was characterized by its retention time (RT)
and normalized peak area values. The peak area normalization and RT
alignment were described in the Supplementary material section. The
features vector contained 625 time intervals (boxes), each representing
2.4 s. The normalized peak area values were stored as features in the
appropriate time intervals. Time intervals that did not contain any peaks
were assigned the value zero. No feature extraction was performed in this
case. The validation results of models obtained using the raw data and
the model obtained after feature selection (FS) using the procedure
described above are presented in Table 3. In both cases 73 (37 sick and 36
healthy women) urine samples were considered.
Table 2
Validation results of the ANN models obtained for the two sets of data “Group 1”
and “Group 2” using both the raw data and the one following feature extraction
(FE). In all cases a feature selection step was performed prior to the ANN training
stage.

Type of EN “Group” Data
type

Accuracy
[%]

Sensitivity
[%]

Specificity
[%]

MK4 1 Raw 89.6� 8.7 91� 11.7 87.5� 13.2
MK4 1 FE 93.9� 12.1 93� 16.4 95� 10.5
MK4 2 Raw 93.6� 11.5 97.5� 7.9 90� 22.5
MK4 2 FE 94.3� 7.4 89.2� 14.2 100� 0
Cyranose
320

1 Raw 81.0� 11.2 87.5� 10.9 73.3� 23.2

Cyranose
320

1 FE 86.1� 12.8 87.5� 19.6 85� 21.1

Cyranose
320

2 Raw 82.6� 12.5 86.7� 23.3 77.5� 15.7

Cyranose
320

2 FE 84.5� 13.7 91.7� 13.6 78.3� 21.9
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The results presented in Table 3 show that the analysis of the raw data
leads to very low performancemodel with very large standard deviations.
These results are worse than pure random selection of the target groups
(sick or healthy). When feature selection is applied, the performance of
the model obtained improves dramatically and reaches that of the elec-
tronic noses described above.

4. Summary and conclusions

This study examined the possible detection of breast cancer at its
initial stage by analysis of both exhaled breath and urine. Exhaled breath
was analyzed using two different commercial ENs while urine samples
were analyzed by GC-MS. For all types of measurements, very poor ANN
models were obtained when pre-processed raw data were used. To
improve data modeling, feature extraction and feature selection pro-
cesses were applied to the exhaled breath measured data while only
feature selection was used in the case of the urine features. The ANN
models obtained using the processed data were very good to a level that
they can be used as a non-invasive, simple, safe, painless and inexpensive
screening method. It should be noted that although feature extraction
alone, in the case of breath analysis, did not sufficiently improve the ANN
models, it was necessary to obtain the good models reach following
feature selection. The present study clearly demonstrates that appro-
priate statistical data processing should be performed to obtain reliable
classification models. This study clearly demonstrates that inexpensive
commercial ENs can be used successfully for exhaled breath analysis,
provided that an appropriate data analysis procedure is used. It should be
noted that in this study, feature extraction alone of data obtained in
exhaled breath analysis was shown to improve the model performance,
however it was not enough. The feature selection process seems to be the
crucial step in improvement of the model performance. This was found to
be true for both sets of exhaled breath measurements and urine analysis.

It should be noted that other types of cancer and their influence on the
analysis of exhaled breath and urine samples have yet to be examined. It
is possible that the two sample types examined here can also be used to
identify other types of cancer. Indeed, it has been shown that exhaled
breath analysis can be used to screen different types of cancer [20]. The
accuracy of ANN based classification models described here for breast
cancer detection, using both exhaled breath and urine samples, is com-
parable to those obtained in other studies of exhaled breath using
different statistical analysis approaches [20,21,26,27,31]. It is clear that
the use of commercial ENs could be sufficient to establish a good reliable
screening method for cancer classification patients.

The promising classification models obtained in different studies,
using a variety of measurement methods, raises a possibility that should
be checked. Namely, is it possible to develop a coupling scheme between
models conceived using data obtained by methods based on different
physical or chemical principles (i.e. analysis of exhale breath and urine
samples or ENs based on nano-particles embedded in polymers and solid
state sensors etc.) such that the classification accuracy of the coupled
models will be better than that of its constituent models. This possibility
is being examined at present and will be examined in a future study.
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