AutoBroad - A Realtime Broadcasting System for E-Sports

Hugo Miguel Gongalves Damas

November 25, 2011

Abstract:

In this paper, we will propose an automated broadcasting system for multiplayer

video game matches that functions in real-time, which we believe is a worthwhile first step to a
much more perfected real-time broadcasting system that may come in the future.

Keywords:

1 Introduction

One of the rising facets of gaming industry is
that of professional gaming. Professional sea-
sons and leagues spawn all across the world,
giving the industry a dynamic growth that
only the professional sports industry can pro-
vide. As this is happening, though, broadcast-
ing techniques employed to cast these matches,
multiplayer videogame matches, have shown to
be imperfect and inadequate. The way it is
currently handled is that two individuals, nor-
mally a professional gamer and a professional
sports caster, make use of the spectating sys-
tem, provided by the video-game, to overview
the match; they stream one of their feeds to
all outlets of distribution and that way viewers
and spectators can watch the match.

The problem is this is very limiting. The aver-
age broadcasting team of a conventional sport
usually has access to, among other things, mul-
tiple points of view, numerous cameras filming
off-screen to which they can swap to, instant
replay, and so on.

AutoBroad is a vision of an automatic spec-
tating system that will allow spectators to
watch a video-game match with the same or
superior quality they would watch a televi-
sion broadcast of a conventional sport. It
would employ several key features, most of
which have never been seen or concepted be-
fore, for this particular domain of electronic
sports: Real-time game-state awareness; auto-
matic and correct event-priority judgement; au-

Intelligent Camera, Situation Assessment, Electronic Sports, Sports Broadcasting,

tomatic broadcasting-heuristics-based decision
making; as game-independent as possible; not
heavy on the global system (video-game); rel-
ative global and individual information feed-
back; instant-replay; multiple viewports for
more than one point of interest; animations to
transition between more than one point of in-
terest; cinematic or cinematographic presenta-
tion.

Certain features certainly involve other do-
mains of research, and could be considered well
studied in past works, as well as secondary ob-
jectives. This is why we decided to focus on the
first six features, leaving the rest(instant-replay
onward) to be developed and explored in future
work.

We believe it is a relevant and important first
step into building a system which we feel that,
in its optimal state, will further the overall in-
vestigative field of video-games and be of use to
the industry at large that is involved with the
competitive world of Electronic Sports.

In this paper we will first present a model
that can be used as the basis for any architec-
tural model of an automatic real-time broad-
casting system, and then how we designed and
applied the actual implemented architecture,
which took into account a specific video-game,
as well as the development platform used to de-
velop it.

The first step towards designing any solution,
we believe, is to consider approaches and solu-
tions taken for the same, or similar, goals. With
that in mind, we start by delving into related

2 RELATED WORK

works which we feel were related to ours.

2 Related Work

Though we believe the concept of automatic
broadcasting to be thoroughly new, it still
involves several different facets. We divided
the kinds of related works across three different
areas of investigation.

2.1 Information Extraction for an Ar-
tificial Intelligence

In terms of video-games, since no one has
approached a real-time broadcasting system,
we looked at the work developed in the area of
strategy prediction.

Studies have been promising and advancing,
throughout a facet of fronts, offering a myriad
of approaches to the problem, that share a few
things that differentiate all of them from ours.
Some real examples that can be read include

“An Evaluation of Models for Predict-
ing Opponent Positions in First-Person
Shooter Video Games”[HB0§|, “An Inte-

grated Agent for Playing Real-Time Strategy
Games” [MMO09], “Rapid Adaptation of Video
Game AI”[BSvdHO08], “Building a player strat-
egy model by analyzing replays of real-time
strategy games”[HS08], and “It Knows What
You're Going To Do: Adding Anticipation to
a Quakebot” [Lai01].

They all share some common properties that
differ from our work, namely, that none have
tried to be general about their models, in
terms of game genre, since there is only a small
amount of work done for FPS games and the
rest is on RTS games.

Plus, only a handful of techniques and appli-
cations have been tested with real players, like
it was the case in “Building a player strat-
egy model by analyzing replays of real-time
strategy games”[HS08] and “An Evaluation
of Models for Predicting Opponent Positions
in First-Person Shooter Video Games” [HBO0S].
The rest are tested with scripted players a
number of times, in order to derive efficiency

against two or three play styles. In summary,
they are studies aimed at objectively different
goals.

There is one work, though, that we found to
be the exception: situation assessment for plan
retrieval in real-time strategy games [MOROS§]
was a work developed by Mishra, Ontanén and
Ram, to try to derive high-level information
from low-level data, in order to recognize
situations, as in match-state, and from there
recognize what strategies are being employed.

The developed Al in question uses the notion of
“situation” (game-state), interpreted through
a pipeline of translations that transform
low-level data like all resources available on
map to high-level information like distance
between two opponents, which all together,
define a situation/game-state. They then use
these “situations” to filter through case-based
models that define strategies and tactics. Only
then do they actually choose the strategy and
tactics to execute.

Now, we differ in as much that it is not our
intent to filter through a list of strategies and
tactics, but through a list of relevant objects to
show the viewer. Also, we will be dealing with
a different game genre, and attempt to take
an approach that can be generalized to other
game genres.

2.2 Camera Profiling

We considered the approach of Battle Cam
[YA06], the battle camera implemented on Star
Wars: Empire At War TM. Using it, Yangli
Yee and Elie Arabian presented a camera
system to be used for RTS battles.

This intelligent camera system picks the most
interesting object and then constructs a shot
and plays it until it dies, restarting the process.
In this work, their approach was “visual atten-
tion”, which is a field of study in the domain
of psychology. From it, they drew parameters
that could be used to judge objects as more or
less interesting.

Looking to only use raw low-level game-state
information, they used size, attack power,
location, health, as well as player selection and

3 HEURISTICS RESEARCH

visibility, to judge the interesting value of the
objects to choose from.

We feel our work differs in two ways: first,
our system is not custom made for a battle
scenario on an RTS game, but rather for any
scenario going on in any video-game. Second,
we seek not objects and/or scenes that are
“interesting”, but that are “relevant”, which is
to say, that are tactically interesting.

All in all, visually appealing is a secondary
objective, first one being the relevance. Which
is why we detach these two objectives (interest-
ing and appealing) into two separate, though
compounded, modules: Pick the object, show
it. And we have deeply concentrated on the
former, not the latter.

2.3 Sports Broadcasting

In the domain of studies in Sports Broadcast-
ing, we focused on studies done on highlights
extraction from sports videos.

Taking into consideration two works: “High-
level Event Detection in Broadcast Sports
Video” [Rea05] by Niall Rea, and “An Overview
of multi-modal techniques”[ALMO03] by Adami,
Leonardi, and Migliorati, we will see that they
apply shot classification, and use observable
heuristics to interpret it, in order to recognize
a match event.

Looking at “Algorithms and system for seg-
mentation and structure analysis in soccer
video”[XXC*01], we will find that shot-
classification is sport-dependant, and also
that the aim of a broadcasting producers are,
quoting, to “Convey the global status of the
game. Closely follow actions in the field.”
Knowing, confirmed by literature of past
works, above ones included, that one can
relate shots to what the crew wishes to show
the viewer (global view shows the state of
the game, for instance), we can extract what
is a general priority list for a broadcasting
crew in general, into heuristics we can use for
our system, simply by extensive and careful
observation.

2.4 Intelligent Camera Control

- Intelligent Camera Control in a Virtual
Environment[SD97] specified a very similar
system, but only aimed for exploring virtual
worlds, particularly, a museum.

Our work differs in the way that our virtual
world is dynamic, and its state is very volatile.
It is a video-game match, constantly changing.
More than that, we wish to have an automatic
control over what the camera is going to show
rather than, for instance, have our video-game
expert pointing out what he wants to show the
audience and the camera just moving around
based on his choices.

So, in general, we acquired some worthwhile
contributions from past works, but this work
clearly stands different when compared to any
of them, especially in its goal.

3 Heuristics Research

Our final goal is to translate low-level informa-
tion into high-level information about points of
interest, then interpreting that into a kind of
broadcasing ontology that says how important
it is. So our first step was to describe a list of
high-level heuristics employed by current day
broadcasting teams, towards shot/event prior-
ity.

For that purpose, we observed 56 best-of-three
matches from the Starcraft 2[8] championship
GSL[3], season 2, held throughout October
and November, 2010. We observed about 4
matches of League of Legends[7], from the
WCG tournament[5], 2010.

We also observed all world finals in the ESL
4[4], 2010, for WoW Arena[12] , Counter Strike
1.6[10] and Quake Live[2]. The analysis of
WoW Arena and Counter Strike 1.6 was as-
sisted by an expert on the games who, at dif-
ferent times, was on the top 15-20 rank in his
realm for WoW PVP, and was a competitive
gamer of Counter Strike 1.6.

Additionally, we observed 3 soccer matches, 2
Moto Grand Prix races, 1 Formula 1 race, and
1 American Football match, and took into ac-
count the studies of the works discussed previ-

4 ARCHITECTURE

ously, which included baseball, soccer, cricket,
snooker and tennis.
After performing said observation, we retrieved
a list of high level heuristic to employ in the
system. These were:

e (Conflict - This heuristic defines the prob-
ability of action taking place, presently or
in the future, we observed this was, and is,
the main concern of any and all broadcast-
ers: conflict, which most likely translates
to action taking place presently, or soon
into the future.

e Unexpected - This heuristic defines some
unexpected change in the game-state
progress. For example, in Formula 1, when
a car crashes, the driver quickly drops from
his position to last in a few seconds. Once
a missed moment was noticed, it took a
high priority over anything that was going
on and that was not real-time conflict.

e Tactical - Decision awareness. In case nei-
ther of the aforementioned is applicable,
we observed the broadcasting crew just al-
ternating between shots, showing a global
view, or partial that, to show what strate-
gies/tactics were being employed through
what decisions were being made.

e [dle - Finally, this heuristic defines the mo-
ments when nothing of interest is happen-
ing. We observed the broadcasters roam
and hover around while the commentators
do their best to not let the interest of the
viewers drop too much.

Each of these heuristics will help define how im-
portant an event is, by classifying it. But there
are also those heuristics we noticed applied in
a more global manner. The following three:

e Interest: Conflicts involving winning play-
ers outweigh those involving losing players.
Survivor: But within said conflict, the per-
spective of the losing participant seemed
to be preferred. It increases tension as
the losing participant may always turn the
game around and start winning.

e Time: Broadcasters showed a predisposi-
tion to change shots, even if nothing dif-
ferent had happened. We suppose the goal
is to keep within the attention span of the
viewers, avoiding looking at the same thing
for too long.

So these are the heuristics we concluded from
our observation: Conflict, Unexpected, Tac-
tical/Strategical Awareness, and “When-All-
Else-Fuails”.

Plus, there is the “interest” rate, which rates
higher ranking players as more interesting, and
the “time” rate, which rates how much time on
a shot is too much time on a shot.

We believe these definitions to be sufficient for
our match-progress event classification and pri-
oritization. And with that in mind, we defined
our architecture.

4 Architecture

{4.2)
Game-State
Interpreter

Shot Manager

Game-time
Active Shots
Inactive Shots

Metrics updated
and orderad

Metric

Metric

(4.1)
Metric

Shot 1y
Nddv

Dderr
i

History

Figure 1: Model of Base Architecture

Figure 1 shows the base architecture pro-

posed to be used whenever a system of this
kind is developed.
It has the three general modules we have
mentioned before: the Game State Interpreter,
the Shot Manager and the Camera System.
Additionally, it includes the concept of “Shot”
and “Metric”.

4 ARCHITECTURE

4.1 Metric

A metric is a parameter of the game that has
a priority value. It must be one-dimensional,
low level, and quick to measure: position, re-
sources, health, energy, ammo, ability was used
etc; any low-level information that is related to
a location in the game, from which we can de-
rive interest, is a metric.

The only thing these metrics are aware of is
how to calculate their priority value, and to
what shot they are related too, as we can see
in the figure (ShotID). The idea behind this is
every metric is associated with a game object,
like a character, a squad, a building, something
that has a position to take a shot off. It is an
easy shortcut to knowing what exactly are they
evaluating the priority of, in terms of game lo-
cation. The ending goal is to know what to
shoot, as in, knowing which “shot” to show.
Then it has a distance to the desired value (dv).
The desired value is the value at which point
the metric attains maximum priority. So the
fluctuation of the base priority of the metric is
directly proportional to the distance to the de-
sired value.

Then there is a distance to the error mar-
gin (err), which along with “history”, allows
the metric to monitor how it evolves during
the match, and to make extra accounts should
things go unexpectedly. History predicts what
the next value will be, the “projected value”
which is then compared to the actual value, and
if they differ by more than the error margin, it
means something unexpected took place, which
the Metric takes into account when calculating
its final priority value.

Finally, there is the heuristic value, which
makes a final contribution to calculating the
final priority value of a metric.

Depending on how one builds the metrics they
can switch between heuristics, but we believe
that, at any time, they should only have one
heuristic value. One of the four described above
(Conflict, Unexpected, Tactical and “When-
All-Else-Fails”, named “Other”). From the
most important, Conflict, to the least, Other,
the heuristic value is used by the Shot Man-
ager to know how to value metrics against each

other.

4.2 Game-State Interpreter

The Game State Interpreter manages the
metrics. It marks the pace at which they
update, and keeps them ordered. With it we
have the first step of Game-State interpreting.
We decided to coin the term “Game-State In-
terpreting”, as a name for the method in which
we first derive high-level information from
low-level data, deriving a situation/match-
state(situation assessment in an ongoing
video-game match), and then interpret that
high-level information into a specific language
or ontology.

Our Game-State Interpreter will examine
game-state (the situation), understand it, and
then interpret it into broadcasting language;
this means defining and valuing points of
interest in the game according to broadcasting
heuristics.

4.3 Shot Manager

As stated before, our approach is to employ a
low cost but effective situational assessment of
actions taking part in the game. This means
using one-dimensional metrics from which the
system can read and understand game-state
progress without affecting performance. So
far, this is already done by the Game-State
Interpreter.

The Shot Manager is aware of the broadcasting
progress, what shots have been active, which
have been inactive, and for how long. It has
the job of overall management of the whole
system.

Bearing that in mind, the module adds a
deciding factor to the heuristics management,
adhering to the two general heuristics: time
and interest/survivor . So, depending on the
shot, it will decide if, despite of it having a
higher priority, it should change shots anyways.
But whatever time count it uses as a threshold
needs to take into consideration what kind of
priority values it is dealing with.

We thus have six major guidelines based on

5 IMPLEMENTATION

observable heuristics, four of which are already
defined by the Game-State Interpreter. Having
chosen which shot to show, the Shot Manager
contacts the camera system with orders for the
appropriate cameras, by passing on to it which
shots are active, as well as any extra necessary
information.

Lastly, the Shot Manager needs to recognize
parallel events. If it had to pick between two,
or more, equal priorities, it will have meant
it missed one. If this is so, it should save the
time of the moment, so it can issue a replay
command on the camera that recorded it, at a
more appropriate time.

4.4 Camera System

The camera system keeps track of points of in-
terest, actually feeding back to the spectator
only when the Shot Manager requests.

It should also show said points of interest, may
they be mobile or static, in a way that is visu-
ally appealing and not at all confusing, without
causing performance issues with the overal sys-
tem.

5 Implementation

5.1 Shadow Conclave

Now that we have looked at the base archi-
tecture for a general automatic broadcasting
application, we can apply it to our domain of
testing.

We implemented the system on an indie
video-game developed in Unreal Development
Kit(UDK) [1], named Shadow Conclave [11].
It featured one on one matches only. To better
understand how we described and defined
the metrics system, we feel it is important to
understand the game itself. Shadow Conclave
is a TPS (Third Person Strategy) game similar
to League of Legends[7], Defence of The
Ancients[9] and Heroes of Newerth[6], though
different in many aspects.

In it, each player picks a unique character
with a unique set of skills, and plays for a
pre-determined and fixed amount of time, all

against all. It is his objective to steal as much
money as he can from the city where the match
takes place. He does that by breaking into
houses and stealing from treasure chests.
There are militia patrolling though, and if they
catch the player he will lose time, in jail, and
money, to escape jail. There are three kinds of
Militia: Standard Militia, Rats(they hear and
see farther), and Pro Militia (they cost the
player more money).

Also, there is a fourth type of NPC, called
“Tax Messenger”. They show up at random
times, and if a player catches them, he will
steal their “taxes”, gaining money/points.
Thieves can interact directly by causing each
other to be stunned, or disoriented. There are
two thieves in the version of the game where
we tested: Circus Freak and Hunter, which can
been seen below, in figure 2.

Circus

Hunter gr cak

Figure 2: Characters of Shadow Conclave

Circus Freak is faster than the Hunter but
the Hunter is quieter than the Freak. Each of
them have two abilities, one which causes harm
to an opponent, and one which helps them to
steal(open doors faster, for example.)

At the end of each match, there is a “raid”
event, where each player must make his way to
an exit point in order to flee the city, and not
suffer consequences.

The game is played with the top-down isometric
view that is the brand of RTS(Real Time Strat-
egy) and TPS(Third Person Shooter) games.
That was the video-game in which we imple-
mented our system. It is important to note that

5 IMPLEMENTATION

the developers of this video-game numbered at
four and all aided in the defining of the met-
rics, as well as with testing and optimizing the
implementation of AutoBroad.

AutoBroad went through a series of prelimi-
nary tests to optimize the parameters that de-
fine its mathematical calculations and overall
valuation of the points of interest of the game.
This testing was done over matches played by
these developers, experts on the game.

5.2 Interpreting Shadow Con-
clave Game-State

We have defined eight metrics:

o Competitive Stats - Informs the Shot
Manager of who is winning.

o Ability Cooldown - Informs the Shot
Manager that this character is about to
gain one more avenue of action.

o Ability Used - Informs the Shot Manager
that an ability has been used.

e Proximity to Objectives - Informs the Shot
Manager about how close a given player is
to treasure chests or raid exit points.

e Proximity to Foes - Informs the Shot
Manager about how close a given player
is, to Standard Militia, Rats, Pro Militia,
Tax Messengers or, more importantly,
other players.

e Interaction - Informs the Shot Manager
of whether the player is interacting
with either a door or a treasure chest,
and whether he is opening or closing, and
how far he is to completing the interaction.

e Noticed By Foe - Informs the Shot Man-
ager about whether or not the player
was seen or heard, whether he is being
pursued, and if yes, by either Standard

Militia, Rats, Pro Militia or Tax Messen-
ger. It also informs it of how much time
has passed since the player began being
pursued.

e Status - Informs the Shot Manager of
whether a player has been stunned, dis-
oriented or arrested, and of how long until
he recovers.

The Game-State Interpreter simply manages
the metrics so they are all updated within the
cycle of decision of the Shot Manager, spread-
ing the handling of metrics across as many ticks
as it can.

Next, since this is a player-based game, ev-
ery heuristic should be directly related to each
character/thief. Likewise, we would have two
cameras, one on each player, and then we would
pick which one we should show. For this rea-
son, we felt it was more efficient to insert that
concept into the functions of the Shot Manager,
so instead of going through all the metrics, the
Shot Manager processes Shots.

The way we implemented it, the Shot is not
only an encapsulation of camera configuration
information, thus representing a camera, but is
also a module that also keeps track of a point
of interest, in our case, a player. Each shot has
a list of all metrics that concern its respective
player, and a priority value which informs the
Shot Manager of how important it is. So the
Game-State Interpreter makes sure the metrics
are all up to date, and then the Shot Manager
looks directly, and only, at each shot, only the
inactive ones, to deign which is more impor-
tant. When the Shot Manager evaluates the
metrics within each Shot, it applies the heuris-
tic modifier to each metric, plus the time and
survivor modifiers to the final calculated Shot
Priority since they are global heuristics.

After it knows which inactive shot is more im-
portant, it checks with how long it has been
since it last performed shot switch. Depending
on that, and the priority value of the shot, he
will perform a switch.

In our case, the Shot Manager performs a check
every half a second (its decision cycle). Every

6 EVALUATION

priority value varies within a percentage range
(0-100). When a Shot Priority Value is calcu-
lated, from each of the priority values belonging
to each of its metrics, it is calculated in a way it
will reward high priority metrics with a bigger
contribution to the total value, but also in that
it will not punish a shot for having less “active”
metrics (metrics with priority values above 0),
balancing the total values despite the fact some
have less metrics building them.

The survivor modifier is fixed, but the time
modifier fluctuated according to how high the
priority is and how much time has gone by. The
more time has elapsed, the higher the modifier,
the higher the priority, the broader the interval
of the modifier; this because its maximum value
is fifty percent of the priority value. Again, this
is applied to the calculated Shot Priority.
Moving on, every half a second the Shot Man-
ager performs a priority level check, to decide if
it should activate his most important inactive
shot.

o C('ritical Level Check: Without time restric-
tions, it checks if Shot Priority is equal or
greater than 92. If so, it performs a criti-
cal switch, which is a switch with the least
important active Shot.

e High Level Check: If two seconds have gone
by since it last activated a shot, and Shot
Priority is equal or greater than 70, then
we switch it with the least important ac-
tive shot that also has been active for more
than a second.

e Mid-Level Check: If ten seconds have gone
by since it last activated a shot, and Shot
Priority is equal or greater than 40, then it
switches the Shot with the least important
active shot that has also been active for
more than a second and only if that active
shot has a lower priority value than the
inactive one we are looking to activate.

o Low-Level Check: If twenty seconds have
gone by since it last activated a Shot, and
Shot Priority is equal or greater than 20,
then it switches the Shot with the least
important active shot that has also been
active for more than a second and only if

that active shot has a lower priority value
than the inactive one we are looking to ac-
tivate.

o ('risis-Level Check: If one minute has gone
by since it last activated a Shot, regard-
less of Shot Priority, it will switch the Shot
with the least important active shot that
has also been active for more than a sec-
ond and only if that active shot has a lower
priority value than the inactive one we are
looking to activate.

The numerical values shown in these checks
are like any other parameters in this system.
They have been tuned across a preliminary
testing phase, using Shadow Conclave, with
that goal in mind. We cannot guarantee they
will work optimally for other video-games. But
we believe the approach will: which is to make
the several checks by looking at both priority
and time since a shot was (de)activated.

The Camera System is implemented as one

camera which switches between the “shots”.
The camera system is built only as far as is
necessary to test everything else. We took this
approach in order to test the other modules,
and not this extensively researched and devel-
oped module.
We really decided to focus all of our effort
into building a well functioning game-state
interpreting. As it stands, we believe one
could pick any player-based Third Person
Strategy game like Shadow Conclave, and use
the Game-State Interpreter and Shot Manager
described here, managing and working with
metrics defined specifically for said game, and
AutoBroad would be spectating that game just
as well as it does ours.

6 Evaluation

6.1 Testing

In order to carry out the testing, we patched
the broadcasting system with a secondary
version where the viewers could choose which
player/shot to see, by pressing the spacebar.
It was our goal to compare how AutoBroad

6 EVALUATION

fared against actual users, hoping it would
show equal or superior wisdom.

For this purpose, we carried out two phases of
testing. Both phases involved having a variety
of testers watching a match, casted by one of
the versions, and then filling a set of questions.
Some of these graded the understanding of the
match(functionality of the system), others the
experience itself(the quality of the system).

In the first phase, we made sure the testers
were unfamiliar with Shadow Conclave, and
the system itself, and had them watch two
real-time matches, one with each version of
the system. They would then answer the
questions, and at the second test, they would
inform us which one they preferred, and why.
In this phase, every test corresponded to a
match, and we arranged for a total of 33.

In the second phase of testing, we made sure
the testers were familiar with the game in
question, but they saw only a recording of
the cast of a match. There were two groups,
one testing a match casted by the automatic
version, and one testing a match casted by
the manual version. In this phase, every test
corresponded to the same match, and we
arranged for 27.

6.2 Results

We evaluated the answers by tester, and by
question. In order to better understand the re-
sults, we translated the grades into percentage,
100 being the best possible.

In the first phase of testing, the average grade
was between 86.6 percent for Manual mode and
an average grade between 84.1 percent for Au-
tomatic mode, respectively with a worst grade
lying between 75 and 70.8 percent

In total, they differentiate by 2.5 percent, which
is approximately equivalent to one question.
In the second phase of testing, the average
grade was between 79.4 percent for Manual
mode and an average grade between 8.0 percent
for Automatic mode, respectively with a worst
grade lying between 64.6 and 68.75 percent.

In total, they differentiated by 0.6 percent.
This suggests there is no advantage either way,

from this point of view.

In 3, we can see the performance difference,
of both phases, with the grades now listed by
question: The graphic shows the non absolute

Calculated Performance Difference, Both Phases

(Phase 1)

(Phase 2)

4 5 6 7 8 9 10 12 13 15 16 19 20 21 23

Figure 3: Comparing the overall performance,
for each question.

difference between the average real grades (not
percentage) of the Manual version and the aver-
age real grades of the Automatic version, con-
cerning functionality(the closer to 0, the bet-
ter). The positive values represent advantage
for the Automatic version (it produced more
correct answers) while the negative represent
advantage for the Manual Version.

This shows which question helped one or the
other system, which questions were the hardest
and easiest, and more importantly, how little
the difference was between the two versions.
The tie reflects itsef even from this point of
view.

|- MCalculated Performance Difference

1 MCalculated Performance Difference

Grading the System, Questions, Phase 1 vs Phase 2

—

e\

A\

Figure 4: Test Scores, by Question.

7 CONCLUSION AND FUTURE WORK

Figure 4 shows the answers, by question, to
the questions which rated the enjoyability of
the system (quality), in both phases. The red
straight line shows what would be the opti-
mal value for each question, and the other lines
show the values given. We can see all four lines,
first and second phase, automatic and man-
ual version, offer values close to optimal, and
for that matter, very close to each other. The
grades of the second phase, though, are visibly
inferior to the values we retrieved during the
first phase, which is to be expected as the first
phase is represented by second-experience users
only while the second phase includes mostly
testers that functioned with the system only
once. Plus, during the second phase, since
testers watched recordings, none of them really
had control over any choice.

What is important to retain is that the system
was enjoyable enough to warrant watching.

7 Conclusion and Future
work

So results have shown AutoBroad could match
the manual performance of the average user,
as well as the enjoyable quality of a manual
system.

We also saw how the user made a mistake
while AutoBroad remained faithful to all the
details of the Real Match.

While the most important factor for Manual
likability is the control it offers, the most
important factor for Automatic likability is not
having to worry about whether or not the user
is looking at what he should. It is expected,
though, for the manual version to have the
upper hand, especially in a simple game as
this, with only two players, but the fact it was
actually a tie is evident and proves the system
works.

We believe this was a well worthwhile endeav-
our, and results show, in summary, that it
is worth researching the development of an
automated broadcasting system.

10

7.1 Future work

There is great potential for future work here.
This documents literally births the concept of
an automated broadcasting system, and shows
that it is possible.

Light weight and functional, AutoBroad can
theoretically be applied to any video-game. Fu-
ture work is not only limited to matches involv-
ing more players, but extending it beyond game
genre.

But mostly, AutoBroad is a concept that cov-
ers more areas than we researched and imple-
mented, opened for further extesions: viewport
animation to smoothly change between points
of interest all the while allowing more than one
stream, instant replay, a configurable version,
a more cinematic behaviour, and so on.

New concepts are the building stones of great
structures. We dare say AutoBroad is as new
as it gets nowadays, and as much as it is but
one stone, it is a cornerstone for Automated
Broadcasting.

REFERENCES: LITERATURE

References: Literature

[ALMO03] N. Adami, R. Leonardi, and
P. Migliorati. An overview of multi-
modal techniques for the character-
ization of sport programmes. In
In Visual Communications and Im-
age Processing, pages 1296-1306,
University of Italian Switzerland
(USI), Lugano, Switzerland, July
2003. VCIP.

[BSvdHO8] S. Bakkes, P. Spronck, and
J. van den Herik. Rapid adaptation
of video game ai. In Proceedings
of the IEEE Symposium on Com-
putational Intelligence in Games,
pages 79-86, Perth, Australia,
2008. TEEE.

[HBOS] S. Hladky and V. Bulitko. An
evaluation of models for predicting
opponent positions in first-person
shooter video games. In Com-
putational Intelligence and Games,
2008. CIG ’08. IEEE Symposium
On, pages 39-46, Dept. of Com-
put. Sci., Univ. of Alberta, Ed-
monton, AB, December 2008. Com-
putational Intelligence and Games,
IEEE.

[HS08] J. Hsieh and C. Sun. Building
a player strategy model by ana-
lyzing replays of real-time strat-
egy games. In Proceedings of the
International Joint Conference on
Neural Networks, pages 3106-3111,
Hong Kong, China, 2008. IEEE.

[Lai01] J. E. Laird. It knows what you're
going to do: Adding anticipation
to a quakebot. In Proceedings of
the fifth international conference

on Autonomous agents, pages 385—
392, Montreal, CA, 2001. Agents.

[MMO09] J. McCoy and M. Mateas. An inte-
grated agent for playing real-time
strategy games. In Proceedings of

[MOROS]

[Rea05]

[SD97]

[XXCT01]

[YAO6]

11

the AAAI Conferences on Artifi-
cial Intelligence., pages pp. 1313—
1318, Chicago, Illinois, 2009. AAAT
Press.

K. Mishra, S. Ontanén, and
A. Ram. Situation assessment for
plan retrieval in real-time strategy
games. In Proceedings of the Fu-
ropean Conference on Case-Based
Reasoning., pages 355-369, Trier,
Germany, 2008. Springer.

Niall Rea. High-level event de-
tection in broadcast sports video.
Technical report, Trinity College
Dublin, Dublin, Ireland, April
2005.

Drucker Steven and Zelter David.
Intelligent camera control in a vir-
tual environment. Graphics In-
terfaces, (Graphics Interfaces 97),
1997.

P. Xu, L. Xie, S. F. Chang, A. Di-
vakaran, A. Vetro, and H. Sun. Al-
gorithms and system for segmenta-
tion and structure analysis in soc-
cer video. In in Proceedings of
ICME 2001, pages 928-931, Tokyo,
Japan, August 2001. ICME.

Hector Yee and Elie Arabian. Bat-
tle cam: A dynamic camera system
for real-time strategy games. In In
Game Developers Conference, San
Jose, CA, USA, March 2006. Game
Developers Conference. A Presen-
tation Panel.

References: Websites

[1] Official site for game development engine
unreal engine 3, May 2011.

[2] Official website for competitive e-sport
quake live, September 2011.

[3] Official website for competitive e-sports
tournament host, gomtv, October 2011.

REFERENCES: WEBSITES

[4]

Official website for competitive e-sports
tournament host, intel extreme masters,
September 2011.

Official website for competitive e-sports
tournament host, world cyber games,
September 2011.

official website for game heroes of new-
erth., May 2011.

official website for game league of legends.,
May 2011.

official website for video-game starcraft 2,
May 2011.

official website for warcraft 3 modification
game defense of the ancients, May 2011.

Steam website about competitive e-sport
counter strike 1.6., September 2011.

Temporary site for game project shadow
conclave, April 2011.

wiki site about competitive e-sport wow
arena, September 2011.

12

