2023 Buckskin Artists Community Water Consumer Confidence Report

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. Last year, we conducted tests for over 80 contaminants. We only detected 53 of those contaminants, and found only 1 at a level higher than the EPA allows. As we informed you at the time, our water temporarily exceeded drinking water standards. (For more information see the section labeled Violations at the end of the report.)

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Your water comes from three community wells supplied by a common aquifer.

Source water assessment

Based on the information currently available on the hydrogeological settings of and the adjacent land uses that are in the specified proximity of the drinking water source(s) of this public water systems, the Arizona Department of Environmental Quality has given us a low risk designation for the degree to which this public water system drinking water source(s) are protected. A low risk designation indicates that most source water protection measures are either already implemented, or the hydrogeology is such that the source water protection measures will have little impact on protection.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

How can I get involved?

You can report flowing water or wet spots on the ground as potential leaks in our distribution system. Encourage your neighbors to not let hoses run and to conserve our precious resource.

Description of Water Treatment Process

Your water is treated by disinfection. Disinfection involves the addition of chlorine or other disinfectant to kill dangerous bacteria and microorganisms that may be in the water. Disinfection is considered to be one of the major public health advances of the 20th century.

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

- Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- Visit <u>www.epa.gov/watersense</u> for more information.

Source Water Protection Tips

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team.
- Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

Other Information

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
 (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health."

Results of voluntary monitoring

Water Quality Table - Unregulated Contaminants

Your drinking water was also sampled for the presence and concentration of 29 different per- and polyfluoroalkyl substances, some known by the acronyms PFAS, PFOA, PFNA, PFHxS, PFBS, and GenX, a group of contaminants in the final stages of becoming regulated by the EPA. PFAS are man-made chemicals that are resistant to heat, water, and oil. They have been used since the 1940s to manufacture various consumer products, including fire-fighting foam and stain resistant, water-resistant, and nonstick items. Many PFAS do not break down easily and can build up in people, animals, and the environment over time. Scientific studies have shown that exposure to certain PFAS can be harmful to people and animals, depending on the level and duration of exposure.

To learn more about this group of chemicals, we encourage you to read the ADEQ's "PFAS 101 Fact Sheet" and to visit the ADEQ website at https://www.azdeq.gov/pfasresources

* EPA is proposing a Hazard Index MCL to limit any mixture containing one or more of PFNA, PFHxS, PFBS, and/or GenX Chemicals. The Hazard Index considers the different toxicities of PFNA, GenX Chemicals, PFHxS, and PFBS. For these PFAS, water systems would use a hazard index calculation to determine if the combined levels of these PFAS in the drinking water at that system pose a potential risk and require action (Source: EPA Fact Sheet: Understanding the PFAS National Primary Drinking Water Proposal Hazard Index).

The following contaminants were tested for in June 2023 and were not detected in the water:

11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS) 1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS) 1H, 1H, 2H, 2H-perfluorohexane sulfonic acid (4:2 FTS) 1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS) 4,8-dioxa-3H-perfluorononanoic acid (ADONA) 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS) hexafluoropropylene oxide dimer acid (HFPO-DA) (GenX) nonafluoro-3,6-dioxaheptanoic acid (NFDHA) Perfluoro-3-methoxypropanoic acid (PFMPA) Perfluoro-4-methoxybutanoic acid (PFMBA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanoic acid (PFBA) Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDoA) Perfluoroheptanesulfonic acid (PFHpS) Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA) Perfluorononanoic acid (PFNA) Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Perfluoropentanesulfonic acid (PFPeS) Perfluoropentanoic acid (PFPeA)

Perfluoroundecanoic acid (PFUnA) n-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) n-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTrDA)

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Buckskin Artists Community Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Buckskin Artists Community Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water is primarily from materials and components associated with service lines and home plumbing. Buckskin Artists Community Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you

Additional Information for Arsenic

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

Contaminants	MCLG or MRDLG	TT, or		Range Low High	Sample Date	Violation	Typical Source
Disinfectants & Disinfection By-Products							
(There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants)							

	MCLG	MCL, TT, or	Detect In Your	Ra	nge	Sample				
Contaminants	or MRDLG		Water	Low	High	-	Violation		Typical Source	
TTHMs [Total Trihalomethanes] (ppb)	NA	80	.89	NA	NA	2021	No	By-product of drinking water disinfection		
Inorganic Contaminants										
Antimony (ppb)	6	6	5.3	0	5.3	2023	No		rge from petroleum refineries; fire retardants; ceramics; electronics; test addition.	
Arsenic (ppb)	0	10	3.8	3.8	3.8	2022	No		n of natural deposits; Runoff from orchards; Runoff from glass and nics production wastes	
Barium (ppm)	2	2	.043	.041	.043	2022	No		rge of drilling wastes; Discharge from metal refineries; Erosion of deposits	
Fluoride (ppm)	4	4	.12	.11	.12	2022	No		Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories	
Nitrate [measured as Nitrogen] (ppm)	10	10	.37	.3	.37	2023	No		Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion c natural deposits	
Sodium (optional) (ppm)	NA		3.5	3.5	3.5	2022	No	Erosion of natural deposits; Leaching		
Microbiological Contaminants		•						•		
Total Coliform (TCR) (positive samples/month)	0	1	0	NA	NA	2022	No	Naturally present in the environment		
Radioactive Contaminants										
Alpha emitters (pCi/L)	0	15	2.6	2.6	2.6	2022	No	Erosio	n of natural deposits	
Contaminants		MCLG	Your AL Water	Samj Dat	ole 1	# Sample Exceeding AL			Typical Source	
Inorganic Contaminants										
Copper - action level at consumer taps (ppm)		1.3	1.3 .17	202	2023 0		N		Corrosion of household plumbing systems; Erosion of natural deposits	
Lead - action level at consumer tap	s (ppb)	0	15 60	202	3	1	Ye		Corrosion of household plumbing systems; Erosion of natural deposits	

Violations and Exceedances

Lead - action level at consumer taps

Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure. We had an action level exceedance for lead and have met additional monitoring requirements as well as public notice requirements. We have initiated additional testing as required.

Undetected Contaminants The following contaminants were monitored for, but not detected, in your water.

Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	Your Water	Violation	Typical Source
1,1,1-Trichloroethane (ppb)	200	200	ND	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	3	5	ND	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	ND	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	ND	No	Discharge from textile-finishing factories
1,2-Dichloroethane (ppb)	0	5	ND	No	Discharge from industrial chemical factories
1,2-Dichloropropane (ppb)	0	5	ND	No	Discharge from industrial chemical factories
Alachlor (ppb)	0	2	ND	No	Runoff from herbicide used on row crops
Asbestos (MFL)	7	7	ND	No	Decay of asbestos cement water mains; Erosion of natural deposits
Benzene (ppb)	0	5	ND	No	Discharge from factories; Leaching from gas storage tanks and landfills
Beryllium (ppb)	4	4	ND	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	ND	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Carbon Tetrachloride (ppb)	0	5	ND	No	Discharge from chemical plants and other industrial activities
Chlordane (ppb)	0	2	ND	No	Residue of banned termiticide
Chlorobenzene (monochlorobenzene) (ppb)	100	100	ND	No	Discharge from chemical and agricultural chemical factories
Chromium (ppb)	100	100	ND	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide (ppb)	200	200	ND	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Dibromochloropropane (DBCP) (ppt)	0	200	ND	No	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Dichloromethane (ppb)	0	5	ND	No	Discharge from pharmaceutical and chemical factories
Dioxin (2,3,7,8-TCDD) (ppq)	0	30	ND	No	Emissions from waste incineration and other combustion; Discharge from chemical factories
Endrin (ppb)	2	2	ND	No	Residue of banned insecticide
Ethylbenzene (ppb)	700	700	ND	No	Discharge from petroleum refineries
Ethylene dibromide (ppt)	0	50	ND	No	Discharge from petroleum refineries
Haloacetic Acids (HAA5) (ppb)	NA	60	ND	No	By-product of drinking water chlorination
Heptachlor (ppt)	0	400	ND	No	Residue of banned pesticide
Heptachlor epoxide (ppt)	0	200	ND	No	Breakdown of heptachlor

Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	Your Water	Violation	Typical Source
Lindane (ppt)	200	200	ND	No	Runoff/leaching from insecticide used on cattle, lumber, gardens
Mercury [Inorganic] (ppb)	2	2	ND	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
PCBs [Polychlorinated biphenyls] (ppt)	0	500	ND	No	Runoff from landfills; Discharge of waste chemicals
Radium (combined 226/228) (pCi/L)	0	5	ND	No	Erosion of natural deposits
Selenium (ppb)	50	50	ND	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Styrene (ppb)	100	100	ND	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	0	5	ND	No	Discharge from factories and dry cleaners
Thallium (ppb)	.5	2	ND	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories
Toluene (ppm)	1	1	ND	No	Discharge from petroleum factories
Toxaphene (ppb)	0	3	ND	No	Runoff/leaching from insecticide used on cotton and cattle
Trichloroethylene (ppb)	0	5	ND	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride (ppb)	0	2	ND	No	Leaching from PVC piping; Discharge from plastics factories
Xylenes (ppm)	10	10	ND	No	Discharge from petroleum factories; Discharge from chemical factories
cis-1,2-Dichloroethylene (ppb)	70	70	ND	No	Discharge from industrial chemical factories
o-Dichlorobenzene (ppb)	600	600	ND	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	ND	No	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene (ppb)	100	100	ND	No	Discharge from industrial chemical factories

Unit Descriptions								
Term	Definition							
ppm	ppm: parts per million, or milligrams per liter (mg/L)							
ррb	ppb: parts per billion, or micrograms per liter (µg/L)							
ppt	ppt: parts per trillion, or nanograms per liter							
ppq	ppq: parts per quadrillion, or picograms per liter							
pCi/L	pCi/L: picocuries per liter (a measure of radioactivity)							
MFL	MFL: million fibers per liter, used to measure asbestos concentration							

Unit Descriptions								
positive samples/month	positive samples/month: Number of samples taken monthly that were found to be positive							
NA	NA: not applicable							
ND	ND: Not detected							
NR	NR: Monitoring not required, but recommended.							

Important Drinking Water Definitions									
Term	Definition								
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.								
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.								
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.								
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.								
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.								
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.								
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.								
MNR	MNR: Monitored Not Regulated								
MPL	MPL: State Assigned Maximum Permissible Level								

For more information please contact: Contact Name: Jim Albu Address: PO Box 146 Heber, AZ 85928 Phone: 602-499-8257