Analysis of Composite Laminates Subjected to Hygrothermal-and Mechanical Loads

## Copyright Information

The solver module 3pcsolver001 contains information obtained from authentic and highly regarded references. Reasonable efforts have been made to check the reliability of the code and information. However, the 3P Composites, LLC does not assume any responsibility for the validity of the materials, accuracy of the code, and thereby the consequences of their use

The documentation for the solver module 3pcsolver001 is intended for users' information only. No part of this module and documentation may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from 3P Composites, LLC

All rights to the documentation are retained by 3P Composites, LLC

## Solver Agreement

> 3P Composites, LLC hereby grant you, the subscriber a nonexclusive and a nontransferable license to use the 3pcsolver001 subscribed by you on the following terms and conditions only:

- You have been granted an Individual 3pcsolver001 License to use on a single computer for your own personal use. Each solver is effective for the period of its subscription. You agree to protect the 3pcsolver001 subscribed by you from unauthorized use, reproduction, or distribution. You further acknowledge that the 3pcsolver001 contains valuable trade secrets and confidential information belonging to 3P Composites, LLC. You may not disclose any component of the 3pcsolver001, whether or not in machine readable form, except as expressly provided in this Agreement
" The subscribed 3pcsolver001 is furnished on an "as is" basis and without warranty as to the performance or results you may obtain using the 3pcsolver001. While utmost care has been taken to ensure accuracy of each solver before release, the entire risk as to the results or performance, in no event will 3P Composites, LLC be liable to you for any damages whatsoever, including without limitation, lost profits, lost savings, or other incidental or consequential damages arising out of the use or inability to use the 3pcsolver001 even if 3P Composites, LLC has been advised of the possibility of such damages. Furthermore, 3 P Composites, LLC is not responsible for any loss in productivity to the users' of the 3pcsolver001 due to the unavailability of the 3pcsolver001 caused by any technical or other issues related downtimes and maintenances of the website and/or server
- This agreement represents the entire agreement between 3P Composites, LLC and you, the subscriber, and supersedes any proposals or prior agreements, oral or written, and any other communication between us relating to the subject matter of this agreement. This agreement will be governed and construed as if wholly entered into and performed within the state of Florida
- If you fail to comply with any term or condition of this Agreement, your subscription to the 3pcsolver001 will be terminated, and no refund will be issued for the remainder of the subscription time. Upon such termination, you agree to destroy all information regarding the 3pcsolver001 including any copies made
- By accessing the 3pcsolver001 and/or its documentation, you as user and/or subscriber acknowledge that you have read this agreement completely and agree to be bound by its terms and conditions listed here


## Contents: 3pcsolver001

1. Overview
2. Applications
3. Theoretical Background
4. Inputs
5. Outputs
6. Consistent Units

7. Other Features
8. General Information
9. Examples

## Overview

* 3pcsolver001 performs fundamental analysis of composite laminates subjected to static forces and moments per unit length, uniform temperature variations and moisture effects. Positive sign conventions for applied force and moment resultants are shown below:


In-plane Force resultants (Force per unit Length)


Transverse Force resultants (Force per unit Length)

## Overview



* Positive bending moments $M_{x x}$ and $M_{y y}$ result in tension at the top surface. Conventionally the plies or laminae in the laminate are laid-up or stacked from bottom-to-top. Hence, the positive moments $M_{x x}$ and $M_{y y}$ would result in tension in the topmost ply and compression in the bottommost ply. Similarly, positive twisting moment $M_{x y}$ results in a positive shear strain in the topmost ply and a negative shear strain in the bottommost ply


## Applications

* The analysis is applicable to laminates built-up (or fabricated) from a LAMINA that
- has any kind of continuous FIBER such as boron, carbon, graphite, glass, Kevlar, Aramid, polyester, natural fibers, etc.,
- is in any type of broad form such as unidirectional, bi-directional 2D textile weaves like plain weave, twill and harness, biaxial and triaxial braids, chopped random continuous fibers, non-crimp, nonwoven fabrics, etc.
- Is impregnated with any RESIN/MATRIX, thermoset or thermoplastic systems such as epoxy, polyester, vinyl ester, polyurethane, phenolic, cyanate ester, bis-maleimide, polyimides, benzoxazine, Acrylic, ABS, Polylactic acid PLA, Polybenzimidazole PBI, Polyether sulfone PES, Polyoxymethylene POM, Polyether ether ketone PEEK, Polyetherimide PEI, Polyphenylene oxide PPO, Polyphenylene sulfide PPS, Polystyrene PS, Polypropylene PP, Polyvinyl chloride PVC, Teflon PTFE, etc.
- is cured using any MANUFACTURING PROCESS such as Autoclave, Resin Transfer Molding like VARTM, SQRTM, RIM, SRIM, Filament Winding, Pultrusion, Compression Molding, Wet-lay up, etc.
* The analysis is equally applicable to Hybrid Laminates manufactured from a single or multiple types of lamina materials and/or ply broad forms or fiber types or single or multiple materials systems or their combinations


## Theoretical Background

* 3pcsolver001 solver is based on Mindlin-Type First-Order Shear Deformation Theory (FSDT) of laminated plates. Based on such theory, the constitutive law for the laminated plates is given as

$$
\left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y} \\
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}+\left\{\begin{array}{l}
N_{x x}^{T} \\
N_{y y}^{T} \\
N_{x y}^{T} \\
M_{x x}^{T} \\
M_{y y}^{T} \\
M_{x y}^{T}
\end{array}\right\}+\left\{\begin{array}{l}
N_{x x}^{M} \\
N_{y y}^{M} \\
N_{x y}^{M} \\
M_{x x}^{M} \\
M_{y y}^{M} \\
M_{x y}^{M}
\end{array}\right\}=\left[\begin{array}{llllll}
A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\
A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\
A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\
B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\
B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\
B_{16} & B_{26} & B_{66} & D_{16} & D_{66} & D_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{0} \\
\varepsilon_{y y}^{0} \\
\gamma_{x y}^{0} \\
\kappa_{x x}^{0} \\
\kappa_{y y}^{0} \\
\kappa_{x y}^{0}
\end{array}\right\}
$$

$$
\left\{\begin{array}{l}
Q_{y z} \\
Q_{x z}
\end{array}\right\}=\left[\begin{array}{ll}
A_{44} & A_{45} \\
A_{45} & A_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{0} \\
\gamma_{x z}^{0}
\end{array}\right\}
$$

* In the equations given above, $N_{i j}$ 's are the in-plane force resultants, $M_{i j}$ 's are the moment resultants, and $Q_{i j}$ 's are the transverse force resultants. Superscripts $T$ and $M$ denote thermal and moisture resultant terms that are dependent upon the coefficients of thermal expansions and moisture absorptions, respectively, of the laminae. $\varepsilon_{x x}^{0}, \varepsilon_{y y}^{0}$ and $\gamma_{x y}^{0}$ are the in-plane extensional and shear strains, $\gamma_{y z}^{0}$ and $\gamma_{x z}^{0}$ are the transverse shear strains, and $\kappa_{x x}^{0}, \kappa_{y y}^{0}$ and $\kappa_{x y}^{0}$ are bending and twisting curvatures of the reference surface of the laminate (usually the middle surface, equidistant from top and bottom plies of the laminate)


## Theoretical Background

* Given the laminate stack-up, lamina/ply material properties and allowables, 3pcsolver001 solver calculates reference surface strains and curvatures, ply-by-ply strains and stresses, and failure indices / Margin of Safeties for a laminate subjected to Hygro-thermo-mechanical loads. The solver uses widely established laminated plate theories, and strain and stress transformations equations to compute [A], [B], [D] stiffness matrices, effective in-plane and flexural engineering constants, and effective hygrothermal engineering constants for the laminate
* Details of the theoretical approach along with numerous verification and application examples are provided in the training module 3pcmodule001


## Inputs

* All inputs should be in consistent units. Use either ( $\mathrm{N}, \mathrm{m}, \mathrm{kg}$, Celsius, $\mathrm{N} / \mathrm{mm} \mathrm{N}-\mathrm{m} / \mathrm{m}$ ) OR ( $\mathrm{N}, \mathrm{mm}, \mathrm{Kg}$, Celsius, $\mathrm{N} / \mathrm{mm}, \mathrm{N}-\mathrm{mm} / \mathrm{mm}$ ) or (lbs, in, Fahrenheit, $\mathrm{lb} / \mathrm{in}, \mathrm{lb}-\mathrm{in} / \mathrm{in}$ ) consistently. Inputs in scientific notation ( $0.0+\mathrm{e}$ ) are acceptable
* Input process is intuitive and uses the following logical order:
- Analysis Options
- Materials
- Plies / Laminae
- Laminates
- Panels
- Loads
* The type of analysis selected dictates the required inputs. In general, the loads are applied to the panels consisting of laminates, which are built from specifically oriented plies/laminae fabricated from individual materials


## Inputs: Analysis Options

## * Analysis Options:

Four types of analyses can be performed using this solver, viz. (i) Mechanical (ii) Thermo-mechanical (iii) Hygro-mechanical, and (iv) Hygro-thermo-mechanical, In addition, Failure analysis of the laminate can be performed using First-ply failure criteria using one of the four commonly used composite failure theories, viz. (i) Maximum Stress (ii) Maximum Strain (iii) Tsai-Hill, and (iv) Tsai-Wu. In total there are twenty (20) possible ways this solver can be used to perform analysis of composite laminates subjected to Hygro-thermo-mechanical loads. A few combination of analyses are shown below:

Analysis Options


Analysis Options


Analysis Options

| MECHANICAL | $\vee$ | MAX STRAIN | $\vee$ |
| :--- | :--- | :--- | :--- |

Analysis Options


Analysis Options


Analysis Options

```
HYGRO-THERMO-MECHANICAL \vee TSAI-WU
```


## Inputs: Materials

## * Material Properties:

In the SI system, MPa or Pa, and in the US system Psi are used to input the orthotropic lamina Moduli $E_{1}, E_{2}, G_{12}, G_{13}$ and $G_{23}$. Coefficient of thermal expansions $\alpha_{1}$ and $\alpha_{2}$ are expressed in $\mathrm{mm} / \mathrm{mm}$ or $\mathrm{m} / \mathrm{m}$ per degree Celsius in SI system, and in/in per Fahrenheit in the US system. Similarly, Coefficient of moisture expansions $\beta_{1}$ and $\beta_{2}$ are in $\mathrm{mm} / \mathrm{mm}$ per $\mathrm{Kg} / \mathrm{Kg}$ or $\mathrm{m} / \mathrm{m}$ per $\mathrm{Kg} / \mathrm{Kg}$ in SI system and $\mathrm{in} / \mathrm{in}$ per $\mathrm{lb} / \mathrm{lb}$ in the US system. Coefficients of Thermal and Moisture expansions are required to perform hygrothermal analysis due change in temperature and/or moisture content. $v_{12}$ is major Poison's ratio. Multiple lamina types and lamina materials can be input by simply clicking the ' + ' sign on the extreme right. Based on the type of analyses selected, the required material inputs for an orthotopic Lamina can vary as shown below:

Materials 图 (i) $\uparrow$

| ID | $\mathrm{E}_{1}$ | $E_{2}$ | $\mathrm{G}_{12}$ | $\mathrm{G}_{23}$ | $\mathrm{G}_{13}$ | $v_{12}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |

Materials 투ํ (i) $\boldsymbol{\Psi}$

| ID | $E_{1}$ | $E_{2}$ | $\mathrm{G}_{12}$ | $\mathrm{G}_{23}$ | $\mathrm{G}_{3}$ | V12 | $\alpha_{1}$ | $\alpha_{2}$ | $\beta_{1}$ | $\beta_{2}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + - |

MUST BE +VE REAL MUST BE +VE REAL MUST BE +VE REAL MUST BE +VE REAL MUST BE +VEREAL MUST BE +VE REAL

## Inputs: Materials

## * Material Allowables:

Additional inputs are required to perform laminate failure analysis. Depending upon the type of failure theory selected for an orthotropic lamina, either strength ( $\sigma_{11}^{T}, \sigma_{11}^{C}, \sigma_{22}^{T}, \sigma_{22}^{C}$ and $\tau_{12}$ ) or strain ( $\varepsilon_{11}^{T}, \varepsilon_{11}^{C}, \varepsilon_{22}^{T}, \varepsilon_{22}^{C}$ and $\gamma_{12}$ ) based material allowables, in tension, compression and shear should be input as shown below:

Allowables (i)

| ID | $\sigma_{11}{ }^{\top}$ | $\sigma_{11}{ }^{\circ}$ | $\sigma_{22}{ }^{\top}$ | $\sigma_{22}{ }^{c}$ | $\tau_{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 | 0 |

Allowables ©

| 1 D | $\varepsilon_{11}{ }^{\top}$ | $\varepsilon_{11} \subset$ | $\varepsilon_{22}{ }^{\top}$ | $\varepsilon_{22}{ }^{\circ}$ | $\gamma_{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 | 0 |

Allowables ©

| ID | $\sigma_{11}{ }^{\top}$ | $\sigma_{22}{ }^{\top}$ |
| :--- | :--- | :--- |
| 1 0 0 $\tau_{12}$ <br>  0  0 |  |  |

Strength allowables are input as MPa or Pa in SI system, and in Psi in the US systems, and should be consistent with the unit system used for input of Moduli

## Inputs: Plies

## * Plies/Laminae:

Types of plies in a laminate are required as input. Each ply type is defined by its angle (or orientation) in degrees, material type and its thickness. Material of a ply/lamina can be selected from a predefined list of materials that are input in the Material Properties Section above. The thickness of the ply or lamina is in mm or m in the SI system or inch in the US system. Multiple ply or lamina types can be input by simply clicking the '+' sign on the extreme right. The required ply/lamina type inputs with few examples are shown below:


## Inputs: Laminates

## * Laminates:

Multiple laminates can be quickly created by defining their stacking sequences using the plies defined in the previous step. Laminate Offsets can be incorporated in the analysis in three different ways, viz (i) Middle (usually default), (ii) Top and (iii) Bottom. Laminate offsets considered are depicted below:


$$
\begin{gathered}
\text { offset }=\text { Middle }(\text { default }) \\
\text { Reference plane }=\text { Mid-Surface }
\end{gathered}
$$



$$
\text { Offset }=\text { Top }
$$

Reference plane $=$ Upper-Surface


$$
\text { Offset }=\text { bottom }
$$

Reference plane $=$ Lower-Surface

## Inputs：Laminates

## ＊Laminates：

Hybrid laminates can be defined using different ply and material combinations established in the previous steps．Additional laminates can be added by simply clicking the＇+ ＇sign on the extreme right．A few examples of laminates and their inputs are shown below：

Laminates ⿴囗大⺀⿺（i）$\downarrow$

| ID | Stacking Sequence | Stacking Sequence（Angle） | Offset |  |
| :---: | :---: | :---: | :---: | :---: |
| CEP－QI | 2，3，1，4，4，1，3，2 | 45，－45，0，90，90，0，－45 | Middle v | ＋－ |
| CEP－Cross Ply | 1，4，1，4，1，4，1，4 | $0,90,0,90,0,90,0,90$ | Bottom $\checkmark$ | ＋ |
| CEP－Angle Ply | 2，3，2，3，2，3，2，3 | $45,-45,45,-45,45,-45$ | Top | ＋－ |
| CEP－Flax Hybrid | 1，2，3，4，5 | $0,45,-45,90,0$ | Middle $\vee$ | ＋－ |

## Inputs: Panels

## * Panels:

Panels are defined using the laminates as shown below. While panels have same definitions as the laminates, their unique ID helps in the analyses of a specific laminate for multiple load cases more organized. Additional panels can be added by simply clicking the ' + ' sign on the extreme right (see below):

Panels (i) $\uparrow \underset{\downarrow}{\boldsymbol{\nu}}$

| 1 D | Laminate |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | CEP-QI | $\imath$ | + | - |
| 2 | CEP-Cross Ply | $\imath$ | + | - |
| 3 | CEP-Angle Ply | $\imath$ | + | - |
| 4 | CEP-QI | $\imath$ | + | - |
| 5 | CEP-Flax Hybrid | $\imath$ | + | - |
| 6 | CEP-Flax Hybrid | $\imath$ | + | - |

Panels © $\uparrow \downarrow$

| 1 D | Laminate |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | CEP-QI | $\imath$ | + | - |
| 2 | CEP-Cross Ply | $\imath$ | + | - |
| 3 | CEP-Angle Ply | $\imath$ | + | - |
| 4 | CEP-Flax Hybrid | $\imath$ | + | - |

## Inputs: Loads

## * Loads:

Hygrothermomechanical loads can be applied to the panels. Single or multiple panels (or laminates) can be analyzed for single or multiple load cases (upto 100 max ). For analyses of laminates subjected to mechanical loads, in-plane force $N_{x x}, N_{y y} \& N_{x y}$ and moment $M_{x x}, M_{y y} \& M_{x y}$ resultants, and transverse force resultants $Q_{x z} \& Q_{y z}$ are provided as inputs. For thermomechanical analysis, temperature change $\Delta T$ is required as input. For hygromechanical analysis, change in moisture absorption $\Delta C$ is required as input. Examples of the load inputs for typical mechanical or a complete hygrothermomechanical analyses are shown below. Additional load cases can be added by simply clicking the '+' sign on the extreme right as shown below:

Loads © さ む

| ID | Panel | $\mathrm{N}_{\text {xo }}$ | $\mathrm{N}_{y y}$ | $\mathrm{N}_{\text {xy }}$ | M ${ }_{\text {cox }}$ | Myy | Mxy | $Q_{y z}$ | $Q_{x z}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 v | 100 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | + - |
| 2 | 1 v | 0 | 0 | 0 | 20 | -10 | 0 | 0 | 0 | + - |
| 3 | 2 v | 10 | -10 | 100 | 2 | -1 | -3.2 | 0 | 0 | + - |
| 4 | 3 v | 0 | 30 | 5.5 | 0 | 0 | 0 | 2.2 | 10 | + - |
| 5 | 3 v | 0 | 0 | 0 | 0 | -10 | 0 | 5.2 | 0 | + - |
| 6 | 4 v | 20 | 0 | 0 | -10 | 20 | 0 | 0 | 0 | + - |
| 7 | 4 v | 0 | -10 | 15 | 0 | 0 | 2.5 | 0 | 0 | + - |

## Inputs: Loads

| ID | Panel | $\mathrm{N}_{\text {sx }}$ | Nyy | $N_{x y}$ | M ${ }_{\text {x }}$ | M ${ }_{3 y}$ | $M_{x y}$ | $Q_{y z}$ | $Q_{x z}$ | $\Delta T$ | $\Delta C$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 v | 100 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + - |
| 2 | 1 v | 0 | 0 | 0 | 20 | -10 | 0 | 0 | 0 | 0 | 0 | + - |
| 3 | 2 v | 10 | -10 | 100 | 2 | -1 | -3.2 | 0 | 0 | 0 | 0 | + - |
| 4 | 3 v | 0 | 30 | 5.5 | 0 | 0 | 0 | 2.2 | 10 | 0 | 0 | + - |
| 5 | $3 \vee$ | 0 | 0 | 0 | 0 | -10 | 0 | 5.2 | 0 | 0 | 0 | + - |
| 6 | 4 v | 20 | 0 | 0 | -10 | 20 | 0 | 0 | 0 | 0 | 0 | + - |
| 7 | 4 V | 0 | -10 | 15 | 0 | 0 | 2.5 | 0 | 0 | 0 | 0 | + - |
| 8 | 1 v | 50 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | -100 | 0 | + - |
| 9 | 2 v | -10 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5 | + - |

In-plane force and transverse force resultants are input as $\mathrm{N} / \mathrm{mm}$ or $\mathrm{N} / \mathrm{m}$ in SI system, and $\mathrm{lb} / \mathrm{in}$ in provided as inputs. Moment resultants are input in $\mathrm{N}-\mathrm{mm} / \mathrm{mm}$ or $\mathrm{N}-\mathrm{m} / \mathrm{m}$ in SI system, and $\mathrm{Ib}-\mathrm{in} / \mathrm{in}$ in the US system. Differential Temperature is input in degree Celsius in SI system, and in Fahrenheit in the US system. Difference in moisture absorption is prescribed as $\mathrm{Kg} / \mathrm{Kg}$ in SI system and $\mathrm{lb} / \mathrm{lb}$ in the US system

## Outputs

## * Analysis Outputs:

Once all the Input steps viz., Analysis Options, Materials, Plies / Laminae, Laminates, Panels and Loads are completed, analyses can be run by clicking the "submit" button. Maximum 100 Load Cases can be analyzed at one time

```
Submit
```

Upon completion of analyses, an output is displayed for each Load ID in the window underneath

## Output $\downarrow$

Depending upon the analysis option selected, the analyses output contains the following information at minimum.

- Material Properties and Laminate Information
- Laminate [A], [B], [D] stiffness matrices
- Effective laminate in-plane and flexural engineering constants
- Effective laminate hygrothermal engineering constants
- Applied Hygro-thermo-mechanical loads
- Laminate Reference plane strains and curvatures
- Ply-by-Ply in-plane strains and Stresses (TOTAL, MECHANICAL OR RESIDUAL) in global and ply coordinate systems
- Ply-by-Ply transverse shear strains and stresses
- Laminate/Lamina failure analysis- Failure Indices or Margins of Safety


## Outputs

## * Analysis Outputs:

Note that all output is consistent with the unit system used during the material, lamina, laminate, and loads Inputs.

- Laminate [A] stiffness matrices N/m or N/mm or lb/in
- Laminate [B] stiffness matrices $\mathrm{N}-\mathrm{m} / \mathrm{m}$ or $\mathrm{N}-\mathrm{mm} / \mathrm{mm}$ or $\mathrm{lb}-\mathrm{in} / \mathrm{in}$
- Laminate [D] stiffness matrices $\mathrm{N}-\mathrm{m}$ or $\mathrm{N}-\mathrm{mm}$ or lb -in
- Effective laminate in-plane, flexural and hygrothermal engineering constants- same as material property inputs
- Laminate Reference plane strains - in/in, m/m,mm/mm
- Laminate Reference curvatures - $1 / \mathrm{in}, 1 / \mathrm{mm}, 1 / \mathrm{m}$
- Ply-by-Ply strains - in/in, m/m, mm/mm
- Ply-by-Ply Stresses - Psi, MPa, Pa
- Laminate/Lamina failure analysis- Failure Indices or Margins of Safety Dimensionless


## Outputs: Laminate and Stiffnesses

3pc-solver001, v1.3b3
LOADS ID PANEL ID
11

| MATERIAL PROPERTIES |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | E1 | E2 | G12 | G23 | G13 | v12 |  |
| Tuttle | $2.25 e+07$ | $1.10 \mathrm{e}+06$ | $6.40 \mathrm{e}+05$ | $6.40 \mathrm{e}+05$ | $6.40 \mathrm{e}+05$ | 0.3400 |  |

LAMINATE GEOMETRY
STACKING SEQUENCE (PLY ANG): [+0.0 STACKING SEQUENCE (PLY MAT): [Tuttle TOTAL THICKNESS: 0.0600
OFFSET: 0.0000
LAMINATE PROPERTIES
A MATRIX

```
+1357672.96 +22567.54 +0.00
+22567.54 +66375.12 +0.00
\(+0.00+0.00+38400.00\)
```

A MATRIX - TRANSVERSE SHEAR
$+38400.00+0.00$
$+0.00+38400.00$

|  |  |  |
| :--- | :--- | :--- |
|  | B MATRIX |  |
| +0.00 | +0.00 | +0.00 |
| +0.00 | -0.00 | +0.00 |
| +0.00 | +0.00 | +0.00 |
|  |  |  |
|  | D MATRIX |  |
| +407.30 | +6.77 | +0.00 |
| +6.77 | +19.91 | +0.00 |
| +0.00 | +0.00 | +11.52 |

## Outputs: Effective Stiffnesses and Applied Loads



## Outputs: Ply Strains and MS

PLY BY PLY INPLANE STRAINS (TOTAL)


PLY BY PLY INPLANE STRAINS (MECHANICAL OR RESIDUAL)


ANGIE $Z$ PLY BY PLY TRANSVERSE SHEAR STRAINS

> Z GAMMA23 GAMMA13 GAMMAYZ

GAMMAXZ
$(x 1 \mathrm{E}-6) \quad(x 1 \mathrm{E}-6) \quad(x 1 \mathrm{E}-6) \quad(x 1 \mathrm{E}-6)$
$\begin{array}{cccc}+60.0 & -2.50000+0.00 & +0.00 & +0.00 \\ +0.00000+0.00 & +0.00 & +0.00 & +0.00\end{array}$
$\begin{array}{llll}+0.00000 & +0.00 & +0.00 & +0.00 \\ +2.50000 & +0.00 & +0.00 & +0.00\end{array}++0.00$

## Outputs: Ply Stresses and FIs



## Inputs and Outputs: Consistent Units

| Quantity | SI System 1 | SI system 2 | US System |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} E_{1}, E_{2}, G_{12}, G_{13}, G_{23} \\ E_{x}, E_{y}, G_{x y}, E_{f x}, E_{f y}, G_{f x y} \end{gathered}$ | $M P a\left(N / m m^{2}\right)$ | $\mathrm{Pa}\left(\mathrm{N} / \mathrm{m}^{2}\right)$ | Psi (lb/in ${ }^{2}$ ) |
| $\alpha_{1}, \alpha_{2}, \alpha_{x}, \alpha_{y}, \alpha_{x y}$ | $\mathrm{mm} / \mathrm{mm} /{ }^{\circ} \mathrm{C}$ | $\mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ | in/in/ ${ }^{\circ} \mathrm{F}$ |
| $\beta_{1}, \beta_{2}, \beta_{x}, \beta_{y}, \beta_{x y}$ | $\mathrm{mm} / \mathrm{mm} / \mathrm{Kg} / \mathrm{Kg}$ | $\mathrm{m} / \mathrm{m} / \mathrm{Kg} / \mathrm{Kg}$ | in/in/lb/lb |
| $\begin{gathered} \sigma_{11}^{T}, \sigma_{11}^{C}, \sigma_{22}^{T}, \sigma_{22}^{C} \tau_{12}^{\mathrm{S}}, \sigma_{1}, \sigma_{2}, \tau_{12}, \tau_{23}, \tau_{13} \\ \sigma_{x}, \sigma_{y}, \tau_{x y}, \tau_{y z}, \tau_{x z} \end{gathered}$ | $M P a\left(N / m^{2}\right)$ | $P a\left(N / m^{2}\right)$ | Psi (lb/in ${ }^{2}$ ) |
| $\begin{aligned} & \varepsilon_{11}^{T}, \varepsilon_{11}^{C}, \varepsilon_{22}^{T}, \varepsilon_{22}^{C}, \gamma_{12}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{12}, \gamma_{13}, \gamma_{23}, \varepsilon_{x 0} \\ & \varepsilon_{y 0}, \gamma_{x y 0}, \gamma_{y z 0}, \gamma_{x z 0} \varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z} \end{aligned}$ | $\mathrm{mm} / \mathrm{mm}$ | $m / m$ | in/in |
| Ply Angle, $\theta$ | Degree | Degree | Degree |
| Ply or Laminate thickness or Offset | mm | $m$ | in |
| $\begin{gathered} N_{x x}, N_{y y}, N_{x y}, Q_{y z}, Q_{x z}, \\ N_{x x}^{T}, N_{y y}^{T}, N_{x y}^{T}, N_{x x}^{H}, N_{y y}^{H}, N_{x y}^{H} \text { [A] } \end{gathered}$ | $\mathrm{N} / \mathrm{mm}$ | $N / m$ | $l b / i n$ |
| $\begin{gathered} M_{x x}, M_{y y}, M_{x y}, M_{x x}^{T}, M_{y y}^{T}, M_{x y}^{T}, \\ M_{x x}^{H}, M_{y y}^{H}, M_{x y}^{H}[\mathrm{~B}] \end{gathered}$ | $N-m m / m m$ | $N-m / m$ | $l b-i n / i n$ |
| $\Delta T$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ |
| $\Delta C$ | $\mathrm{Kg} / \mathrm{Kg}$ | $\mathrm{Kg} / \mathrm{Kg}$ | $l b / l b$ |
| [D] | $N-m m$ | $N-m$ | $l b-i n$ |
| $\kappa_{x 0}, \kappa_{y 0}, \kappa_{x y 0}$ | $1 / \mathrm{mm}$ | $1 / \mathrm{m}$ | 1/in |

## Other Features

## ＊Upload／Download：

Users can upload and download material properties，Plies，Laminates，Panels and Loads data files（＊．json）using the upload $\uparrow$ and download $\downarrow$ buttons next to these inputs．Sample input and output files can be downloaded from the 3p Composites website at www．3pcomposites．com
＊Additional Output：
Users can review a few intermediate calculations such as minor Poison＇s ratios $v_{21}, Q_{i j}$ for each ply type and laminate ABD by using the calculation button 图．Examples are shown below：

## Other Features

## Plies 图 © $\uparrow \downarrow$

| ID | Angle (deg) | Material |  | Thickness |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | Tuttle | $\vee$ | 0.0075 | + |
|  |  |  |  |  |  |
|  |  | Tuttle |  | $\vee$ | 0.0075 |


| ID | Q | Q44 | Q55 | Qbar | Q44bar | Q45bar | Q55bar $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0 \text {, }} \\ & 640000.0]] \end{aligned}$ | 640000 | 640000 | [[22627882.74, 376125.7, 0.0], [376125.7, 1106252.04, 0.0], [0.0, 0.0, 640000.0]] | 640000 | 0 | 640000 |
| 2 | $\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\ & 640000.0]] \end{aligned}$ | 640000 | 640000 | [[1106252.04, 376125.7, 0.0], [376125.7, 22627882.74, 0.0], [0.0, 0.0, 640000.0]] | 640000 | 0 | 640000 |
| 3 | $\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\ & 640000.0]] \end{aligned}$ | 640000 | 640000 | $\begin{aligned} & \text { [[6761596.54, 5481596.54, 5380407.67], [5481596.54, 6761596.54, 5380407.67], [5380407.67, 5380407.67, } \\ & 5745470.85]] \end{aligned}$ | 640000 | 0 | 640000 |
| 4 | $\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0,} \\ & 640000.0]] \end{aligned}$ | 640000 | 640000 | $\begin{aligned} & \text { [[6761596.54, 5481596.54, -5380407.67], [5481596.54, 6761596.54, -5380407.67], [-5380407.67, } \\ & -5380407.67,5745470.85]] \end{aligned}$ | 640000 | 0 | 640000 |



## General Information

* Subscription fee to access 3pcsolver001 is $\$ 39 /$ year per for a single-login license
* Training module 3pcmodule001 supports the solver 3pcsolver001. Users' can buy the training module 3pcmodule001 online at
https://www.3pcomposites.com/
* 3P Composites, LLC can conduct online or in-class trainings for the 3pcsolver001 and 3pcmodule001. The training can be adapted to meet the requirements of individual needs and/or industrial applications
* For questions, issues, comments, suggestions, trainings, please contact us at 3pcomps@gmail.com. Your feedback is appreciated in helping us continuously improve the product


## Example: Strength Analysis of a Laminate

* Unidirectional Lamina Properties:
$E_{1}=1.8 e 7 p s i, E_{2}=1.6 e 6 p s i ; G_{12}=G_{13}=8.7 e 5 p s i, G_{23}=6.4 e 5 p s i ; v_{21}=0.3, t_{p l y}=$ 0.00525 inch
* Unidirectional Lamina Allowables:

$$
\begin{gathered}
\varepsilon_{11}^{T}=5000 \mu \varepsilon, \varepsilon_{11}^{C}=-5000 \mu \varepsilon, \varepsilon_{22}^{T}=10000 \mu \varepsilon, \varepsilon_{22}^{C}=-10000 \mu \varepsilon, \gamma_{12}=10000 \mu \varepsilon ; \\
\sigma_{11}^{T}=20 k s i, \sigma_{11}^{C}=-20 k s i, \sigma_{22}^{T}=50 k s i, \sigma_{22}^{C}=-50 k s i, \tau_{12}=100 \mathrm{ksi} ;
\end{gathered}
$$

* Laminate Stack-up $[15 / 30 / 45 / 60]_{3 T}$
* Applied Loads:
$N_{x x}=-100 \mathrm{lb} / \mathrm{in}, N_{y y}=10 \mathrm{lb} / \mathrm{in}, N_{x y}=10 \mathrm{lb} / \mathrm{in}, M_{x x}=10 \mathrm{lb}-\mathrm{in} / \mathrm{in}, M_{y y}=20$ $\mathrm{lb}-\mathrm{in} / \mathrm{in}, M_{x y}=10 \mathrm{lb} / \mathrm{in}, Q_{x z}=110 \mathrm{lb} / \mathrm{in}, Q_{y z}=10 \mathrm{lb} / \mathrm{in}$


## Strength Analysis of a Laminate

* Laminate $[15 / 30 / 45 / 60]_{3 T}$ Stiffnesses


Equivalent or smeared properties of laminate $[15 / 30 / 45 / 60]_{3 T}$

$$
\begin{gathered}
E_{x}=5.01 e 6 p s i, E_{y}=3.01 e 6 p s i, G x y=1.34 e 6 p s i, v_{y x}=-0.0069, t_{l a m}=0.063 \mathrm{inch} \\
E_{x f}=5.15 e 6 \text { psi, } E_{y f}=3.07 e 6 p s i, G_{x y f}=1.33 e 6 p s i, v_{y x f}=-0.0196
\end{gathered}
$$

## Strength Analysis of a Laminate

* Mid Plane Strains and Curvatures:
$\varepsilon_{x 0}=235 \mu \varepsilon, \varepsilon_{y 0}=-94.7 \mu \varepsilon_{,}, \gamma_{x y 0}=-629.5 \mu \varepsilon, \kappa_{x 0}=-0.0052311 / \mathrm{in}, \kappa_{y 0}=0.184531 / \mathrm{in}$, $\kappa_{x y 0}=-0.00690831 / \mathrm{in}, \gamma_{y z 0}=217 \mu \varepsilon, \gamma_{x z 0}=2239 \mu \varepsilon$
* MATLAB scripts are used to plot ply-by-ply strains, stresses and Failure Indices/Margin of Safeties through the thickness of the laminate


## Off-Axis Ply-by-Ply In-plane Strains



## On-Axis Ply-by-Ply In-plane Strains



## Ply-by-Ply Transverse Shear Strains



## Ply-by-Ply Max Strain Margins of Safety



## Off-Axis Ply-by-Ply In-plane Stresses



## On-Axis Ply-by-Ply In-plane Stresses



## Ply-by-Ply Transverse Shear Stresses



## Ply-by-Ply Tsai-Wu/Hill Failure Indices \& Max Stress Margins of Safety



