Bending Analysis of

 Simply Supported Anisotropic Laminated Composite Plates
Copyright Information

The solver module 3pcsolver002 contains information obtained from authentic and highly regarded references. Reasonable efforts have been made to check the reliability of the code and information. However, the 3P Composites, LLC does not assume any responsibility for the validity of the materials, accuracy of the code, and thereby the consequences of their use

The documentation for the solver module 3pcsolver002 is intended for users' information only. No part of this module and documentation may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from 3P Composites, LLC

All rights to the documentation are retained by 3P Composites, LLC

Solver Agreement

> 3P Composites, LLC hereby grant you, the subscriber a nonexclusive and a nontransferable license to use the 3pcsolver002 subscribed by you on the following terms and conditions only:

- You have been granted an Individual 3pcsolver002 License to use on a single computer for your own personal use. Each solver is effective for the period of its subscription. You agree to protect the 3 3psolver002 subscribed by you from unauthorized use, reproduction, or distribution. You further acknowledge that the 3pcsolver002 contains valuable trade secrets and confidential information belonging to 3P Composites, LLC. You may not disclose any component of the 3pcsolver002, whether or not in machine readable form, except as expressly provided in this Agreement
" The subscribed 3pcsolver002 is furnished on an "as is" basis and without warranty as to the performance or results you may obtain using the 3pcsolver002. While utmost care has been taken to ensure accuracy of each solver before release, the entire risk as to the results or performance, in no event will 3P Composites, LLC be liable to you for any damages whatsoever, including without limitation, lost profits, lost savings, or other incidental or consequential damages arising out of the use or inability to use the 3pcsolver002 even if 3 P Composites, LLC has been advised of the possibility of such damages. Furthermore, 3 P Composites, LLC is not responsible for any loss in productivity to the users' of the 3pcsolver002 due to the unavailability of the 3pcsolver002 caused by any technical or other issues related downtimes and maintenances of the website and/or server
- This agreement represents the entire agreement between 3P Composites, LLC and you, the subscriber, and supersedes any proposals or prior agreements, oral or written, and any other communication between us relating to the subject matter of this agreement. This agreement will be governed and construed as if wholly entered into and performed within the state of Florida
- If you fail to comply with any term or condition of this Agreement, your subscription to the 3pcsolver002 will be terminated, and no refund will be issued for the remainder of the subscription time. Upon such termination, you agree to destroy all information regarding the 3pcsolver002 including any copies made
- By accessing the 3pcsolver002 and/or its documentation, you as user and/or subscriber acknowledge that you have read this agreement completely and agree to be bound by its terms and conditions listed here

Contents: 3pcsolver002

1. Overview
2. Applications
3. Theoretical Background
4. Inputs
5. Outputs
6. Consistent Units
7. Other Features
8. General Information
9. Examples

Overview

* 3pcsolver002 performs bending analysis of simply-supported anisotropic composite laminates subjected to transverse loads. Simply-supported boundary condition is most widely used in the analysis of plates and shells. Four types of transverse loading as shown below are considered:

Overview

Concentrated Force P

Sinusoidal Pressure $p_{0} \operatorname{Sin} \frac{\pi x}{L} \operatorname{Sin} \frac{\pi y}{W}$

* Positive transverse loading acts in positive z-direction and results in positive maximum transverse displacement w_{0}. Conventionally the plies or laminae in the laminate are laid-up or stacked from bottom-to-top. Hence, the positive transverse displacement w_{0} would provide positive bending moments $M_{x x}$ and $M_{y y}$ resulting in tension in the topmost ply and compression in the bottommost ply. Next Slide shows positive sign conventions of plate rotations and moments

Overview

Applications

* Bending analysis performed by the 3pcsolver002 solver is applicable to laminates built-up (or fabricated) from a LAMINA that
- has any kind of FIBER such as boron, carbon, graphite, glass, Kevlar, Aramid, polyester, natural fibers, etc.,
- is in any type of broad form such as short and long continuous, unidirectional, bi-directional 2D textile weaves like plain weave, twill and harness, biaxial and triaxial braids, chopped random fibers, non-crimp, nonwoven fabrics, etc.
- Is impregnated with any RESIN/MATRIX, thermoset or thermoplastic systems such as epoxy, polyester, vinyl ester, polyurethane, phenolic, cyanate ester, bis-maleimide, polyimides, benzoxazine, Acrylic, ABS, Polylactic acid PLA, Polybenzimidazole PBI, Polyether sulfone PES, Polyoxymethylene POM, Polyether ether ketone PEEK, Polyetherimide PEI, Polyphenylene oxide PPO, Polyphenylene sulfide PPS, Polystyrene PS, Polypropylene PP, Polyvinyl chloride PVC, Teflon PTFE, etc.
- is cured using any MANUFACTURING PROCESS such as Autoclave, Resin Transfer Molding like VARTM, SQRTM, RIM, SRIM, Filament Winding, Pultrusion, Compression Molding, Wet-lay up, etc.
* The analysis is equally applicable to Hybrid Laminates manufactured from a single or multiple types of lamina materials and/or ply broad forms or fiber types or single or multiple materials systems or their combinations

Theoretical Background

* 3pcsolver002 solver is based on First-Order Shear Deformation Laminated Plate Theory (Mindlin Type). Spatial distributions of displacements $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w}, and rotations φ_{x} and φ_{y} of the plate's reference surface are assumed using double Fourier series satisfying the kinematic boundary conditions at all four simply-supported edges of the laminated plate exactly. Principle of virtual work and Ritz analysis procedure are used to obtain a highly coupled system of algebraic equations for transverse bending of fully anisotropic laminated plate (see below):

$$
\left.\left[\begin{array}{ccccc}
K_{11} & K_{12} & 0 & K_{14} & K_{15} \\
K_{21} & K_{22} & 0 & K_{24} & K_{25} \\
0 & 0 & K_{33} & K_{34} & K_{35} \\
K_{14} & K_{42} & K_{43} & K_{44} & K_{45} \\
K_{51} & K_{25} & K_{53} & K_{54} & K_{55}
\end{array}\right] \begin{array}{c}
u_{m n} \\
v_{m n} \\
w_{m n} \\
\varphi_{x m n} \\
\varphi_{y m n}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
0 \\
P_{m n} \\
0 \\
0
\end{array}\right\}
$$

* In the system of equations given above, $K_{i j}$ are the stiffness terms containing the laminate $A_{i j}, B_{i j}$ and $D_{i j} . u_{m n}, v_{m n}$ and $w_{m n}$ are the unknown coefficients of displacements, and $\varphi_{x m n}$ and $\boldsymbol{\varphi}_{y m n}$ are the unknown coefficients of rotations of the laminated plate. $P_{m n}$ are the known coefficients of the applied transverse loading

Theoretical Background

* Given the lamina/ply material properties, laminate stack-up and its dimensions, 3pcsolver002 solver calculates displacements, rotations, inplane and transverse force resultants, and moment resultants for an anisotropic laminated plate subjected to any of the four types of applied transverse loading discussed earlier
* The 3pcsolver002 is perhaps the first solver which is based on FSDT of laminated plates, employs a closed-form Ritz solution procedure, and considers the fully anisotropic laminate effects. That is, all types of laminate coupling terms represented by the non-zero $A_{i 6}, B_{i j}$ and $D_{i 6}(i=1,2$, and $j=$ $1,2,6$) are included in the transverse bending analysis of laminated composite plates. Most closed-form analyses neglect these coupling effects due to the complexity in deriving the system of equations, and hence, assume the laminated plates as being specially orthotropic (i.e. $A_{i 6}=B_{i j}=D_{i 6}=0, i=$ $1,2, j=1,2,6)$.
* Solution to the above system of equations is obtained for truncated Fourier series using $m=1,2, . ., M$ terms in the x-direction and $n=1,2, . ., N$ terms in the y-direction. Without loss of generality, $M=N$ is assumed for the solution. Numerous examples are solved using 3pcsolver002 solver, and results are compared with those (i) obtained from standard commercially available finite element analysis software, and (ii) available in open literature

Theoretical Background

* Many different types of material systems, ply orientations, laminate stack ups, laminate dimensions, and types of transverse loading are considered to check the accuracy of the solver. Excellent correlations are obtained in all cases. Numerical examples highlight the adverse effects of various types of laminate stiffness couplings on transverse bending of anisotropic laminated composite plates
* Details of the theoretical approach along with numerous verification and application examples are available in the training module 3pcmodule002

Inputs

* All inputs should be in consistent units. Use either ($\mathrm{N}, \mathrm{m}, \mathrm{Pa}$) OR (N, mm, MPa) or (lbs, in, Psi) consistently. Inputs in scientific notation (0.0+e) are acceptable
* Input process is intuitive and uses the following logical order:
- Materials
- Plies / Laminae
- Laminates
- Panels
- Loads
- Analysis Options

Inputs: Materials

* Material Properties:

In the SI system, MPa and mm or Pa and m , and in the US system Msi and in are used to input the orthotropic lamina Moduli $E_{1}, E_{2}, G_{12}, G_{13}$ and $G_{23} . v_{12}$ is major Poison's ratio. Multiple lamina types and lamina materials can be input by simply clicking the ' + ' sign on the extreme right. Based on the type of analyses selected, the required material inputs for an orthotopic Lamina can vary as shown below:

Materials 图 (i) \downarrow

Inputs: Plies

* Plies/Laminae:

Types of plies in a laminate are required as input. Each ply type is defined by its angle (or orientation) in degrees, material type and the thickness. Material of a ply/lamina can be selected from a predefined list of materials that are input in the Material Properties Section above. The thickness of the ply or lamina is in mm or m in the SI system or inch in the US system. Multiple ply or lamina types can be input by simply clicking the '+' sign on the extreme right. The required ply/lamina type inputs with few examples are shown below:

ID	Angle (deg) 0	Material Uni \vee	Thickness	$\pm \quad-$	Plies ㅈํํ (i) \downarrow				
1			0.005						
					ID	Angle (deg)	Material	Thickness	+ -
2	45	PW v	0.010	$\pm-$	1	0	CEP v	0.005	
3	90	Uni v	0.005	$\pm-$	2	45	CEP v	0.005	+ -
Plies 뚭 (i) \uparrow む					3	-45	CEP v	0.005	+ -
ID	Angle (deg)	Material	Thickness		4	90	CEP v	0.005	+ -
1	0	CEP v	0.005	$+\quad-$					
					5	0	Flax \vee	0.01	+ -
2	30	Flax \vee	0.010	$+\quad-$					
3	60	CEP v	0.005	$+\quad-$					

Inputs: Laminates

* Laminates:

Multiple laminates can be quickly created by defining their stacking sequences using the plies defined in the previous step. Laminate Offset is fixed at middle (default). Hybrid laminates can be defined using different ply and material combinations established in the previous steps. Additional laminates can be added by simply clicking the ' + ' sign on the extreme right. A few examples of laminates and their inputs are shown below:

Laminates 图 (i) \downarrow

ID	Stacking Sequence	Stacking Sequence (Angle)	Offset			
CEP-QI	$2,3,1,4,4,1,3,2$		$45,-45,0,90,90,0,-45$	Middle	\vee	+

Inputs: Panels

* Panels:

Panels are easily created by using the predefined laminates, and by providing the length L and width W of the plate as shown below. Additional panels can be added by simply clicking the ' + ' sign on the extreme right (see below):

Panels (i) $\uparrow \downarrow$

ID	Length	Width	Laminate		
1	10	10	1 v	+	-
2	10	10	$2 \vee$	+	-
3	10	10	$3 \vee$	+	-
4	10	10	4 V	+	-

Inputs: Loads

* Loads:

As mentioned earlier (see overview Section), four types of transverse loads can be applied to the panels. They are (i) Uniform Pressure, (ii) Partial Uniform Pressure, (iii) Point Load, and (iv) Sinusoidal Pressure.

- Uniform or Sinusoidal pressure loading acts over the entire plate (or panel) and can be easily defined by providing the magnitude p_{0} (force per unit area) and the direction of the load. Positive value of p_{0} means the pressure is acting in the positive z - direction, or vice versa.
- Partial uniform pressure loading can act on a part of the panel in its domain and is defined by providing the magnitude p_{0} (force per unit area), the direction of the load, the area (or patch) of the plate on which it is applied. In order to define the location and area of the partial surface over which the partial pressure loading acts, the center of the patch area defined by $x_{c g}$ and $y_{c g}$ and its lengths in x - and y-directions, $x_{\text {Length }}$ and $y_{\text {Length }}$ respectively, are required inputs. Positive value of p_{0} implies that the partial pressure is acting in the positive z - direction, or vice versa. Application of partial uniform pressure loading in the solver is very versatile and can be used to define line loads and concentrated loads as well. A few examples of application of partial pressure loading are shown below:

Inputs: Partial Pressure Loads

Inputs: Point Loads

* Loads:

- Point load acts at a point on plate (or panel) in its domain and can be easily defined by providing the magnitude P (force), direction and location $x_{c g}$ and $y_{c g}$ of the load. Positive value of P implies that the point load is acting in the positive $z-$ direction, and vice versa. Couple of examples of application of Point loading are shown below:

Inputs: Loads

* Loads:

Single or multiple panels (or laminates) can be analyzed for single or multiple load cases (upto 100 maximum). Depending upon the type of transverse loading, the examples of the load inputs for typical transverse bending analyses of laminated anisotropic composite plates are shown below. Additional load cases can be added by simply clicking the ' + ' sign on the extreme right as shown below:

Loads © $\uparrow \stackrel{\downarrow}{\downarrow}$

ID	Panel	Type		Po	P	$x_{c g}$	$y_{c g}$	${ }^{\text {Length }}$	YLength	
1	1 v	Uniform Pressure	\checkmark	0.05	0	0	0	0	0	+ -
2	$2 \vee$	Partial Pressure	\checkmark	0.5	0	5	5	2.0	2.0	+ -
3	4 v	Uniform Pressure	\checkmark	0.05	0	0	0	0	0	+ -
4	1 v	Sinusoidal Pressure	\checkmark	0.05	0	0	0	0	0	+ -
5	1 v	Point Load	\checkmark	0.05	5	5	5	0	0	+ -
6	1 v	Point Load	\checkmark	0.05	5	2.5	2.5	0	0	+ -
7	1 v	Partial Pressure	\checkmark	0.5	0	2.5	2.5	1.0	2.0	+ -

Inputs: Analysis Options

* Analysis Options:

User has the option to define the number of terms in Fourier series solution of the solver. By default, $M=N=8$ is assumed. $M=N$ can be varied from 2 to 21

Output quantities from the analysis can be requested at select number of points (a.k.a grid points) in the plate domain. By default, a 5×5 grid is assumed within the domain of the plate bounded by $0 \leq x \leq L$ and $0 \leq y \leq W$ to output the analysis solution at 25 equally divided grid points (see below). Maximum 25×25 grid can be assumed

Default analysis options are also shown below:
Analysis Options

Number of Terms	Number of Points in x	Number of Points in y
8	5	5

Outputs

* Analysis Outputs:

Once all the Input steps viz., Materials, Plies / Laminae, Laminates, Panels, Loads and Analysis Options are completed, analyses can be run by clicking the "submit" button

Submit

Upon completion of analyses, an output is displayed for each Load ID in the window underneath

Output \downarrow

```
3pc-solver002, v1.3b3
LOADS ID PANEL ID
1 1
PANEL GEOMETRY
LENGTH: 10.00
WIDTH : 10.00
LOADS DESCRIPTION
TYPE: UNIFORM PRESSURE
p0: 0.05
ANALYSIS OPTIONS
m = 8
n}=
```

OUTPUT OPTIONS
NUMBER OF POINTS IN X DIR: 5
NUMBER OF POINTS IN Y DIR: 5

Outputs

* Analysis Outputs:

Following information is output for each Load Case:

- Panel Geometry and Type of Transverse Loading
- Terms in Fourier Series solution
- Number of Grid Points selected to get output information
- Material Properties and Laminate Information
- Laminate [A], [B], [D] stiffness matrices
\circ Grid Points coordinates x and y, Displacements u, v and w, Rotations φ_{x} and φ_{y}, Plate Force resultants $N_{x x,} N_{y y}, N_{x y}, Q_{y z}$ and $Q_{x z}$ and Plate Moment resultants $M_{x x}$ $M_{y y}$ and $M_{x y}$

Note that all output is consistent with the unit system used during the material, lamina, laminate, and loads Inputs.

- Laminate [A] stiffness matrices N/m or N/mm or lb/in
- Laminate [B] stiffness matrices $N-m / m$ or $N-m m / m m$ or lb-in/in
- Laminate [D] stiffness matrices N-m or N-mm or Ib-in
- Effective laminate in-plane and flexural - same as material property inputs
- Displacements in mm, m or in and Rotations in $1 / \mathrm{mm}, 1 / \mathrm{m}$ or $1 /$ in
- Plate Force resultants in $\mathrm{N} / \mathrm{m}, \mathrm{N} / \mathrm{mm}$ or $\mathrm{lb} / \mathrm{in}$ and Plate Moment resultants in N $\mathrm{m} / \mathrm{m}, \mathrm{N}-\mathrm{mm} / \mathrm{mm}$ or $\mathrm{lb}-\mathrm{in} / \mathrm{in}$

A typical output is shown below:

Output Text

```
3pc-solver002, v1.3b3
LOADS ID PANEL ID
    1
    1
PANEL GEOMETRY
LENGTH: 10.00
WIDTH : 10.00
LOADS DESCRIPTION
TYPE: UNIFORM PRESSURE p0: 0.05
ANALYSIS OPTIONS
m}=
n = 8
OUTPUT OPTIONS
NUMBER OF POINTS IN X DIR: 5
NUMBER OF POINTS IN Y DIR: 5
MATERIAL PROPERTIES
\begin{tabular}{lcccccc} 
ID & E1 & E2 & G12 & G23 & G13 & v12 \\
aiaa-2009 & \(1.80 \mathrm{e}+07\) & \(1.60 \mathrm{e}+06\) & \(8.70 \mathrm{e}+05\) & \(6.40 \mathrm{e}+05\) & \(8.70 \mathrm{e}+05\) & 0.3000
\end{tabular}
LAMINATE GEOMETRY
```



```
TOTAL THICKNESS: 0.0210
OFFSET: 0.0000
LAMINATE PROPERTIES
A MATRIX
\begin{tabular}{lcc}
+127080.48 & +90540.48 & +0.00 \\
+90540.48 & +127080.48 & +0.00 \\
+0.00 & +0.00 & +98649.19
\end{tabular}
```


Output Text

A MATRIX - TRANSVERSE SHEAR		
+15855.00	+0.00	
+0.00	+15855.00	
B MATRIX		
+0.00	+0.00	-227.84
+0.00	+0.00	-227.84
-227.84	-227.84	+0.00
D MATRIX		
+4.67	+3.33	+0.00
+3.33	+4.67	+0.00
+0.00	+0.00	+3.63

LAMINATE INPLANE AND FLEXURAL ENGINEERING CONSTANTS

Ex	Ey	Gxy	vxy	vyx	Efx	Efy	Gfxy	vfxy	vfyx	
$+2.98 \mathrm{e}+06$	$+2.98 \mathrm{e}+06$	$+4.70 \mathrm{e}+06$	+0.7125	+0.7125	$+2.98 \mathrm{e}+06$	$+2.98 \mathrm{e}+06$	$+4.70 \mathrm{e}+06$	+0.7125		
+0.7125										

x	Y	U	v		GRID POINTS, DISPLACEMENTS, ROTATIONS, FORCES, AND MOMENTS									
					PHIX	PHIY	NxX	NYY	NXY	mxx	MYY	MXY	QYZ	exz
0.0000	0.0000	+0.0000e+00	+0.0000e+00	$+0.0000 \mathrm{e}+00$	+0.0000e+00	+0.0000e+00	+15.0020	+15.0020	+19.7427	-0.0456	-0.0456	-0.2387	+0.0000	+0.0000
2.5000	0.0000	+0.0000e+00	+0.0000e+00	$+0.0000 \mathrm{e}+00$	+0.0000e+00	-6.7600e-02	+8.6694	+8.6694	-2.5604	+0.0059	+0.0059	-0.1379	+0.1255	+0.0000
5.0000	0.0000	+0.0000e+00	+0.0000e+00	+0.0000e+00	+0.0000e+00	-9.1700e-02	+0.0000	+0.0000	-6.3573	+0.0147	+0.0147	-0.0000	+0.1443	+0.0000
7.5000	0.0000	+0.0000e+00	-0.0000 e+00	+0.0000e+00	+0.0000e+00	-6.7600e-02	-8.6694	-8.6694	-2.5604	+0.0059	+0.0059	+0.1379	+0.1255	+0.0000
10.0000	0.0000	$+0.0000 \mathrm{e}+00$	$-0.0000 \mathrm{e}+00$	$+0.0000 \mathrm{e}+00$	+0.0000e+00	-0.0000e+00	-15.0020	-15.0020	+19.7427	-0.0456	-0.0456	+0.2387	+0.0000	+0.0000
0.0000	2.5000	$+0.0000 \mathrm{e}+00$	+0.0000e+00	$+0.0000 \mathrm{e}+00$	-6.7600e-02	+0.0000e+00	+8.6694	+8.6694	-2.5604	+0.0059	+0.0059	-0.1379	+0.0000	+0.1255
2.5000	2.5000	$-0.0000 \mathrm{e}+00$	$-0.0000 \mathrm{e}+00$	+1.4630e-01	-4.2600e-02	-4.2600e-02	+2.2499	+2.2499	-6.9978	+0.1276	+0.1276	-0.0858	+0.0510	+0.0510
5.0000	2.5000	-0.0000e+00	+0.0000e+00	+2.0040e-01	-0.0000e+00	-5.9100e-02	-0.0000	-0.0000	-7.9307	+0.1532	+0.1590	-0.0000	+0.0637	+0.0000
7.5000	2.5000	$-0.0000 \mathrm{e}+00$	+0.0000e+00	+1.4630e-01	+4.2600e-02	-4.2600e-02	-2.2499	-2.2499	-6.9978	+0.1276	+0.1276	+0.0858	+0.0510	-0.0510
10.0000	2.5000	+0.0000e+00	+0.0000e+00	+0.0000e+00	+6.7600e-02	-0.0000e+00	-8.6694	-8.6694	-2.5604	+0.0059	+0.0059	+0.1379	+0.0000	-0.1255
0.0000	5.0000	+0.0000e+00	+0.0000e+00	$+0.0000 \mathrm{e}+00$	-9.1700e-02	+0.0000e+00	+0.0000	+0.0000	-6.3573	+0.0147	+0.0147	-0.0000	+0.0000	+0.1443
2.5000	5.0000	+0.0000e+00	$-0.0000 \mathrm{e}+00$	+2.0040e-01	-5.9100e-02	-0.0000e+00	-0.0000	-0.0000	-7.9307	+0.1590	+0.1532	-0.0000	+0.0000	+0.0637
5.0000	5.0000	$-0.0000 e+00$	-0.0000e+00	+2.7560e-01	-0.0000e+00	-0.0000e+00	-0.0000	-0.0000	-9.5370	+0.1936	+0.1936	+0.0000	+0.0000	+0.0000
7.5000	5.0000	$-0.0000 \mathrm{e}+00$	$+0.0000 \mathrm{e}+00$	+2.0040e-01	+5.9100e-02	-0.0000e+00	-0.0000	-0.0000	-7.9307	+0.1590	+0.1532	+0.0000	+0.0000	-0.0637
10.0000	5.0000	$-0.0000 \mathrm{e}+00$	+0.0000e+00	+0.0000e+00	+9.1700e-02	-0.0000e+00	-0.0000	-0.0000	-6.3573	+0.0147	+0.0147	+0.0000	-0.0000	-0.1443
0.0000	7.5000	$-0.0000 \mathrm{e}+00$	+0.0000e+00	$+0.0000 \mathrm{e}+00$	$-6.7600 \mathrm{e}-02$	$+0.0000 \mathrm{e}+00$	-8.6694	-8.6694	-2.5604	+0.0059	+0.0059	+0.1379	+0.0000	+0.1255
2.5000	7.5000	+0.0000e+00	$-0.0000 \mathrm{e}+00$	+1.4630e-01	-4.2600e-02	+4.2600e-02	-2.2499	-2.2499	-6.9978	+0.1276	+0.1276	+0.0858	-0.0510	+0.0510
5.0000	7.5000	+0.0000e+00	-0.0000e+00	+2.0040e-01	$-0.0000 \mathrm{e}+00$	+5.9100e-02	-0.0000	-0.0000	-7.9307	+0.1532	+0.1590	+0.0000	-0.0637	+0.0000
7.5000	7.5000	+0.0000e+00	+0.0000e+00	+1.4630e-01	+4.2600e-02	+4.2600e-02	+2.2499	+2.2499	-6.9978	+0.1276	+0.1276	-0.0858	-0.0510	-0.0510
10.0000	7.5000	-0.0000 e+00	+0.0000e+00	$+0.0000 \mathrm{e}+00$	+6.7600e-02	+0.0000e+00	+8.6694	+8.6694	-2.5604	+0.0059	+0.0059	-0.1379	-0.0000	-0.1255
0.0000	10.0000	$-0.0000 \mathrm{e}+00$	+0.0000e+00	$+0.0000 \mathrm{e}+00$	-0.0000e+00	+0.0000e+00	-15.0020	-15.0020	+19.7427	-0.0456	-0.0456	+0.2387	+0.0000	+0.0000
2.5000	10.0000	+0.0000e+00	+0.0000e+00	+0.0000e+00	-0.0000e+00	+6.7600e-02	-8.6694	-8.6694	-2.5604	+0.0059	+0.0059	+0.1379	-0.1255	+0.0000
5.0000	10.0000	+0.0000e+00	-0.0000e+00	+0.0000e+00	-0.0000e+00	+9.1700e-02	-0.0000	-0.0000	-6.3573	+0.0147	+0.0147	+0.0000	-0.1443	-0.0000
7.5000	10.0000	+0.0000e+00	-0.0000e+00	+0.0000e+00	+0.0000e+00	+6.7600e-02	+8.6694	+8.6694	-2.5604	+0.0059	+0.0059	-0.1379	-0.1255	-0.0000
10.0000	10.0000	$-0.0000 \mathrm{e}+00$	$-0.0000 \mathrm{e}+00$	$+0.0000 \mathrm{e}+00$	$+0.0000 \mathrm{e}+00$	$+0.0000 \mathrm{e}+00$	+15.0020	+15.0020	+19.7427	-0.0456	-0.0456	-0.2387	-0.0000	-0.0000

Output: Additional Postprocessing

* Postprocessing:

- User can download the output information as ASCII text and process the information using MS Excel/ MATLAB etc. to create plots of displacements, rotations and moments etc. along x - and y-axes of the plate.
- Plate Force resultants $N_{x x}, N_{y y}, N_{x y}, Q_{y z}$ and $Q_{x z}$, and Plate Moment resultants $M_{x x}$ $M_{y y}$ and $M_{x y}$ at a select grid points or x - and y-coordinates of the plate can be used as inputs to the 3pcsolver001 solver to further obtain the following:
- Laminate strains and curvatures
- Ply-by-ply strains and stresses
- Laminate/Lamina Failure Indices or Margins of Safety
- Since 3pcsolver002 solver performs linear analysis, principle of superposition can be utilized to perform bending analyses of fully anisotropic laminated composite plates subjected to numerous combinations of the four types of transverse loads. One such combination, Point load P and partial pressure p_{0}, is shown below:

Inputs and Outputs: Consistent Units

Quantity	SI System 1	SI system 2	US System
$\begin{gathered} E_{1}, E_{2}, G_{12}, G_{13}, G_{23} \\ E_{x}, E_{y}, G_{x y}, E_{f x}, E_{f y}, G_{f x y} \end{gathered}$	$M P a\left(N / m m^{2}\right)$	$P a\left(N / m^{2}\right)$	Psi (lb/in ${ }^{2}$)
$\alpha_{1}, \alpha_{2}, \alpha_{x}, \alpha_{y}, \alpha_{x y}$	$\mathrm{mm} / \mathrm{mm} /{ }^{\circ} \mathrm{C}$	$m / m /{ }^{\circ} \mathrm{C}$	in/in/ $/ \mathrm{F}$
$\beta_{1}, \beta_{2}, \beta_{x}, \beta_{y}, \beta_{x y}$	$\mathrm{mm} / \mathrm{mm} / \mathrm{Kg} / \mathrm{Kg}$	$m / \mathrm{m} / \mathrm{Kg} / \mathrm{Kg}$	in/in/lb/lb
$\begin{gathered} \sigma_{11}^{T}, \sigma_{11}^{C}, \sigma_{22}^{T}, \sigma_{22}^{C} \tau_{12}^{S}, \sigma_{1}, \sigma_{2}, \tau_{12}, \tau_{23}, \tau_{13} \\ \sigma_{x}, \sigma_{y}, \tau_{x y}, \tau_{y z}, \tau_{x z}, p_{0} \end{gathered}$	$\operatorname{MPa}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$P a\left(N / m^{2}\right)$	Psi (lb/in ${ }^{2}$)
$\begin{aligned} & \varepsilon_{11}^{T}, \varepsilon_{11}^{C}, \varepsilon_{22}^{T}, \varepsilon_{22}^{C}, \gamma_{12}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{12}, \gamma_{13}, \gamma_{23}, \varepsilon_{x 0} \\ & \varepsilon_{y 0}, \gamma_{x y 0}, \gamma_{y z 0}, \gamma_{x z 0} \varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z} \end{aligned}$	$\mathrm{mm} / \mathrm{mm}$	m / m	in/in
$\kappa_{x 0}, \kappa_{y 0}, \kappa_{x y 0}$	$1 / \mathrm{mm}$	1/m	1/in
$\begin{gathered} N_{x x}, N_{y y}, N_{x y}, N_{x x}^{T}, N_{y y}^{T}, N_{x y}^{T}, \\ N_{x x}^{H}, N_{y y}^{H}, N_{x y}^{H},[\mathrm{~A}] \end{gathered}$	N / mm	N / m	$l b / i n$
$\begin{gathered} M_{x x}, M_{y y}, M_{x y}, M_{x x}^{T}, M_{y y}^{T}, M_{x y}^{T} \\ M_{x x}^{H}, M_{y y}^{H}, M_{x y}^{H},[\mathrm{~B}], P \end{gathered}$	$N-m m / m m$	$N-m / m$	$l b-i n / i n$
[D]	$N-m m$	$N-m$	$l b-i n$
ΔT	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
ΔC	Kg/Kg	$\mathrm{Kg} / \mathrm{Kg}$	$l b / l b$
Ply Angle, θ	Degree	Degree	Degree
Ply or Laminate thickness or Offset or w	$m m$	m	in

Other Features

＊Upload／Download：

Users can upload and download Material properties，Plies，Laminates，Panels and Loads data files（＊．json）using the upload \uparrow and download \downarrow buttons next to these inputs．

＊Additional Output：

Users can review a few intermediate calculations such as minor Poison＇s ratios $v_{21}, Q_{i j}$ for each ply type and laminate ABD by using the calculation button ⿴囗大ㅂ．Few such examples are shown below：

```
ID v21
GMS4020 PW 0.05
GMS4020 Tape 0.0254
2024-T3 0.3
Rastogi_Fiberglass 0.02667
Tuttle 0.01662
```


Other Features

Plies 图 © $\uparrow \downarrow$

ID	Angle (deg)	Material		Thickness	
1	0	Tuttle	\vee	0.0075	+
		Tuttle		\vee	0.0075

ID	Q	Q44	Q55	Qbar	Q44bar	Q45bar	Q55bar \times
1	$\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0 \text {, }} \\ & 640000.0]] \end{aligned}$	640000	640000	[[22627882.74, 376125.7, 0.0], [376125.7, 1106252.04, 0.0], [0.0, 0.0, 640000.0]]	640000	0	640000
2	$\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\ & 640000.0]] \end{aligned}$	640000	640000	[[1106252.04, 376125.7, 0.0], [376125.7, 22627882.74, 0.0], [0.0, 0.0, 640000.0]]	640000	0	640000
3	$\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\ & 640000.0]] \end{aligned}$	640000	640000	$\begin{aligned} & \text { [[6761596.54, 5481596.54, 5380407.67], [5481596.54, 6761596.54, 5380407.67], [5380407.67, 5380407.67, } \\ & 5745470.85]] \end{aligned}$	640000	0	640000
4	$\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0,} \\ & 640000.0]] \end{aligned}$	640000	640000	$\begin{aligned} & \text { [[6761596.54, 5481596.54, -5380407.67], [5481596.54, 6761596.54, -5380407.67], [-5380407.67, } \\ & -5380407.67,5745470.85]] \end{aligned}$	640000	0	640000

General Information

* Subscription fee to access 3pcsolver002 is \$39/year per for a single-login license
* Training module 3pcmodule002 supports the solver 3pcsolver002. Users' can buy the training module 3pcmodule001 online at
https://www.3pcomposites.com/
* 3P Composites, LLC can conduct online or in-class trainings for the 3pcsolver002 and 3pcmodule002. The training can be adapted to meet the requirements of individual needs and/or industrial applications
* For questions, issues, comments, suggestions, trainings, please contact us at 3pcomps@gmail.com. Your feedback is appreciated in helping us continuously improve the product

Examples: Bending of Laminated Plates

* Lamina Properties: $E_{1}=1.8 e 7 p s i, E_{2}=1.6 e 6 p s i ; G_{12}=G_{13}=8.7 e 5 p s i$,
$G_{23}=6.4 e 5 p s i ; v_{21}=0.3, t_{p l y}=0.00525$ inch, $\rho=1.49 \times 10^{-4} \mathrm{lb} / \mathrm{in}^{3}$
* Plate Dimensions: $L=15$ in., $W=10$ in., Aspect Ratio $\frac{L}{W}=1.5$
* Laminate I: $[\pm 45]_{2 s}, D_{16} \neq D_{26} \neq 0$ (shows as skewed modes)
- I: Uniform Pressure Load $p_{0}=0.05$ Psi
- II: Partial Line Pressure Load $p_{0}=0.005$ Psi
- III: Concentrated Load $P=5 \mathrm{lb}$
* Laminate II: $[\pm 45]_{T}, B_{16} \neq B_{26} \neq 0$
- I: Uniform Pressure Load $p_{0}=0.05$ Psi
* Laminate III: $[0 / 90]_{T}, B_{11} \neq B_{22} \neq 0$
- I: Uniform Pressure Load $p_{0}=0.05$ Psi
* MATLAB scripts are used to plot transverse displacement w, moment resultants $M_{x x}, M_{y y}$ and $M_{x y}$ and the transverse shear force resultants $Q_{x z}$ and $Q_{y z}$ in the laminated plate subjected to transverse loading

Laminate $[\pm 45]_{2 s}$: Bending under Uniform Pressure

Laminate $[\pm 45]_{2 s}$: Bending under Uniform Pressure

Laminate $[\pm 45]_{2 s}$: Bending under Uniform Pressure

Laminate $[\pm 45]_{2 s}$: Bending under Partial Pressure

Laminate $[\pm 45]_{2 s}$: Bending under Partial Pressure

Laminate $[\pm 45]_{2 s}$: Bending under Partial Pressure

Laminate $[\pm 45]_{2 s}$: Bending under Point Load

Laminate $[\pm 45]_{2 s}$: Bending under Point Load

Laminate $[\pm 45]_{2 s}$: Bending under Point Load

Laminate $[\pm 45]_{T}$: Bending under Uniform Pressure

3D Plot of Transverse Displacement

Laminate $[\pm 45]_{T}$: Bending under Uniform Pressure

Laminate $[\pm 45]_{T}$: Bending under Uniform Pressure

Laminate $[0 / 90]_{T}$: Bending under Uniform Pressure

3D Plot of Transverse Displacement

2D Contour of Transverse Displacement

Laminate $[0 / 90]_{T}$: Bending under Uniform Pressure

Laminate $[0 / 90]_{T}$: Bending under Uniform Pressure

