Buckling Analysis of

 Simply-Supported Anisotropic Laminated Composite Plates
Copyright Information

The solver module $3 p c s o l v e r 003$ contains information obtained from authentic and highly regarded references. Reasonable efforts have been made to check the reliability of the code and information. However, the 3P Composites, LLC does not assume any responsibility for the validity of the materials, accuracy of the code, and thereby the consequences of their use

The documentation for the solver module 3 pcsolver003 is intended for users' information only. No part of this module and documentation may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from 3P Composites, LLC

All rights to the documentation are retained by 3P Composites, LLC

Solver Agreement

> 3P Composites, LLC hereby grant you, the subscriber a nonexclusive and a nontransferable license to use the 3pcsolver003 subscribed by you on the following terms and conditions only:

- You have been granted an Individual 3pcsolver003 License to use on a single computer for your own personal use. Each solver is effective for the period of its subscription. You agree to protect the 3pcsolver003 subscribed by you from unauthorized use, reproduction, or distribution. You further acknowledge that the 3pcsolver003 contains valuable trade secrets and confidential information belonging to 3P Composites, LLC. You may not disclose any component of the 3pcsolver003, whether or not in machine readable form, except as expressly provided in this Agreement
" The subscribed 3pcsolver003 is furnished on an "as is" basis and without warranty as to the performance or results you may obtain using the 3pcsolver003. While utmost care has been taken to ensure accuracy of each solver before release, the entire risk as to the results or performance, in no event will 3P Composites, LLC be liable to you for any damages whatsoever, including without limitation, lost profits, lost savings, or other incidental or consequential damages arising out of the use or inability to use the 3pcsolver003 even if 3 P Composites, LLC has been advised of the possibility of such damages. Furthermore, 3 P Composites, LLC is not responsible for any loss in productivity to the users' of the 3pcsolver003 due to the unavailability of the 3pcsolver003 caused by any technical or other issues related downtimes and maintenances of the website and/or server
- This agreement represents the entire agreement between 3P Composites, LLC and you, the subscriber, and supersedes any proposals or prior agreements, oral or written, and any other communication between us relating to the subject matter of this agreement. This agreement will be governed and construed as if wholly entered into and performed within the state of Florida
- If you fail to comply with any term or condition of this Agreement, your subscription to the 3pcsolver003 will be terminated, and no refund will be issued for the remainder of the subscription time. Upon such termination, you agree to destroy all information regarding the 3pcsolver003 including any copies made
- By accessing the 3pcsolver003 and/or its documentation, you as user and/or subscriber acknowledge that you have read this agreement completely and agree to be bound by its terms and conditions listed here

Contents: 3pcsolver003

1. Overview
2. Applications
3. Theoretical Background
4. Inputs
5. Outputs
6. Consistent Units
7. Other Features
8. General Information
9. Examples

Overview

* 3pcsolver003 performs linear elastic buckling analysis of simplysupported fully anisotropic composite laminates subjected combined inplane edge compression/tension and/or edge shear loads. The edge loads can also include the effects of uniform temperature and/or moisture expansion or contraction. Simply-supported boundary condition is most widely used in the analysis of plates and shells. Applied compressive biaxial loads and positive shear load is shown below:

Overview

* Following combinations of in-plane buckling loads can be analyzed using the solver 3pcsolver003:
\checkmark Longitudinal Compression $N_{x x}$
\checkmark Lateral Compression $N_{y y}$
\checkmark In-plane Shear $N_{x y}$
\checkmark Bi-axial Compression $N_{x x}$ and $N_{y y}$
\checkmark Longitudinal Compression $N_{x x}$ and Lateral Tension $N_{y y}$
\checkmark Longitudinal Tension $N_{x x}$ and Lateral Compression $N_{y y}$
\checkmark Longitudinal Compression $N_{x x}$ and In-plane Shear $N_{x y}$
\checkmark Longitudinal Tension $N_{x x}$ and In-plane Shear $N_{x y}$
\checkmark Lateral Compression $N_{y y}$ and In-plane Shear $N_{x y}$
\checkmark Lateral Tension $N_{y y}$ and In-plane Shear $N_{x y}$
\checkmark Longitudinal Compression $N_{x x}$, Lateral Tension $N_{y y}$ and In-plane Shear $N_{x y}$
\checkmark Longitudinal Tension $N_{x x}$, Lateral Compression $N_{y y}$ and In-plane Shear $N_{x y}$
\checkmark Longitudinal and Lateral Tensions $N_{x x} \& N_{y y}$ and In-plane Shear $N_{x y}$
\checkmark Bi-axial Compression $N_{x x} \& N_{y y}$ and In-plane Shear $N_{x y}$

Applications

* Linear elastic buckling (or static stability) analysis performed by 3pcsolver003 solver is applicable to laminates built-up (or fabricated) from a LAMINA that
- has any kind of FIBER such as boron, carbon, graphite, glass, Kevlar, Aramid, polyester, natural fibers, etc.,
- is in any type of broad form such as short and long continuous, unidirectional, bi-directional 2D textile weaves like plain weave, twill and harness, biaxial and triaxial braids, chopped random fibers, non-crimp, nonwoven fabrics, etc.
- Is impregnated with any RESIN/MATRIX, thermoset or thermoplastic systems such as epoxy, polyester, vinyl ester, polyurethane, phenolic, cyanate ester, bis-maleimide, polyimides, benzoxazine, Acrylic, ABS, Polylactic acid PLA, Polybenzimidazole PBI, Polyether sulfone PES, Polyoxymethylene POM, Polyether ether ketone PEEK, Polyetherimide PEI, Polyphenylene oxide PPO, Polyphenylene sulfide PPS, Polystyrene PS, Polypropylene PP, Polyvinyl chloride PVC, Teflon PTFE, etc.
- is cured using any MANUFACTURING PROCESS such as Autoclave, Resin Transfer Molding like VARTM, SQRTM, RIM, SRIM, Filament Winding, Pultrusion, Compression Molding, Wet-lay up, etc.
* The analysis is equally applicable to Hybrid Laminates manufactured from a single or multiple types of lamina materials and/or ply broad forms or fiber types or single or multiple materials systems or their combinations

Theoretical Background

* 3pcsolver003 solver is based on First-Order Shear Deformation Laminated Plate Theory (Mindlin Type). Spatial distributions of displacements u, v and \boldsymbol{w}, and rotations $\boldsymbol{\varphi}_{x}$ and φ_{y} of the plate's reference surface are assumed using double Fourier series satisfying the kinematic boundary conditions at all four simply-supported edges of the laminated plate exactly. Principle of virtual work and Ritz analysis procedure are used to obtain a highly coupled system of algebraic equations for linear elastic buckling analyses of fully anisotropic laminated plate (see below):

$$
\left[\begin{array}{ccccc}
K_{11} & K_{12} & 0 & K_{14} & K_{15} \\
K_{21} & K_{22} & 0 & K_{24} & K_{25} \\
0 & 0 & K_{33}+\lambda_{m n} F_{33} & K_{34} & K_{35} \\
K_{14} & K_{42} & K_{43} & K_{44} & K_{45} \\
K_{51} & K_{25} & K_{53} & K_{54} & K_{55}
\end{array}\right]\left\{\begin{array}{c}
u_{m n} \\
v_{m n} \\
w_{m n} \\
\varphi_{x m n} \\
\varphi_{y m n}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

* In the system of equations given above, $K_{i j}$ are the stiffness terms containing the laminate $A_{i j}, B_{i j}$ and $D_{i j} . u_{m n}, v_{m n}$ and $w_{m n}$ are the unknown coefficients of displacements, and $\varphi_{x m n}$ and $\varphi_{y m n}$ are the unknown coefficients of rotations of the laminated plate. It is assumed that the edge loads can be expressed as $N_{x x}^{0}=\lambda N_{x x}^{0}, N_{y y}^{0}=\lambda N_{y y}^{0}$ and $N_{x y}^{0}= \pm \lambda N_{x y}^{0}$ (where λ is the critical buckling factor). F_{33} term contain information about the total applied edge loads from mechanical and hydrothermal loadings

Theoretical Background

* Hygrothermal effects can be accounted for the given difference in temperature ΔT and difference in moisture content ΔC. Laminated plate theory can be used to compute thermal force resultants $N_{x x}^{T}, N_{y y}^{T} \& N_{x y}^{T}$ and/or moisture force resultants $N_{x x}^{M}, N_{y y}^{M} \& N_{x y}^{M}$ as shown below

$$
\left\{\begin{array}{l}
N_{x x}^{T} \text { orm } \\
N_{y y}^{T} \text { or } M \\
N_{x y}^{T} \text { or } M
\end{array}\right\}=\left[A^{\prime}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{T} \text { or } M \\
\varepsilon_{y y}^{T} \text { or } M \\
\gamma_{x y}^{T} \text { or } M
\end{array}\right\} \quad A^{\prime}=-B D^{-1} B^{T}+A
$$

* The total applied in-plane edge (or buckling) loads are then obtained as summation of mechanical and hydrothermal force resultants as

$$
\left\{\begin{array}{l}
N_{x x}^{T o t a l} \\
N_{y y}^{T o t a l} \\
N_{x y}^{T o t a l}
\end{array}\right\}=\left\{\begin{array}{l}
N_{x x}^{T} \\
N_{y y}^{T} \\
N_{x y}^{T}
\end{array}\right\}+\left\{\begin{array}{l}
N_{x x}^{M} \\
N_{y y}^{M} \\
N_{x y}^{M}
\end{array}\right\}+\left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}
$$

Theoretical Background

* The determinant of the system of $5 M \times 5 N$ equations for the Eigen-value problem derived above is set to zero to obtain buckling load factors $\lambda_{m n}$ for a simply-supported fully anisotropic plate subjected to various combinations of applied compression/tension and/or edge shear loads
$\left|\begin{array}{ccccc}K_{11} & K_{12} & 0 & K_{14} & K_{15} \\ K_{21} & K_{22} & 0 & K_{24} & K_{25} \\ 0 & 0 & K_{33}+\lambda_{m n} F_{33} & K_{34} & K_{35} \\ K_{14} & K_{42} & K_{43} & K_{44} & K_{45} \\ K_{51} & K_{25} & K_{53} & K_{54} & K_{55}\end{array}\right|=\{0\}$
* Solution to the Eigen-value problem is obtained for truncated Fourier series using $m=1,2, . ., M$ terms in the x-direction and $n=1,2, . ., N$ terms in the y-direction. Without loss of generality, $M=N$ is assumed for the solution. The buckling mode shapes for each buckling factor $\lambda_{m n}$ can be obtained by substituting the $\lambda_{m n}$ in the system of equations given on the previous slide
* Given the lamina/ply material properties, laminate stack-up and its length and width dimensions, 3pcsolver003 solver calculates buckling load factors for an anisotropic laminated plate subjected to any combination of the load described on Slide 5

Theoretical Background

* The 3pcsolver003 is a unique solver which is based on FSDT of laminated plates, employs a closed-form Ritz solution procedure, considers the fully anisotropic laminate effects, and obtain buckling load factors for combined edge compression/tension and shear loads. All types of laminate coupling terms represented by the non-zero $A_{i 6}, B_{i j}$ and $D_{i 6}(i=1,2$, and $j=1,2,6)$ are included in the buckling analysis of laminated composite plates. Most closedform analyses neglect these coupling effects due to the complexity in deriving the system of equations, and hence, assume the laminated plates as being specially orthotropic (i.e. $A_{i 6}=B_{i j}=D_{i 6}=0, i=1,2, j=1,2,6$)
* Numerous examples are solved using 3pcsolver003, and results are compared with those (i) obtained from standard commercially available finite element analysis software, and (ii) available in open literature. Many types of material systems, ply orientations, laminate stack ups, laminate dimensions, and types of buckling loads are considered to check the accuracy of the solver. Excellent correlations are obtained in all cases. Numerical examples highlight the adverse effects of various types of laminate stiffness couplings on buckling of anisotropic laminated composite plates
* Details of the theoretical approach along with numerous verification and application examples are available in the training module 3pcmodule003

Inputs

* All inputs should be in consistent units. Use either ($\mathrm{N}, \mathrm{m}, \mathrm{Pa}$) OR (N, mm, MPa) or (lbs, in, Psi) consistently. Inputs in scientific notation (0.0+e) are acceptable
* Input process is intuitive and uses the following logical order:
- Materials
- Plies / Laminae
- Laminates
- Panels
- Loads
- Analysis Options

Inputs: Materials

* Material Properties:

In the SI system, MPa and mm or Pa and m , and in the US system Msi and in are used to input the orthotropic lamina Moduli $E_{1}, E_{2}, G_{12}, G_{13}$ and $G_{23} . v_{12}$ is major Poison's ratio. Multiple lamina types and lamina materials can be input by simply clicking the ' + ' sign on the extreme right. Based on the type of analyses selected, the required material inputs for an orthotopic Lamina can vary as shown below:

Materials 图 (i) \downarrow

Inputs: Plies

* Plies/Laminae:

Types of plies in a laminate are required as input. Each ply type is defined by its angle (or orientation) in degrees, material type and the thickness. Material of a ply/lamina can be selected from a predefined list of materials that are input in the Material Properties Section above. The thickness of the ply or lamina is in mm or m in the SI system or inch in the US system. Multiple ply or lamina types can be input by simply clicking the '+' sign on the extreme right. The required ply/lamina type inputs with few examples are shown below:

ID	Angle (deg) 0	Material Uni \vee	Thickness	$\pm \quad-$	Plies ㅈํํ (i) \downarrow				
1			0.005						
					ID	Angle (deg)	Material	Thickness	+ -
2	45	PW v	0.010	$\pm-$	1	0	CEP v	0.005	
3	90	Uni v	0.005	$\pm-$	2	45	CEP v	0.005	+ -
Plies 뚭 (i) \uparrow む					3	-45	CEP v	0.005	+ -
ID	Angle (deg)	Material	Thickness		4	90	CEP v	0.005	+ -
1	0	CEP v	0.005	$+\quad-$					
					5	0	Flax \vee	0.01	+ -
2	30	Flax \vee	0.010	$+\quad-$					
3	60	CEP v	0.005	$+\quad-$					

Inputs: Laminates

* Laminates:

Multiple laminates can be quickly created by defining their stacking sequences using the plies defined in the previous step. Laminate Offset is fixed at middle (default). Hybrid laminates can be defined using different ply and material combinations established in the previous steps. Additional laminates can be added by simply clicking the ' + ' sign on the extreme right. A few examples of laminates and their inputs are shown below:

Laminates 图 (i) \downarrow

ID	Stacking Sequence	Stacking Sequence (Angle)	Offset			
CEP-QI	$2,3,1,4,4,1,3,2$		$45,-45,0,90,90,0,-45$	Middle	\vee	+

Inputs: Panels

* Panels:

Panels are easily created by using the predefined laminates, and by providing the length L and width W of the plate as shown below. Additional panels can be added by simply clicking the ' + ' sign on the extreme right (see below):

Panels (i) $\uparrow \downarrow$

ID	Length	Width	Laminate		
1	10	10	1 v	+	-
2	10	10	$2 \vee$	+	-
3	10	10	$3 \vee$	+	-
4	10	10	4 V	+	-

Inputs: Loads

* Loads:

As mentioned earlier (see overview Section), various combinations of compressive/tensile and/or shear edge loads $N_{x x}, N_{y y}$ and $N_{x y}$ (force per unit length) can be applied to the panels (see figures below).

Inputs: Analysis Options

* Analysis Options:

User has the option to define the number of terms in Fourier series solution of the solver. By default, $M=N=8$ is assumed. $M=N$ can be varied from 2 to 21 .

Output quantities from the analysis can be requested at select number of points (a.k.a grid points) in the plate domain. By default, a 5×5 grid is assumed within the domain of the plate bounded by $0 \leq x \leq L$ and $0 \leq y \leq W$ to output the analysis solution at 25 equally divided grid points (see below)

Default analysis options are also shown below:
Analysis Options

Number of Terms	Number of Points in x	Number of Points in y
8	5	5

Outputs

* Analysis Outputs:

Once all the Input steps viz., Materials, Plies / Laminae, Laminates, Panels, Loads and Analysis Options are completed, analyses can be run by clicking the "submit" button

Submit

Upon completion of analyses, an output is displayed for each Load ID in the window underneath

Output ${ }^{\boldsymbol{*}}$

```
3pc-solver003, v1.1b1
LOADS ID PANEL ID
1 1
PANEL GEOMETRY
LENGTH: 25.00
WIDTH : 10.00
ANALYSIS OPTIONS
m = 8
n = 8
MATERIAL PROPERTIES
\begin{tabular}{lllllll} 
ID & E1 & E2 & G12 & G23 & G13 & v12 \\
aiaa-2009 & \(1.80 \mathrm{e}+07\) & \(1.60 \mathrm{e}+06\) & \(8.70 \mathrm{e}+05\) & \(6.40 \mathrm{e}+05\) & \(8.70 \mathrm{e}+05\) & 0.3000
\end{tabular}

\section*{Outputs}

\section*{* Analysis Outputs:}

Following information is output for each Load Case:
- Panel Geometry
- Terms in Fourier Series solution
- Number of Grid Points selected to get output information
- Material Properties and Laminate Information
- Laminate [A], [B], [D] stiffness matrices
- First Five (or lowest five) critical buckling loads
- Grid Points coordinates \(x\) and \(y\), and transverse displacements \(w\) for first five critical buckling loads

Note that all output is consistent with the unit system used during the material, lamina, laminate, and loads Inputs.
- Laminate [A] stiffness matrices \(\mathrm{N} / \mathrm{m}\) or \(\mathrm{N} / \mathrm{mm}\) or \(\mathrm{lb} / \mathrm{in}\)
- Laminate [B] stiffness matrices \(\mathrm{N}-\mathrm{m} / \mathrm{m}\) or \(\mathrm{N}-\mathrm{mm} / \mathrm{mm}\) or \(\mathrm{lb}-\mathrm{in} / \mathrm{in}\)
- Laminate [D] stiffness matrices \(\mathrm{N}-\mathrm{m}\) or N -mm or lb -in
- Displacements in \(\mathrm{mm}, \mathrm{m}\) or in and Rotations in \(1 / \mathrm{mm}, 1 / \mathrm{m}\) or \(1 / \mathrm{in}\)
- Critical Plate Force resultants in N/m,N/mm or lb/in

A typical output is shown below:

\section*{Output Text}
```

3pc-solver003, v1.1b1
LOADS ID PANEL ID
1 1
PANEL GEOMETRY
LENGTH: 10.00
WIDTH : }10.0
ANALYSIS OPTIONS
m}=
n = 8
OUTPUT OPTIONS
NUMBER OF POINTS IN X DIR: 5
NUMBER OF POINTS IN Y DIR: 5
MATERIAL PROPERTIES

ID	E1	E2	G12	G23	G13	v12
aiaa-2009	$1.80 \mathrm{e}+07$	$1.60 \mathrm{e}+06$	$8.70 \mathrm{e}+05$	$6.40 \mathrm{e}+05$	$8.70 \mathrm{e}+05$	0.3000

LAMINATE GEOMETRY
STACKING SEQUENCE (PLY ANG): [+45.0 ,-45.0 , +45.0 ,-45.0]
STACKING SEQUENCE (PLY MAT):[aiaa-2009 , aiaa-2009 , aiaa-2009 , aiaa-2009]
TOTAL THICKNESS: 0.0210
OFFSET: 0.0000
LAMINATE PROPERTIES
A MATRIX

```

```

A MATRIX - TRANSVERSE SHEAR
+15855.00 +0.00
+0.00 +15855.00

```

\section*{Output Text}
```

B MATRIX		
+0.00	+0.00	-227.84
+0.00	+0.00	-227.84
-227.84	-227.84	+0.00
D MATRIX		
+4.67	+3.33	+0.00
+3.33	+4.67	+0.00
+0.00	+0.00	+3.63

LAMINATE INPLANE AND FLEXURAL ENGINEERING CONSTANTS

Ex	Ey	Gxy	vxy	vyx	Efx	Efy	Gfxy	vfxy	vfyx	
$+2.98 \mathrm{e}+06$	$+2.98 \mathrm{e}+06$	$+4.70 \mathrm{e}+06$	+0.7125	+0.7125	$+2.98 \mathrm{e}+06$	$+2.98 \mathrm{e}+06$	$+4.70 \mathrm{e}+06$	+0.7125		

+0.7125

		APPLIED LOADS			CRITICAL LOADS		
NUMBER	NXX	NYY	NXY	NXXCR	NYYCR	NXYCR	
1	-1.0000	0.0000	0.0000	-22.1208	0.0000	0.0000	
2	-1.0000	0.0000	0.0000	-22.5359	0.0000	0.0000	
3	-1.0000	0.0000	0.0000	-26.2087	0.0000	0.0000	
4	-1.0000	0.0000	0.0000	-31.7513	0.0000	0.0000	
5	-1.0000	0.0000	0.0000	-36.0108	0.0000	0.0000	

```

\section*{Output Text}
\begin{tabular}{l|l|} 
& \multicolumn{1}{l}{} \\
X & Y \\
0.0000 & 0.0000 \\
6.2500 & 0.0000 \\
12.5000 & 0.0000 \\
18.7500 & 0.0000 \\
25.0000 & 0.0000 \\
0.0000 & 2.5000 \\
6.2500 & 2.5000 \\
12.5000 & 2.5000 \\
18.7500 & 2.5000 \\
25.0000 & 2.5000 \\
0.0000 & 5.0000 \\
6.2500 & 5.0000 \\
12.5000 & 5.0000 \\
18.7500 & 5.0000 \\
25.0000 & 5.0000 \\
0.0000 & 7.5000 \\
6.2500 & 7.5000 \\
12.5000 & 7.5000 \\
18.7500 & 7.5000 \\
25.0000 & 7.5000 \\
0.0000 & 10.0000 \\
6.2500 & 10.0000 \\
12.5000 & 10.0000 \\
18.7500 & 10.0000 \\
25.0000 & 10.0000
\end{tabular}

MODE SHAPES
\begin{tabular}{ll} 
W1 & W2 \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(-7.0130 \mathrm{e}-01\) & \(+4.1660 \mathrm{e}-01\) \\
\(+7.5400 \mathrm{e}-02\) & \(-7.2090 \mathrm{e}-01\) \\
\(+7.1060 \mathrm{e}-01\) & \(+5.6450 \mathrm{e}-01\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(-1.0039 \mathrm{e}+00\) & \(+7.0020 \mathrm{e}-01\) \\
\(-0.0000 \mathrm{e}+00\) & \(-1.0299 \mathrm{e}+00\) \\
\(+1.0039 \mathrm{e}+00\) & \(+7.0020 \mathrm{e}-01\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(-7.1060 \mathrm{e}-01\) & \(+5.6450 \mathrm{e}-01\) \\
\(-7.5400 \mathrm{e}-02\) & \(-7.2090 \mathrm{e}-01\) \\
\(+7.0130 \mathrm{e}-01\) & \(+4.1660 \mathrm{e}-01\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(-0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(-0.0000 \mathrm{e}+00\) & \(-0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\)
\end{tabular}
\[
\begin{aligned}
& \text { w3 } \\
& +0.0000 \mathrm{e}+00 \\
& -7.9600 \mathrm{e}-02 \\
& +1.0540 \mathrm{e}-01 \\
& -1.7990 \mathrm{e}-01 \\
& -0.0000 \mathrm{e}+00 \\
& +0.0000 \mathrm{e}+00 \\
& +7.0300 \mathrm{e}-02 \\
& -0.0000 \mathrm{e}+00 \\
& -7.0300 \mathrm{e}-02 \\
& -0.0000 \mathrm{e}+00 \\
& +0.0000 \mathrm{e}+00 \\
& +1.7990 \mathrm{e}-01 \\
& -1.0540 \mathrm{e}-01 \\
& +7.9600 \mathrm{e}-02 \\
& -0.0000 \mathrm{e}+00 \\
& +0.0000 \mathrm{e}+00 \\
& +0.0000 \mathrm{e}+00 \\
& -0.0000 \mathrm{e}+00 \\
& +0.0000 \mathrm{e}+00 \\
& -0.0000 \mathrm{e}+00
\end{aligned}
\]
\begin{tabular}{ll} 
W 4 & W5 \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+6.7060 \mathrm{e}-01\) & \(+5.2500 \mathrm{e}-01\) \\
\(-5.3760 \mathrm{e}-01\) & \(+7.1160 \mathrm{e}-01\) \\
\(+4.4070 \mathrm{e}-01\) & \(+4.7040 \mathrm{e}-01\) \\
\(-0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+8.0130 \mathrm{e}-01\) & \(+7.0560 \mathrm{e}-01\) \\
\(-7.7880 \mathrm{e}-01\) & \(+1.0090 \mathrm{e}+00\) \\
\(+8.0130 \mathrm{e}-01\) & \(+7.0560 \mathrm{e}-01\) \\
\(-0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+4.4070 \mathrm{e}-01\) & \(+4.7040 \mathrm{e}-01\) \\
\(-5.3760 \mathrm{e}-01\) & \(+7.1160 \mathrm{e}-01\) \\
\(+6.7060 \mathrm{e}-01\) & \(+5.2500 \mathrm{e}-01\) \\
\(-0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(-0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(+0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\) \\
\(-0.0000 \mathrm{e}+00\) & \(+0.0000 \mathrm{e}+00\)
\end{tabular}

W4
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+6.7060 \mathrm{e}-01\)
-5.3760e-01
+4.4070e-01
\(-0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+8.0130 \mathrm{e}-01\)
7880e-01
-0.0000e+00
+0.0000e+00
+4.4070e-01
\(-5.3760 \mathrm{e}-01\)
\(+6.7060 \mathrm{e}-01\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(-0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
0.0000 +00
\(+7.1160 \mathrm{e}-01\)
\(+4.7040 \mathrm{e}-01\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+7.0560 \mathrm{e}-01\)
1.0090e+00
\(+0.0000 \mathrm{e}+00\)
+0.0000e+00
\(+4.7040 \mathrm{e}-01\)
+7.1160e-01
\(+5.2500 \mathrm{e}-01\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)
\(+0.0000 \mathrm{e}+00\)

\section*{Inputs and Outputs: Consistent Units}
\begin{tabular}{|c|c|c|c|}
\hline Quantity & SI System 1 & SI system 2 & US System \\
\hline \[
\begin{gathered}
E_{1}, E_{2}, G_{12}, G_{13}, G_{23} \\
E_{x}, E_{y}, G_{x y}, E_{f x}, E_{f y}, G_{f x y}
\end{gathered}
\] & \(M P a\left(N / m^{2}\right)\) & \(P a\left(N / m^{2}\right)\) & Psi (lb/in \({ }^{2}\) ) \\
\hline \(\alpha_{1}, \alpha_{2}, \alpha_{x}, \alpha_{y}, \alpha_{x y}\) & \(\mathrm{mm} / \mathrm{mm} /{ }^{\circ} \mathrm{C}\) & \(m / m /{ }^{\circ} \mathrm{C}\) & in/in/ \(/ \mathrm{F}\) \\
\hline \(\beta_{1}, \beta_{2}, \beta_{x}, \beta_{y}, \beta_{x y}\) & \(\mathrm{mm} / \mathrm{mm} / \mathrm{Kg} / \mathrm{Kg}\) & \(m / m / \mathrm{Kg} / \mathrm{Kg}\) & in/in/lb/lb \\
\hline \[
\begin{gathered}
\sigma_{11}^{T}, \sigma_{11}^{C}, \sigma_{22}^{T}, \sigma_{22}^{C} \tau_{12}^{\mathrm{S}}, \sigma_{1}, \sigma_{2}, \tau_{12}, \tau_{23}, \tau_{13} \\
\sigma_{x}, \sigma_{y}, \tau_{x y}, \tau_{y z}, \tau_{x z}
\end{gathered}
\] & \(M P a\left(N / m m^{2}\right)\) & \(P a\left(N / m^{2}\right)\) & Psi (lb/in \({ }^{2}\) ) \\
\hline \[
\begin{gathered}
\varepsilon_{11}^{T}, \varepsilon_{11}^{C}, \varepsilon_{22}^{T}, \varepsilon_{22}^{C}, \gamma_{12}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{12}, \gamma_{13}, \gamma_{23}, \varepsilon_{x 0} \\
\varepsilon_{y 0}, \gamma_{x y 0}, \gamma_{y z 0}, \gamma_{x z 0} \varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z}
\end{gathered}
\] & \(\mathrm{mm} / \mathrm{mm}\) & \(m / m\) & in/in \\
\hline \(\kappa_{x 0}, \kappa_{y 0}, \kappa_{x y 0}\) & \(1 / \mathrm{mm}\) & \(1 / \mathrm{m}\) & 1/in \\
\hline \[
\begin{gathered}
N_{x x}, N_{y y}, N_{x y}, N_{x x}^{T}, N_{y y}^{T}, N_{x y}^{T}, \\
N_{x x}^{H}, N_{y y}^{H}, N_{x y}^{H},[\mathrm{~A}]
\end{gathered}
\] & \(\mathrm{N} / \mathrm{mm}\) & \(N / m\) & \(l b / i n\) \\
\hline [B] & \(N-m m / m m\) & \(N-m / m\) & \(l b-i n / i n\) \\
\hline [D] & \(N-m m\) & \(N-m\) & \(l b-i n\) \\
\hline \(\Delta T\) & \({ }^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{F}\) \\
\hline \(\Delta C\) & \(\mathrm{Kg} / \mathrm{Kg}\) & \(\mathrm{Kg} / \mathrm{Kg}\) & \(l b / l b\) \\
\hline Ply Angle, \(\theta\) & Degree & Degree & Degree \\
\hline Ply or Laminate thickness or Offset or w & mm & \(m\) & in \\
\hline
\end{tabular}

\section*{Other Features}

\section*{＊Upload／Download：}

Users can upload and download Material properties，Plies，Laminates，Panels and Loads data files（＊．json）using the upload \(\uparrow\) and download \(\downarrow\) buttons next to these inputs．

\section*{＊Additional Output：}

Users can review a few intermediate calculations such as minor Poison＇s ratios \(v_{21}, Q_{i j}\) for each ply type and laminate ABD by using the calculation button ⿴囗大ㅂ．Few such examples are shown below：
```

ID v21
GMS4020 PW 0.05
GMS4020 Tape 0.0254
2024-T3 0.3
Rastogi_Fiberglass 0.02667
Tuttle 0.01662

```

\section*{Other Features}

\section*{Plies 图 © \(\uparrow \downarrow\)}
\begin{tabular}{|l|lllll|}
\hline ID & Angle (deg) & Material & & Thickness & \\
\hline 1 & 0 & Tuttle & \(\vee\) & 0.0075 & + \\
\hline & & & & \\
\hline & & Tuttle & & \(\vee\) & 0.0075 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ID & Q & Q44 & Q55 & Qbar & Q44bar & Q45bar & Q55bar \(\times\) \\
\hline 1 & \[
\begin{aligned}
& {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0 \text {, }} \\
& 640000.0]]
\end{aligned}
\] & 640000 & 640000 & [[22627882.74, 376125.7, 0.0], [376125.7, 1106252.04, 0.0], [0.0, 0.0, 640000.0]] & 640000 & 0 & 640000 \\
\hline 2 & \[
\begin{aligned}
& {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\
& 640000.0]]
\end{aligned}
\] & 640000 & 640000 & [[1106252.04, 376125.7, 0.0], [376125.7, 22627882.74, 0.0], [0.0, 0.0, 640000.0]] & 640000 & 0 & 640000 \\
\hline 3 & \[
\begin{aligned}
& {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\
& 640000.0]]
\end{aligned}
\] & 640000 & 640000 & \[
\begin{aligned}
& \text { [[6761596.54, 5481596.54, 5380407.67], [5481596.54, 6761596.54, 5380407.67], [5380407.67, 5380407.67, } \\
& 5745470.85]]
\end{aligned}
\] & 640000 & 0 & 640000 \\
\hline 4 & \[
\begin{aligned}
& {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0,} \\
& 640000.0]]
\end{aligned}
\] & 640000 & 640000 & \[
\begin{aligned}
& \text { [[6761596.54, 5481596.54, -5380407.67], [5481596.54, 6761596.54, -5380407.67], [-5380407.67, } \\
& -5380407.67,5745470.85]]
\end{aligned}
\] & 640000 & 0 & 640000 \\
\hline
\end{tabular}


\section*{General Information}
* Subscription fee to access 3pcsolver003 is \(\$ 39 /\) year per for a single-login license
* Training module 3pcmodule003 supports the solver 3pcsolver003. Users' can buy the training module 3pcmodule001 online at
https://www.3pcomposites.com/
* 3P Composites, LLC can conduct online or in-class trainings for the 3pcsolver003 and 3pcmodule003. The training can be adapted to meet the requirements of individual needs and/or industrial applications
* For questions, issues, comments, suggestions, trainings, please contact us at 3pcomps@gmail.com. Your feedback is appreciated in helping us continuously improve the product

\section*{Examples: Buckling of Laminated Plates}
* Lamina Properties: \(E_{1}=1.8 e 7 p s i, E_{2}=1.6 e 6 p s i ; G_{12}=G_{13}=8.7 e 5 p s i\),
\(G_{23}=6.4 e 5 p s i ; v_{21}=0.3, t_{p l y}=0.00525\) inch, \(\rho=1.49 \times 10^{-4} \mathrm{lb} / \mathrm{in}^{3}\)
* Plate Dimensions: \(L=15 \mathrm{in} ., W=10 \mathrm{in}\)., Aspect Ratio \(\frac{L}{W}=1.5\)
* Laminate I: \([ \pm 45]_{2 s}, D_{16} \neq D_{26} \neq 0\)
- I: Applied Axial Edge Compression \(N_{x x}=-10 \mathrm{lb} / \mathrm{in}\)
- II: Applied Bi-Axial Edge Compression \(N_{x x}=-10 \mathrm{lb} / \mathrm{in}\) and \(N_{y y}=-5 \mathrm{lb} / \mathrm{in}\)
- III: Applied Edge Shear \(N_{x y}=10 \mathrm{lb} / \mathrm{in}\)
- IV: Applied Edge Shear \(N_{x y}=-10 \mathrm{lb} / \mathrm{in}\)
- V: Applied Edge Compression, Tension and Shear \(N_{x x}=-10 \mathrm{lb} / \mathrm{in}\) and \(N_{y y}=\) \(+5 \mathrm{lb} / \mathrm{in}, N_{x y}=-10 \mathrm{lb} / \mathrm{in}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Buckling \\
Load \\
Factor
\end{tabular} & \multicolumn{6}{|c|}{ CASE } \\
\hline 1 & 2.41 & 1.208 & 4.835 & 2.967 & 1.839 \\
\hline 2 & 2.564 & 1.856 & 5.363 & 3.246 & 1.999 \\
\hline 3 & 3.062 & 2.683 & 9.839 & 5.767 & 2.649 \\
\hline 4 & 4.085 & 3.538 & 10.74 & 6.292 & 2.978 \\
\hline 5 & 5.428 & 3.816 & 16.63 & 9.991 & 4.099 \\
\hline
\end{tabular}

\section*{Buckling of Laminated Plates}
* Laminate II: \([ \pm 45]_{T}, B_{16} \neq B_{26} \neq 0\)
- I: Applied Axial Edge Compression \(N_{x x}=-1 \mathrm{lb} / \mathrm{in}\)
- II: Applied Edge Tension, Compression and Shear \(N_{x x}=+1 \mathrm{lb} / \mathrm{in}\) and \(N_{y y}=-\) \(1 \mathrm{lb} / \mathrm{in}, N_{x y}=1 \mathrm{lb} / \mathrm{in}\)
* Laminate III: \([0 / 90]_{T}, B_{11} \neq B_{22} \neq 0\)
- I: Applied Bi-Axial Edge Compression \(N_{x x}=-1 \mathrm{lb} / \mathrm{in}\) and \(N_{y y}=-1 \mathrm{lb} / \mathrm{in}\)
- II: Applied Bi-Axial Edge Compression and Tension \(N_{x x}=-1 \mathrm{lb} / \mathrm{in}\) and \(N_{y y}=\) \(+1 \mathrm{lb} /\) in
* MATLAB scripts are used to create both 3D and 2D contour plots of the transverse displacement \(w\) depicting the mode shapes of laminated composite plates subjected to edge buckling loads

\title{
Case I: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)
}

First Buckling Factor: 2.41
3D Plot - Mode Number 1



Second Buckling Factor: 2.564
3D Plot - Mode Number 2



\section*{Case I: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

Third Buckling Factor: 3.062
3D Plot - Mode Number 3



Fourth Buckling Factor: 4.085
3D Plot - Mode Number 4




\section*{Case II: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

First Buckling Factor: 1.21

\(\begin{array}{rlllll}-1.0077 & -0.8062 & -0.6046 & -0.4031 & -0.2015 & 0 \\ & & & & \end{array}\)


Second Buckling Factor: 1.856
3D Plot - Mode Number 2



\section*{Case II: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

Third Buckling Factor: 2.683
3D Plot - Mode Number 3

\begin{tabular}{llllll}
-0.946 & -0.5541 & -0.1621 & 0.2298 & 0.6218 & 1.0137 \\
& & & & & \\
\hline
\end{tabular}


Fourth Buckling Factor: 3.538

3D Plot - Mode Number 4




\title{
Case II: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)
}

3D Plot - Mode Number 5


Fifth Buckling Factor: 3.816
\begin{tabular}{cccccc}
-1.1669 & -0.7001 & -0.2334 & 0.2334 & 0.7001 & 1.1669 \\
& & &
\end{tabular}


\section*{Case III: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

First Buckling Factor: 4.835




Second Buckling Factor: 5.363
3D Plot - Mode Number 2




\section*{Case III: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

Third Buckling Factor: 9.84
3D Plot - Mode Number 3

\begin{tabular}{cccccc}
-1.0924 & -0.8635 & -0.6347 & -0.4058 & -0.1770 & 0.0519 \\
\hline
\end{tabular}
2D Contour - Mode Number \(3 \Leftrightarrow \in\)


Fourth Buckling Factor: 10.74
3D Plot - Mode Number 4




\title{
Case III: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)
}

3D Plot - Mode Number 5


Fifth Buckling Factor: 16.63


\section*{Case IV: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

First Buckling Factor: 2.967
3D Plot - Mode Number 1



Second Buckling Factor: 3.246
3D Plot - Mode Number 2

\begin{tabular}{llllll}
-1.0596 & -0.6358 & -0.2119 & 0.2119 & 0.6358 & 1.0596 \\
\hline & & & & \\
\hline
\end{tabular}


\section*{Case IV: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

Third Buckling Factor: 5.767
3D Plot - Mode Number 3



Fourth Buckling Factor: 6.292
3D Plot - Mode Number 4



\section*{Case IV: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

3D Plot - Mode Number 5


Fifth Buckling Factor: 9.991


\title{
Case V: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)
}

First Buckling Factor: 1.84
3D Plot - Mode Number 1




Second Buckling Factor: 1.999
3D Plot - Mode Number 2

\begin{tabular}{llllll}
-0.1537 & 0.1406 & 0.4349 & 0.7292 & 1.0235 & 1.3178 \\
\hline & & & &
\end{tabular}


\section*{Case V: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

Third Buckling Factor: 2.649




Fourth Buckling Factor: 2.978

3D Plot - Mode Number 4




\section*{Case V: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{2 s}\)}

3D Plot - Mode Number 5


Fifth Buckling Factor: 4.099


\section*{Case I: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{T}\)}

\begin{tabular}{ll}
-1.0528 & -0.6317
\end{tabular}




\section*{Case II: Critical Buckling Load Factors And Mode Shapes \([ \pm 45]_{T}\)}


\section*{Case I: Critical Buckling Load Factors And Mode Shapes \([0 / 90]_{T}\)}


\section*{Case II: Critical Buckling Load Factors And Mode Shapes \([0 / 90]_{T}\)}
```

