## Free Vibration Analysis of Simply Supported Sandwich Composite Plates

## $\square$


$\square$
$\square$

## Copyright Information

The solver module 3pcsolver008 contains information obtained from authentic and highly regarded references. Reasonable efforts have been made to check the reliability of the code and information. However, the 3P Composites, LLC does not assume any responsibility for the validity of the materials, accuracy of the code, and thereby the consequences of their use

The documentation for the solver module 3 pcsolver008 is intended for users' information only. No part of this module and documentation may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from 3P Composites, LLC

All rights to the documentation are retained by 3P Composites, LLC

## Solver Agreement

> 3P Composites, LLC hereby grant you, the subscriber a nonexclusive and a nontransferable license to use the 3pcsolver008 subscribed by you on the following terms and conditions only:

- You have been granted an Individual 3pcsolver008 License to use on a single computer for your own personal use. Each solver is effective for the period of its subscription. You agree to protect the 3 3psolver008 subscribed by you from unauthorized use, reproduction, or distribution. You further acknowledge that the 3pcsolver008 contains valuable trade secrets and confidential information belonging to 3P Composites, LLC. You may not disclose any component of the 3pcsolver008, whether or not in machine readable form, except as expressly provided in this Agreement
- The subscribed 3pcsolver008 is furnished on an "as is" basis and without warranty as to the performance or results you may obtain using the 3pcsolver008. While utmost care has been taken to ensure accuracy of each solver before release, the entire risk as to the results or performance, in no event will 3P Composites, LLC be liable to you for any damages whatsoever, including without limitation, lost profits, lost savings, or other incidental or consequential damages arising out of the use or inability to use the 3pcsolver008 even if 3 P Composites, LLC has been advised of the possibility of such damages. Furthermore, 3 P Composites, LLC is not responsible for any loss in productivity to the users' of the 3pcsolver008 due to the unavailability of the 3pcsolver008 caused by any technical or other issues related downtimes and maintenances of the website and/or server
- This agreement represents the entire agreement between 3P Composites, LLC and you, the subscriber, and supersedes any proposals or prior agreements, oral or written, and any other communication between us relating to the subject matter of this agreement. This agreement will be governed and construed as if wholly entered into and performed within the state of Florida
- If you fail to comply with any term or condition of this Agreement, your subscription to the 3pcsolver008 will be terminated, and no refund will be issued for the remainder of the subscription time. Upon such termination, you agree to destroy all information regarding the 3pcsolver008 including any copies made
- By accessing the 3pcsolver008 and/or its documentation, you as user and/or subscriber acknowledge that you have read this agreement completely and agree to be bound by its terms and conditions listed here


## Contents: 3pcsolver008

1. Overview
2. Applications
3. Theoretical Background
4. Inputs
5. Outputs
6. Consistent Units
7. Other Features
8. General Information
9. Examples

## Overview

* 3pcsolver008 performs free vibration analysis of simply-supported sandwich plates. Simply-supported boundary condition is most widely used in the analysis of plates and shells. Natural (or fundamental) frequencies and the associated mode shapes for sandwich plates with composite/laminated face sheets are computed by this solver. Furthermore, 3pcsolver008 solver can include the effects of in-plane mechanical tension/compression and/or shear edge loads on the natural frequencies of vibration and mode shapes of simplysupported sandwich plates



## Applications

* The analysis is applicable to the sandwich panels manufactured from face sheets that are either fiber-reinforced laminates or metallic sheets and a core that is either isotropic or orthotropic. The face sheets can consist of singlematerial laminate(s) or hybrid (multi-material) laminates, one or multiple broad forms of lamina type or fiber types or single or multiple materials systems or their combinations
* Core of the sandwich structure can be isotropic or orthotropic, and
- Metallic such as Aluminum, Titanium, etc.
- Non-metallic such as Nomex, Balsa wood, Rohacell, Foam core, Glass Fiber, Kevlar, etc.
Face sheets of the sandwich structure can have LAMINA that
- has any kind of FIBER such as boron, carbon, graphite, glass, Kevlar, Aramid, polyester, natural fibers, etc.,
- is in any type of broad form such as unidirectional, bi-directional 2D textile weaves like plain weave, twill and harness, biaxial and triaxial braids, chopped random continuous fibers, non-crimp, nonwoven fabrics, etc.
- Is impregnated with any RESIN/MATRIX, thermoset or thermoplastic systems such as epoxy, polyester, vinyl ester, polyurethane, phenolic, cyanate ester, bis-maleimide, polyimides, benzoxazine, Acrylic, ABS, Polylactic acid PLA, Polybenzimidazole PBI, Polyether sulfone PES, Polyoxymethylene POM, Polyether ether ketone PEEK, Polyetherimide PEI, Polyphenylene oxide PPO, Polyphenylene sulfide PPS, Polystyrene PS, Polypropylene PP, Polyvinyl chloride PVC, Teflon PTFE, etc.
- is cured using any MANUFACTURING PROCESS such as Autoclave, Resin Transfer Molding like VARTM, SQRTM, RIM, SRIM, Filament Winding, Pultrusion, Compression Molding, Wet-lay up, etc.


## Theoretical Background

* 3pcsolver008 solver is based on First-Order Shear Deformation Laminated Plate Theory (Mindlin Type). Spatial distributions of displacements $\boldsymbol{u}, \boldsymbol{v}$ and $\boldsymbol{w}$, and rotations $\varphi_{x}$ and $\varphi_{y}$ of the plate's reference surface are assumed using double Fourier series satisfying the kinematic boundary conditions at all four simply-supported edges of the sandwich plate exactly. Neglecting the rotatory inertia terms, using Hamilton's principle and Ritz analysis procedure, a highly coupled system of algebraic equations for free vibration analyses of simply-supported sandwich plates is obtained as shown below:
$\left[\begin{array}{ccccc}K_{11}-m_{p} \omega_{m n}^{2} & K_{12} & 0 & K_{14} & K_{15} \\ K_{21} & K_{22}-m_{p} \omega_{m n}^{2} & 0 & K_{24} & K_{25} \\ 0 & 0 & K_{33}-m_{p} \omega_{m n}^{2} & K_{34} & K_{35} \\ K_{14} & K_{42} & K_{43} & K_{44} & K_{45} \\ K_{51} & K_{25} & K_{53} & K_{54} & K_{55}\end{array}\right]\left\{\begin{array}{c}u_{m n} \\ v_{m n} \\ w_{m n} \\ \varphi_{x m n} \\ \varphi_{y m n}\end{array}\right\} e^{i \omega t}=\left\{\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right\} e^{i \omega t}$
* In the system of equations given above, $K_{i j}$ are the stiffness terms containing the sandwich plates' $A_{i j}, B_{i j}$ and $D_{i j} . u_{m n}, v_{m n}$ and $w_{m n}$ are the unknown coefficients of displacements, and $\varphi_{x m n}$ and $\varphi_{y m n}$ are the unknown coefficients of rotations of the sandwich plate. $\omega_{m n}$ is the circular or angular frequency (radian/second) of vibration. Effects of applied edge loads from mechanical loadings are contained in the $K_{33}$ stiffness term


## Theoretical Background

* The determinant of the system of $5 M \times 5 N$ equations for the Eigen-value problem derived above is set to zero to obtain angular frequencies $\omega_{m n}$ for simply-supported sandwich plates including the effects of applied compression/tension and/or edge shear loads

| $K_{11}-m_{p} \omega_{m n}^{2}$ | $K_{12}$ | 0 | $K_{14}$ | $K_{15}$ |
| :---: | :---: | :---: | :---: | :---: |
| $K_{21}$ | $K_{22}-m_{p} \omega_{m n}^{2}$ | 0 | $K_{24}$ | $K_{25}$ |
| 0 | 0 | $K_{33}-m_{p} \omega_{m n}^{2}$ | $K_{34}$ | $K_{35}$ |
| $K_{14}$ | $K_{42}$ | $K_{43}$ | $K_{44}$ | $K_{45}$ |
| $K_{51}$ | $K_{25}$ | $K_{53}$ | $K_{54}$ | $K_{55}$ |$|=0$

* Solution to the Eigen-value problem is obtained for truncated Fourier series using $m=1,2, . ., M$ terms in the $x$-direction and $n=1,2, . ., N$ terms in the $y$-direction. Without loss of generality, $M=N$ is assumed for the solution. Natural frequencies of vibration can be obtained as $f_{m n}=\frac{\omega_{m n}}{2 \pi}$. Vibration mode shapes for each natural frequency $f_{m n}$ can be obtained by substituting $\omega_{m n}$ in the system of equations given on the previous slide and solving for the displacements and rotations of the sandwich plate
* Given the lamina/ply and core material properties, laminate stack-up and its length and width dimensions, 3pcsolver008 solver calculates natural frequencies of vibration and associated mode shapes for a sandwich plate


## Theoretical Background

* The 3pcsolver008 is a unique solver which is based on FSDT of laminated plates, employs a closed-form Ritz solution procedure, considers the fully anisotropic effects of face sheet laminates, and obtain natural frequencies and mode shapes of sandwich plates with various types of factsheets and cores. In case of laminated composite factsheets, all types of face sheet laminate coupling terms represented by the non-zero $A_{i 6}, B_{i j}$ and $D_{i 6}(i=1,2$, and $j=1,2,6)$ are included in the vibration analysis of sandwich plates. Most closed-form analyses neglect these coupling effects due to the complexity in deriving the system of equations, and hence, assume the laminated face sheets as being specially orthotropic (i.e. $A_{i 6}=B_{i j}=D_{i 6}=0, i=1,2, j=1,2,6$ )
* Solution to the above system of equations is obtained for truncated Fourier series using $m=1,2, . ., M$ terms in the $x$-direction and $n=1,2, . ., N$ terms in the $y$-direction. Without loss of generality, $M=N$ is assumed for the solution. Numerous examples are solved using 3 pcsolver008 solver, and results are compared with those (i) obtained from standard commercially available finite element analysis software, and (ii) available in open literature


## Theoretical Background

* Many different types of ply and core material systems, ply orientations, face sheet laminate stack ups, sandwich plate dimensions, and types of transverse loading are considered to check the accuracy of the solver. Excellent correlations are obtained in all cases
* Details of the theoretical approach along with numerous verification and application examples are available in the training module 3pcmodule008


## Inputs

* All inputs should be in consistent units. Use either ( $\mathrm{N}, \mathrm{m}, \mathrm{Pa}$ ) OR ( $\mathrm{N}, \mathrm{mm}$, MPa ) or (Ibs, in, Psi) consistently. Inputs in scientific notation (0.0+e) are acceptable
* Input process is intuitive and uses the following logical order of user's input:
- Materials
- Plies / Laminae
- Cores
- Laminates
- Sandwich Panels
- Loads
- Analysis Options


## Inputs：Materials

## ＊Material Properties：

In the SI system，MPa and mm or Pa and m，and in the US system Msi and in are used to input the orthotropic Iamina Moduli $E_{1}, E_{2}, G_{12}, G_{13}$ and $G_{23} . v_{12}$ is major Poison＇s ratio．$\rho$ is material density in $\mathrm{Kg} / \mathrm{m}^{3}$ or $\mathrm{lb} / \mathrm{in}^{3}$ ．Multiple lamina types and lamina materials can be input by simply clicking the＇+ ＇sign on the extreme right． Based on the type of analyses selected，the required material inputs for an orthotopic Lamina can vary as shown below：

Materials 国 山 山

| ID | $\mathrm{E}_{1}$ | $\mathrm{E}_{2}$ | $\mathrm{G}_{12}$ | $\mathrm{G}_{23}$ | $\mathrm{G}_{13}$ | $v_{12}$ | $\rho$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| aiaa－2009 | 18000000 | 1600000 | 870000 | 640000 | 870000 | 0.3 | 0.000149 | ＋－ |

## Inputs: Plies

## * Plies/Laminae:

Types of plies in a face sheet laminate are required as input. Each ply type is defined by its angle (or orientation) in degrees, material type and the thickness. Material of a ply/lamina can be selected from a predefined list of materials that are input in the Material Properties Section above. The thickness of the ply or lamina is in mm or m in the SI system or inch in the US system. Multiple ply or lamina types can be input by simply clicking the '+' sign on the extreme right. The required ply/lamina type inputs with few examples are shown below:


## Inputs：Cores

## ＊Cores：

Types of cores are required as input．Each core type is defined by its orientation angle in degrees，material type（isotropic or orthotropic）and its thickness．Multiple core types can be input by simply clicking the＇＋＇sign on the extreme right．A few examples of the core type inputs are shown below：

Cores 固 山 山

| ID | Angle（deg） | Material | Thickness |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | Ncore | $\vee$ | 0.5 | + | - |
| 2 | 90.0 | Ncore | $\vee$ | 0.5 | + |  |
| 3 | 0 | Ncore | $\vee$ | 1.0 | + | - |
|  |  |  |  |  |  |  |

## Inputs: Laminates

## * Laminates:

Multiple face sheet laminates can be quickly created by defining their stacking sequences using the plies defined in the previous step. Face sheet laminate Offset is fixed at middle (default). Hybrid laminates can be defined using different ply and material combinations established in the previous steps. Additional laminates can be added by simply clicking the '+' sign on the extreme right. A few examples of laminates and their inputs are shown below:

Laminates 图 (i) $\downarrow$

| ID | Stacking Sequence | Stacking Sequence (Angle) | Offset |  |
| :---: | :---: | :---: | :---: | :---: |
| CEP-QI | 2,3,1,4,4,1,3,2 | 45,-45, 0, 90, 90, 0,-45 | Middle $\checkmark$ | + - |
| CEP-Cross Ply | 1,4,1,4,1,4,1,4 | $0,90,0,90,0,90,0,90$ | Bottom $\checkmark$ | + |
| CEP-Angle Ply | 2,3,2,3,2,3,2,3 | $45,-45,45,-45,45,-45$ | Top v | + - |
| CEP-Flax Hybrid | 1,2,3,4,5 | $0,45,-45,90,0$ | Middle $\vee$ | + - |

## Inputs: Sandwich Panels

## * Sandwich Panels:

Sandwich Panels are defined by its Length and width dimensions and the definitions of face sheet laminates and cores. A sandwich panel has two face sheets, top (or upper) and bottom (or lower) and a core. Each sandwich panel has a unique ID that facilitates its analyses for multiple load cases. Sandwich panel analysis uses middle surface as reference plane. Additional sandwich panels can be added by simply clicking the ' + ' sign on the extreme right (see below):

Sandwich Panels $\uparrow \downarrow$

| ID | Length | Width | Bottom Facesheet |  | Core | Top Facesheet |  | + - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15 | 10 | 1 | $\checkmark$ | 1 v | 1 | $\checkmark$ |  |  |
| 2 | 15 | 10 | 1 | $\checkmark$ | $2 \vee$ | 1 | $\checkmark$ | + | - |
| 3 | 15 | 10 | 1 | $\checkmark$ | $3 \vee$ | 1 | $\checkmark$ | + | - |

W


## Inputs: Loads

## * Loads:

As mentioned earlier (see overview Section), various combinations of compressive/tensile and/or shear edge loads $N_{x x}, N_{y y}$ and $N_{x y}$ (force per unit length) can be applied to the sandwich panels (see figures below).

Loads $\uparrow \downarrow$


| ID | Panel | $\mathrm{N}_{\text {xx }}$ | Nyy | $\mathrm{N}_{\text {xy }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 v | 0 | 0 | 0 | $\pm-$ |
| 2 | 2 v | 0 | 0 | 0 | $\pm-$ |
| 3 | $3 \vee$ | 0 | 0 | 0 | + - |
| 4 | 1 v | 10 | 0 | 0 | + - |
| 5 | 1 v | -10 | 0 | 0 | $\pm-$ |

## Inputs: Analysis Options

## * Analysis Options:

User has the option to define the number of terms in Fourier series solution of the solver. By default, $M=N=8$ is assumed. $M=N$ can be varied from 2 to 21 .

Output quantities from the analysis can be requested at select number of points (a.k.a grid points) in the plate domain. By default, a $5 \times 5$ grid is assumed within the domain of the plate bounded by $0 \leq x \leq L$ and $0 \leq y \leq W$ to output the analysis solution at 25 equally divided grid points (see below)

Default analysis options are also shown below:
Analysis Options

| Number of Terms | Number of Points in x | Number of Points in y |
| :--- | :--- | :--- |
| 8 | 5 | 5 |



## Outputs

## * Analysis Outputs:

Once all the Input steps viz., Materials, Plies / Laminae, Cores, Laminates, Panels, Loads and Analysis Options are completed, analyses can be run by clicking the "submit" button

## Submit

Upon completion of analyses, an output is displayed for each Load ID in the window underneath

```
3pc-solver008, v1.0b0
LOADS ID PANEL ID
1 1
PANEL GEOMETRY
LENGTH: 0.20
WIDTH : 0.90
ANALYSIS OPTIONS
m = 4
n=4
OUTPUT OPTIONS
NUMBER OF POINTS IN X DIR: 11
NUMBER OF POINTS IN Y DIR: 11
\begin{tabular}{llcccccc}
\multicolumn{8}{c}{ MATERIAL PROPERTIES } \\
ID & E1 & E2 & G 12 & G 23 & G 13 & V 12 & rho \\
Kollar0 & \(1.48 \mathrm{e}+11\) & \(9.65 \mathrm{e}+09\) & \(4.55 \mathrm{e}+09\) & \(0.00 \mathrm{e}+00\) & \(0.00 \mathrm{e}+00\) & 0.3000 & 0.05744239 \\
iso & \(1.00 \mathrm{e}+02\) & \(1.00 \mathrm{e}+02\) & \(1.00 \mathrm{e}+02\) & \(7.69 \mathrm{e}+08\) & \(7.69 \mathrm{e}+08\) & 0.3000 & 0.05744239
\end{tabular}
```


## Outputs

## * Analysis Outputs:

Following information is output for each Load Case:

- Panel Geometry
- Terms in Fourier Series solution
- Number of Grid Points selected to get output information
- Material Properties and Face sheet Laminate Information
- Face sheet Laminates and Sandwich Plate [A], [B], [D] stiffness matrices
- First Five (or lowest five) natural frequencies of vibration
- Grid Points coordinates $x$ and $y$, and transverse displacements $w$ for the first five modes of vibration

Note that all output is consistent with the unit system used during the material, lamina, laminate, and loads Inputs.

- Facesheet Laminate/Sandwich Plate [A] stiffness matrices N/m or N/mm or lb/in
- Facesheet Laminate/Sandwich Plate[B] stiffness matrices $\mathrm{N}-\mathrm{m} / \mathrm{m}$ or $\mathrm{N}-\mathrm{mm} / \mathrm{mm}$ or lb-in/in
- Facesheet Laminate/Sandwich Plate [D] stiffness matrices N-m or N-mm or Ib-in
- Displacements in mm, m or in and Rotations in $1 / \mathrm{mm}, 1 / \mathrm{m}$ or $1 / \mathrm{in}$
- Natural Frequencies, Hz

A typical output is shown below:

## Output Text

3pc-solver008, v1.0b0

```
LOADS ID PANEL ID
```

1
1
PANEL GEOMETRY
LENGTH: 0.20
WIDTH : 0.90
ANALYSIS OPTIONS
$\mathrm{m}=4$
$\mathrm{n}=4$
OUTPUT OPTIONS
NUMBER OF POINTS IN X DIR: 11
NUMBER OF POINTS IN Y DIR: 11

| MATERIAL PROPERTIES |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | E1 | E2 | G12 | G23 | G13 | v12 | rho |
| Kollar0 | $1.48 \mathrm{e}+11$ | $9.65 \mathrm{e}+09$ | $4.55 \mathrm{e}+09$ | $0.00 \mathrm{e}+00$ | $0.00 \mathrm{e}+00$ | 0.3000 | 0.05744239 |
| iso | $1.00 \mathrm{e}+02$ | $1.00 \mathrm{e}+02$ | $1.00 \mathrm{e}+02$ | $7.69 \mathrm{e}+08$ | $7.69 \mathrm{e}+08$ | 0.3000 | 0.05744239 |

BOTTOM FACESHEET LAMINATE GEOMETRY
STACKING SEQUENCE (PLY ANG): $[+45.0,-45.0,+45.0,-45.0,+0.0 \quad,+0.0$

, +0.0 ,-45.0 , +45.0 ,-45.0 , +45.0 ]
STACKING SEQUENCE (PLY MAT): [KollarO , KollarO , KollarO , KollarO , KollarO , KollarO
, KollarO , Kollar0 , Kollar0 , Kollar0 , KollarO ]
TOTAL THICKNESS: 0.0020
TOTAL MASS: 2.0679e-05

## CORE GEOMETRY

CORE ANG: +0.0
CORE MAT: iso
THICKNESS: 0.0200
MASS: 2.0679e-04

## Output Text

TOP FACESHEET LAMINATE GEOMETRY

| STACKING | SEQUENCE | (PLY | 45.0 | , -45.0 | , +45.0 | , -45.0 | , +0.0 | , +0.0 | , +0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , +0.0 | , +0.0 | , +0.0 | , +0.0 | , +0.0 | , +0.0 | , +0.0 | , +0.0 | +0.0 | , - |
| 45.0 , +45.0 , -45.0, +45.0 |  |  |  |  |  |  |  |  |  |
| STACKING SEQUENCE (PLY MAT): [Kollar0 |  |  |  | Kollar0 | , KollarO | KollarO | Kollar0 | Kollar0 | Kollar0 |
| , Kollar0 | , KollarO | , KollarO | , Kollar0 | , |
| Kollar0 | , Kollar0 | , Kollar0 | , Kollar0 | ] |  |  |  |  |  |
| TOTAL THICKNESS: 0.0020 |  |  |  |  |  |  |  |  |  |
| TOTAL MAS | SS: 2.0679 e | -05 |  |  |  |  |  |  |  |

## BOTTOM FACESHEET LAMINATE PROPERTIES

A MATRIX
$+215169305.42+32735460.05+0.00$
$+32735460.05+48169308.82+0.00$
$+0.00+0.00+36011282.36$

|  | B MATRIX |  |
| :--- | :--- | :--- |
| -0.00 | -0.00 | +0.00 |
| -0.00 | +0.00 | +0.00 |
| +0.00 | +0.00 | +0.00 |
|  |  |  |
| +45.30 | D MATRIX |  |
| +19.52 | +25.52 | +2.23 |
| +2.23 | +2.23 | +2.23 |
|  |  |  |

TOP FACESHEET LAMINATE PROPERTIES
A MATRIX
$+215169305.42+32735460.05+0.00$
$+32735460.05+48169308.82+0.00$
$+0.00+0.00+36011282.36$
B MATRIX
$\begin{array}{ccc}-0.00 & -0.00 & +0.00 \\ -0.00 & +0.00 & +0.00\end{array}$
$+0.00+0.00+0.00$

## Output Text

|  | D MATRIX |  |
| :--- | :--- | ---: |
| +45.30 | +19.52 | +2.23 |
| +19.52 | +25.26 | +2.23 |
| +2.23 | +2.23 | +20.62 |

SANDWICH PLATE PROPERTIES

## TOTAL THICKNESS: 0.0240

A MATRIX
$+430338613.03+65470920.75+0.00$
$+65470920.75+96338619.83+0.00$
$+0.00+0.00+72022566.71$
A MATRIX - TRANSVERSE SHEAR
$+15384615.38+0.00$
$+0.00 \quad+15384615.38$
B MATRIX
$\begin{array}{lll}-0.00 & -0.00 & +0.00 \\ -0.00 & -0.00 & +0.00\end{array}$
$+0.00+0.00-0.00$
D MATRIX

```
+52161.57 +7961.03 +4.45
+7961.03 +11707.49 +4.45
+4.45 +4.45 +8755.96
```

EFFECTIVE BOTTOM FACESHEET LAMINATE INPLANE AND FLEXURAL ENGINEERING CONSTANTS

| Ex | Ey | Gxy | vxy | vyx | Efx | Efy | Gfxy | vfxy | vfyx |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $+9.65 e+10$ | $+2.16 e+10$ | $+1.80 e+10$ | +0.6796 | +0.1521 | $+4.53 e^{2}+10$ | $+2.51 e+10$ | $+3.06 e+10$ | +0.7708 |  |

EFFECTIVE TOP FACESHEET LAMINATE INPLANE AND FLEXURAL ENGINEERING CONSTANTS

| Ex Ey | Gxy | vxy | vyx | Efx Efy | Gfxy | vfxy | vfyx |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +9.65e+10 | $+2.16 e+10$ | $+1.80 \mathrm{e}+10$ | +0.6796 | +0.1521 | $+4.53 \mathrm{e}+10$ | $+2.51 \mathrm{e}+10$ | $+3.06 \mathrm{e}+10$ | +0.7708 |
| +0.4280 |  |  |  |  |  |  |  |  |

## Output Text

## APPLIED LOADS

NATURAL FREQUENCY

| NUMBER | NXX | NYY | NXY | HZ |
| :--- | :---: | :---: | :---: | :---: |
| 1 | 0.0000 | 0.0000 | 0.0000 | 67.7402 |
| 2 | 0.0000 | 0.0000 | 0.0000 | 130.5990 |
| 3 | 0.0000 | 0.0000 | 0.0000 | 187.7086 |
| 4 | 0.0000 | 0.0000 | 0.0000 | 219.3856 |
| 5 | 0.0000 | 0.0000 | 0.0000 | 271.6349 |

## MODE SHAPES

$\left.\begin{array}{lllllllll}X & Y & W & W & W & W & W & W & W\end{array}\right]$

## Inputs and Outputs: Consistent Units

| Quantity | SI System 1 | SI system 2 | US System |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} E_{1}, E_{2}, G_{12}, G_{13}, G_{23} \\ E_{x}, E_{y}, G_{x y}, E_{f x}, E_{f y}, G_{f x y} \end{gathered}$ | $M P a\left(N / m^{2}\right)$ | $\mathrm{Pa}\left(\mathrm{N} / \mathrm{m}^{2}\right)$ | Psi (lb/in ${ }^{2}$ ) |
| $\alpha_{1}, \alpha_{2}, \alpha_{x}, \alpha_{y}, \alpha_{x y}$ | $\mathrm{mm} / \mathrm{mm} /{ }^{\circ} \mathrm{C}$ | $\mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ | in/in/ ${ }^{\circ} \mathrm{F}$ |
| $\beta_{1}, \beta_{2}, \beta_{x}, \beta_{y}, \beta_{x y}$ | $\mathrm{mm} / \mathrm{mm} / \mathrm{Kg} / \mathrm{Kg}$ | $m / m / \mathrm{Kg} / \mathrm{Kg}$ | in/in/lb/lb |
| $\begin{gathered} \sigma_{11}^{T}, \sigma_{11}^{C}, \sigma_{22}^{T}, \sigma_{22}^{C} \tau_{12}^{\mathrm{S}}, \sigma_{1}, \sigma_{2}, \tau_{12}, \tau_{23}, \tau_{13} \\ \sigma_{x}, \sigma_{y}, \tau_{x y}, \tau_{y z}, \tau_{x z} \end{gathered}$ | $M P a\left(N / m^{2}\right)$ | $P a\left(N / m^{2}\right)$ | Psi (lb/in ${ }^{2}$ ) |
| $\begin{gathered} \varepsilon_{11}^{T}, \varepsilon_{11}^{C}, \varepsilon_{22}^{T}, \varepsilon_{22}^{C}, \gamma_{12}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{12}, \gamma_{13}, \gamma_{23}, \varepsilon_{x 0} \\ \varepsilon_{y 0}, \gamma_{x y 0}, \gamma_{y z 0}, \gamma_{x z 0} \varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z} \end{gathered}$ | $\mathrm{mm} / \mathrm{mm}$ | $\mathrm{m} / \mathrm{m}$ | in/in |
| $\kappa_{x 0}, \kappa_{y 0}, \kappa_{x y 0}$ | $1 / \mathrm{mm}$ | $1 / \mathrm{m}$ | 1/in |
| $\begin{gathered} N_{x x}, N_{y y}, N_{x y}, N_{x x}^{T}, N_{y y}^{T}, N_{x y}^{T}, \\ N_{x x}^{H}, N_{y y}^{H}, N_{x y}^{H},[\mathrm{~A}] \end{gathered}$ | $\mathrm{N} / \mathrm{mm}$ | $N / m$ | $l b / i n$ |
| [B] | $N-\mathrm{mm} / \mathrm{mm}$ | $N-m / m$ | $l b-i n / i n$ |
| [D] | $N-m m$ | $N-m$ | $l b-i n$ |
| $\Delta T$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ |
| $\Delta C$ | $\mathrm{Kg} / \mathrm{Kg}$ | $\mathrm{Kg} / \mathrm{Kg}$ | $l b / l b$ |
| Ply Angle, $\theta$ | Degree | Degree | Degree |
| Ply or Laminate thickness or Offset or $w$ | mm | $m$ | in |
| Frequency | Hz | Hz | Hz |

## Other Features

## ＊Upload／Download：

Users can upload and download Material properties，Plies，Face sheet laminates， Sandwich Panels and Loads data files（＊．jso $\uparrow$ using the upload $\downarrow$ and download buttons next to these inputs．

## ＊Additional Output：

Users can review a few intermediate calculations such as minor Poison＇s ratios $v_{21}$ ，$Q_{i j}$ for each ply type and laminate ABD by using the calculation button ⿴囗大ㅂ．Few such examples are shown below：

| ID | v21 |
| :--- | :--- |
| GMS4020 PW | 0.05 |
| GMS4020 Tape | 0.0254 |
| 2024－T3 | 0.3 |
| Rastogi＿Fiberglass | 0.02667 |
| Tuttle | 0.01662 |

## Other Features

## Plies 图 © $\uparrow \downarrow$

| ID | Angle (deg) | Material |  | Thickness |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | Tuttle | $\vee$ | 0.0075 | + |
|  |  |  |  |  |  |
|  |  | Tuttle |  | $\vee$ | 0.0075 |


| ID | Q | Q44 | Q55 | Qbar | Q44bar | Q45bar | Q55bar $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0 \text {, }} \\ & 640000.0]] \end{aligned}$ | 640000 | 640000 | [[22627882.74, 376125.7, 0.0], [376125.7, 1106252.04, 0.0], [0.0, 0.0, 640000.0]] | 640000 | 0 | 640000 |
| 2 | $\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\ & 640000.0]] \end{aligned}$ | 640000 | 640000 | [[1106252.04, 376125.7, 0.0], [376125.7, 22627882.74, 0.0], [0.0, 0.0, 640000.0]] | 640000 | 0 | 640000 |
| 3 | $\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\ & 640000.0]] \end{aligned}$ | 640000 | 640000 | $\begin{aligned} & \text { [[6761596.54, 5481596.54, 5380407.67], [5481596.54, 6761596.54, 5380407.67], [5380407.67, 5380407.67, } \\ & 5745470.85]] \end{aligned}$ | 640000 | 0 | 640000 |
| 4 | $\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0,} \\ & 640000.0]] \end{aligned}$ | 640000 | 640000 | $\begin{aligned} & \text { [[6761596.54, 5481596.54, -5380407.67], [5481596.54, 6761596.54, -5380407.67], [-5380407.67, } \\ & -5380407.67,5745470.85]] \end{aligned}$ | 640000 | 0 | 640000 |



## General Information

* Subscription fee to access 3pcsolver008 is $\$ 39 /$ year per for a single-login license
* Training module 3pcmodule008 supports the solver 3pcsolver008. Users' can buy the training module 3pcmodule001 online at
https://www.3pcomposites.com/
* 3P Composites, LLC can conduct online or in-class trainings for the 3pcsolver008 and 3pcmodule008. The training can be adapted to meet the requirements of individual needs and/or industrial applications
* For questions, issues, comments, suggestions, trainings, please contact us at 3pcomps@gmail.com. Your feedback is appreciated in helping us continuously improve the product


## Example: Free Vibrations of Sandwich Plates

* Lamina Properties: $E_{1}=1.68 e 7 p s i, E_{2}=1.16 e 6 p s i, G_{12}=8.0 e 5 p s i, v_{21}=$ $0.35, t_{p l y}=0.00525$ inch, $\rho=1.49 \times 10^{-4} \mathrm{lb}-\sec ^{2} / \mathrm{in}^{4}$
* Core Properties: $E_{1}=E_{2}=1000$ psi, $G_{12}=10$ psi, $G_{13}=13000 p s i, G_{23}=$ $6000 \mathrm{psi}, v_{21}=0.1, t_{\text {core }}=0.5$ inch, $\rho=4.66 \times 10^{-6} \mathrm{lb}-\sec ^{2} / \mathrm{in}^{4}$
* Plate Dimensions: $L=15 \mathrm{in} ., W=10 \mathrm{in}$., Aspect Ratio $\frac{L}{W}=1.5$
* Bottom Facesheet Laminate: $[0 / 90 / \pm 45 / 0 / 90]_{T}$
* Top Facesheet Laminate: $[90 / 0 / \mp 45 / 90 / 0]_{T}$
* Load Cases:

I: No Edge Loadings
II: Applied Axial Edge Compression, $N_{x x}=-1000 \mathrm{lb} / \mathrm{in}$

* MATLAB scripts are used to plot transverse displacement $w$ of the sandwich plates for different mode shapes


# Case I: Frequencies and Mode Shapes of Sandwich Plate 

First Fundamental Frequency: 781 Hz


Second Fundamental Frequency: 1356 Hz
3D Plot - Mode Number 2



## Case I: Frequencies and Mode Shapes of Sandwich Plate

Third Fundamental Frequency: 1577 Hz
3D Plot - Mode Number 3



Fourth Fundamental Frequency: 1974 Hz
3D Plot - Mode Number 4


| -0.9976 | -0.5976 | -0.1976 | 0.2024 | 0.6024 | 1.0024 |
| :--- | :--- | :--- | :--- | :--- | :--- |



## Case II: Frequencies and Mode Shapes of Sandwich Plate

First Fundamental Frequency: 718 Hz
3D Plot - Mode Number 1

$\qquad$


Second Fundamental Frequency: 1208 Hz
3D Plot - Mode Number 2

$\begin{array}{cccccc}-1 & -0.6 & -0.2 & 0.2 & 0.6 & 1 \\ & & & & \end{array}$

## Case II: Frequencies and Mode Shapes of Sandwich Plate

Third Fundamental Frequency: 1547 Hz
3D Plot - Mode Number 3



Fourth Fundamental Frequency: 1865 Hz
3D Plot - Mode Number 4



