Strength Prediction of

 Laminated Composite Plates with Circular and Elliptical Cutouts
Copyright Information

The solver module 3pcsolver009 contains information obtained from authentic and highly regarded references. Reasonable efforts have been made to check the reliability of the code and information. However, the 3P Composites, LLC does not assume any responsibility for the validity of the materials, accuracy of the code, and thereby the consequences of their use

The documentation for the solver module 3pcsolver009 is intended for users' information only. No part of this module and documentation may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from 3P Composites, LLC

All rights to the documentation are retained by 3P Composites, LLC

Solver Agreement

> 3P Composites, LLC hereby grant you, the subscriber a nonexclusive and a nontransferable license to use the 3pcsolver009 subscribed by you on the following terms and conditions only:

- You have been granted an Individual 3pcsolver009 License to use on a single computer for your own personal use. Each solver is effective for the period of its subscription. You agree to protect the 3pcsolver009 subscribed by you from unauthorized use, reproduction, or distribution. You further acknowledge that the 3pcsolver009 contains valuable trade secrets and confidential information belonging to 3P Composites, LLC. You may not disclose any component of the 3pcsolver009, whether or not in machine readable form, except as expressly provided in this Agreement
- The subscribed 3pcsolver009 is furnished on an "as is" basis and without warranty as to the performance or results you may obtain using the 3pcsolver009. While utmost care has been taken to ensure accuracy of each solver before release, the entire risk as to the results or performance, in no event will 3P Composites, LLC be liable to you for any damages whatsoever, including without limitation, lost profits, lost savings, or other incidental or consequential damages arising out of the use or inability to use the 3pcsolver009 even if 3P Composites, LLC has been advised of the possibility of such damages. Furthermore, 3P Composites, LLC is not responsible for any loss in productivity to the users' of the 3pcsolver009 due to the unavailability of the 3pcsolver009 caused by any technical or other issues related downtimes and maintenances of the website and/or server
- This agreement represents the entire agreement between 3P Composites, LLC and you, the subscriber, and supersedes any proposals or prior agreements, oral or written, and any other communication between us relating to the subject matter of this agreement. This agreement will be governed and construed as if wholly entered into and performed within the state of Florida
- If you fail to comply with any term or condition of this Agreement, your subscription to the 3pcsolver009 will be terminated, and no refund will be issued for the remainder of the subscription time. Upon such termination, you agree to destroy all information regarding the 3pcsolver009 including any copies made
- By accessing the 3pcsolver009 and/or its documentation, you as user and/or subscriber acknowledge that you have read this agreement completely and agree to be bound by its terms and conditions listed here

Contents: 3pcsolver009

1. Stress Concentration in Structures
2. Overview
3. Applications
4. Theoretical Background
5. Inputs
6. Outputs
7. Consistent Units
8. Other Features
9. General Information
10.Examples

Stress Concentration in Structures

* Notches or holes or cutouts are commonly created in industrial structures for many reasons such as to
- Provide easy access to various systems such as fuel, hydraulic, electrical, electronics, pneumatic, waste, flight, flight controls, etc.
- Allow passing through of various cables and pipes for many systems mentioned above through other structural elements such as shells, plates, ribs, frames, beams, etc.
- Lighten the structure by removing material from shells, plates, ribs, frames, beams, etc.
- Damage repairs - cleaning of damage by removing material
- ..
* Penetrations (holes or cutouts) in the structures create localized stress concentrations resulting in considerably higher stresses and stress gradients around the penetrations than the surrounding structure (or material around them). In simple terms, stress concentrations occur when the irregularities in the structural component cause an interruption to the flow of stress as shown below

Stress Concentration in Structures

* Stress concentrations can cause premature static and/or fatigue failure of any structure, increase the static instability (i.e., reduce critical buckling loads), decrease natural frequencies of vibrations or alter the dynamic response. Hence, the effects of stress concentrations should be addressed early in the product design phase
* Most practical penetrations are either circular or elliptical in shape. A circular hole/penetration in metallic material structures subjected to uniaxial tension loading results in a stress concentration factor of 3, a well-known fact. However, due to anisotropic behavior of composite materials and structures, obtaining stress concentration factors for typical penetrations such as circular or elliptical is not straight forward unless the laminate is quasi-isotropic
* Finite element analysis using standard commercial software such as NASTRAN, ANSYS or ABAQUS, etc. is commonly employed to compute stress concentration factor(s) in composite structures with cutouts. Any significant change in hole dimensions relative to the structure's dimensions require re-analyses which can be very time consuming

Stress Concentration in Composites

* Regardless of the availability of powerful finite element analyses tools, development of methods and computational tools that provide approximate solutions to stress concentration in composite structures in relatively simpler and computationally efficient way will be very useful in overall product design process
* A few examples of composite structures with cutouts are shown below

Picture Ref: https://www.cnet.com/pictures/in-kansas-where-787-dreamliners-are-born-pictures/11/

Stress Concentration in Composites

Picture Ref: Ulbricht, A. Rail Vehicle in CFRP-intensive Design. Lightweight des worldw 12, 36-41 (2019). https://doi.org/10.1007/s41777-019-0009-4

Stress Concentration in Composites

Picture Ref: https://sendcutsend-frontend.s3.amazonaws.com/wpcontent/uploads /2022/02/23010517/carbon-fiber-header.jpg

Overview

* 3pcsolver009 performs stress analysis of laminated composite plates having circular or elliptical holes (or cutouts) subjected to in-plane mechanical and hygrothermal tension/compression and/or shear edge loads. Furthermore, the solver predicts failure strength (or failure load) of the laminated composite plates with circular or elliptical holes using standard composite failure theories

Applications

* Stress concertation and strength prediction analysis performed by 3pcsolver009 solver is applicable to the laminates built-up (or fabricated) from a LAMINA that
- has any kind of FIBER such as boron, carbon, graphite, glass, Kevlar, Aramid, polyester, natural fibers, etc.,
- is in any type of broad form such as short and long continuous, unidirectional, bi-directional 2D textile weaves like plain weave, twill and harness, biaxial and triaxial braids, chopped random fibers, non-crimp, nonwoven fabrics, etc.
- Is impregnated with any RESIN/MATRIX, thermoset or thermoplastic systems such as epoxy, polyester, vinyl ester, polyurethane, phenolic, cyanate ester, bis-maleimide, polyimides, benzoxazine, Acrylic, ABS, Polylactic acid PLA, Polybenzimidazole PBI, Polyether sulfone PES, Polyoxymethylene POM, Polyether ether ketone PEEK, Polyetherimide PEI, Polyphenylene oxide PPO, Polyphenylene sulfide PPS, Polystyrene PS, Polypropylene PP, Polyvinyl chloride PVC, Teflon PTFE, etc.
- is cured using any MANUFACTURING PROCESS such as Autoclave, Resin Transfer Molding like VARTM, SQRTM, RIM, SRIM, Filament Winding, Pultrusion, Compression Molding, Wet-lay up, etc.
* The analysis is equally applicable to Hybrid Laminates manufactured from a single or multiple types of lamina materials and/or ply broad forms or fiber types or single or multiple materials systems or their combinations

Theoretical Background

* 3pcsolver009 solver is based on a powerful complex variable analysis approach developed by Muskhelishvili, Savin and Lekhnitskii to obtain stresses in infinite laminated composite plates with cutout(s) or hole(s) subjected to applied far-field axial, transverse and shear loads. The laminated plate stresses and strains obtained using the complex variable based analytical approach are independent of laminated plate length, width and the hole diameter around the edge contour of the hole. However, the an empirical finite width correction factor can be used for uniaxial loading to account for W / d or L / d effects. For $\frac{W}{d}$ or $\frac{L}{d}>8$, the error in the stresses and strains obtained with or without correction factor are less than 2%.
* The stresses and strains can also be obtained at a characteristic distance d_{0} away from the contour of the hole. Strength or failure load for the laminated composite plate with circular or elliptical hole can be predicted using standard composite failure theories
* Analytical solutions obtained here using the complex potential approach are valid for linear elastic homogeneous materials only

Theoretical Background

* In-plane strains of the reference surface (usually mid-plane) of a laminate in terms of in-plane force resultants can be written as

$$
\left\{\begin{array}{l}
\varepsilon_{x x}^{0} \\
\varepsilon_{y y}^{0} \\
\gamma_{x y}^{0}
\end{array}\right\}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{16} \\
a_{12} & a_{22} & a_{26} \\
a_{16} & a_{26} & a_{66}
\end{array}\right\}\left\{\begin{array}{c}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}
$$

* Using stress-function approach, the laminate in-plane force resultants are assumed in terms of stress function $F(x, y)$, a real function, as

$$
N_{x x}=\frac{\partial^{2} F}{\partial y^{2}} \quad N_{y y}=\frac{\partial^{2} F}{\partial x^{2}} \quad N_{x y}=N_{y x}=-\frac{\partial^{2} F}{\partial x \partial y}
$$

* Using stress-function approach, equation of equilibriums are satisfied, and the constitutive law and the compatibility equations can be used to get the following

$$
a_{22} \frac{\partial^{4} F}{\partial x^{4}}-2 a_{26} \frac{\partial^{4} F}{\partial x^{3} \partial y}+\left(2 a_{12}+a_{66}\right) \frac{\partial^{4} F}{\partial x^{2} \partial y^{2}}-2 a_{16} \frac{\partial^{4} F}{\partial x \partial y^{3}}+a_{11} \frac{\partial^{4} F}{\partial y^{4}}=0
$$

* Further assuming $F(x, y)=F(z)=F(x+\mu y)$, a characteristic equation for the laminated plate can be obtained as

$$
a_{11} \mu^{4}-2 a_{16} \mu^{3}+\left(2 a_{12}+a_{66}\right) \mu^{2}-2 a_{26} \mu+a_{22}=0
$$

Theoretical Background

* Noting that $a_{i j}$ are real, the solution to the characteristic equation for the laminated plate provides two pairs of complex conjugate roots: (i) all roots are different (ii) Roots are pairwise equal

$$
\mu_{1}=\alpha+i \beta ; \overline{\mu_{1}}=\alpha-i \beta ; \mu_{2}=\gamma+i \delta, \overline{\mu_{2}}=\gamma-i \delta ; \beta, \delta>0
$$

* Next, the stress functions are assumed in terms of complex potential $\varphi_{j}\left(z_{j}\right)$. Solution to the two complex potentials $\varphi_{1}\left(z_{1}\right)$ and $\varphi_{2}\left(z_{2}\right)$ are obtained by satisfying the static and/or kinematic boundary conditions at the internal boundary such as contour of the opening, and at the external boundary of the plate at infinity. Furthermore, the contour of a hole or cutout is transformed into a unit circle using conformal mapping approach. Once the complex functions $\varphi_{j}\left(z_{j}\right)$ are known, the in-plane force resultants and displacements around the hole in the laminated plate are obtained as

$$
\begin{aligned}
& N_{\theta \theta}=N_{\theta \theta}^{0}+2 \operatorname{Re}\left[\left(\mu_{1}^{2} \sin ^{2} \theta+\cos ^{2} \theta+\mu_{1} \sin 2 \theta\right) \varphi_{01}^{\prime}\left(z_{1}\right)+\left(\mu_{2}^{2} \sin ^{2} \theta+\cos ^{2} \theta+\mu_{2} \sin 2 \theta\right) \varphi_{02}^{\prime}\left(z_{2}\right)\right] \\
& N_{r r}=N_{r r}^{0}+2 \operatorname{Re}\left[\left(\mu_{1}^{2} \cos ^{2} \theta+\sin ^{2} \theta-\mu_{1} \sin 2 \theta\right) \varphi_{01}^{\prime}\left(z_{1}\right)+\left(\mu_{2}^{2} \cos ^{2} \theta+\sin ^{2} \theta-\mu_{2} \sin 2 \theta\right) \varphi_{02}^{\prime}\left(z_{2}\right)\right]
\end{aligned}
$$

$$
N_{r \theta}=N_{r \theta}^{0}+2 R e\left[\begin{array}{c}
\left(\left(1-\mu_{1}^{2}\right) \sin \theta \cos \theta-\mu_{1}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right) \varphi_{01}^{\prime}\left(z_{1}\right) \\
+\left(\left(1-\mu_{2}^{2}\right) \sin \theta \cos \theta-\mu_{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right) \varphi_{02}^{\prime}\left(z_{2}\right)
\end{array}\right]
$$

Theoretical Background

$$
\begin{gathered}
N_{r r}^{0}=N_{x x}^{0} \cos ^{2} \theta+N_{y y}^{0} \sin ^{2} \theta+N_{x y}^{0} \sin 2 \theta \\
N_{\theta \theta}^{0}=N_{x x}^{0} \sin ^{2} \theta+N_{y y}^{0} \cos ^{2} \theta-N_{x y}^{0} \sin 2 \theta \\
N_{r \theta}^{0}=\left(N_{y y}^{0}-N_{x x}^{0}\right) \sin \theta \cos \theta+N_{x y}^{0}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{gathered}
$$

$$
\begin{aligned}
& u_{r}(r, \theta)=2 \operatorname{Re}\left[\left(p_{1} \cos \theta+q_{1} \sin \theta\right) \varphi_{1}\left(z_{1}\right)+\left(p_{2} \cos \theta+q_{2} \sin \theta\right) \varphi_{2}\left(z_{2}\right)\right] \\
& u_{\theta}(r, \theta)=2 \operatorname{Re}\left[\left(q_{1} \cos \theta-p_{1} \sin \theta\right) \varphi_{1}\left(z_{1}\right)+\left(q_{2} \cos \theta-p_{2} \sin \theta\right) \varphi_{2}\left(z_{2}\right)\right]
\end{aligned}
$$

$$
\begin{gathered}
p_{1}=a_{11} \mu_{1}^{2}+a_{12}-a_{16} \mu_{1} ; p_{2}=a_{11} \mu_{2}^{2}+a_{12}-a_{16} \mu_{2} \\
q_{1}=a_{12} \mu_{1}+\frac{a_{22}}{\mu_{1}}-a_{26} ; q_{2}=a_{12} \mu_{2}+\frac{a_{22}}{\mu_{2}}-a_{26}
\end{gathered}
$$

$$
\begin{gathered}
N_{x x}=N_{x x}^{0}+2 \operatorname{Re}\left[\mu_{1}^{2} \varphi_{01}^{\prime}\left(z_{1}\right)+\mu_{2}^{2} \varphi_{02}^{\prime}\left(z_{2}\right)\right] \\
N_{y y}=N_{y y}^{0}+2 \operatorname{Re}\left[\varphi_{01}^{\prime}\left(z_{1}\right)+\varphi_{02}^{\prime}\left(z_{2}\right)\right] \\
N_{x y}=N_{x y}^{0}-2 \operatorname{Re}\left[\mu_{1} \varphi_{01}^{\prime}\left(z_{1}\right)+\mu_{2} \varphi_{02}^{\prime}\left(z_{2}\right)\right] \\
u(x, y)=2 \operatorname{Re}\left[p_{1} \varphi_{1}\left(z_{1}\right)+p_{2} \varphi_{2}\left(z_{2}\right)\right], \\
v(x, y)=2 \operatorname{Re}\left[q_{1} \varphi_{1}\left(z_{1}\right)+q_{2} \varphi_{2}\left(z_{2}\right)\right]
\end{gathered}
$$

Theoretical Background

* The expressions for complex functions $\varphi_{j}\left(z_{j}\right)$ and its derivatives are complex and are not provided here. The angle θ is measured positive clockwise as shown. For elliptical hole, a is semi-major-axis and b is semi-minor-axis, and for circular hole, $a=b=r$

θ	x	y
0,360	a	0
90	0	-b
180	-a	0
270	0	b

Theoretical Background

* Hygrothermal effects can be accounted for the given difference in temperature ΔT and difference in moisture content ΔC. Laminated plate theory can be used to compute thermal force resultants $N_{x x}^{T}, N_{y y}^{T} \& N_{x y}^{T}$ and/or moisture force resultants $N_{x x}^{M}, N_{y y}^{M} \& N_{x y}^{M}$ as shown below

$$
\left\{\begin{array}{l}
N_{x x}^{T} \text { or } M \\
N_{y y}^{T} \text { or } M \\
N_{x y}^{T} \text { or } M
\end{array}\right\}=[A]\left\{\begin{array}{l}
\varepsilon_{x x}^{T} \text { or } M \\
\varepsilon_{y y}^{T} \text { or } M \\
\gamma_{x y}^{T} \text { or } M
\end{array}\right\},[A]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{16} \\
a_{12} & a_{22} & a_{26} \\
a_{16} & a_{26} & a_{66}
\end{array}\right]^{-1}
$$

* The total applied in-plane edge (or buckling) loads are then obtained as summation of mechanical and hydrothermal force resultants as

$$
\left\{\begin{array}{l}
N_{x x}^{T o t a l} \\
N_{y y}^{T o t a l} \\
N_{x y}^{T o t a l}
\end{array}\right\}=\left\{\begin{array}{l}
N_{x x}^{T} \\
N_{y y}^{T} \\
N_{x y}^{T}
\end{array}\right\}+\left\{\begin{array}{l}
N_{x x}^{M} \\
N_{y y}^{M} \\
N_{x y}^{M}
\end{array}\right\}+\left\{\begin{array}{l}
N_{x x}^{0} \\
N_{y y}^{0} \\
N_{x y}^{0}
\end{array}\right\}
$$

Theoretical Background

* Given the laminate material, ply stack up information, plate and cutout dimensions and far-field applied in-plane mechanical and hygrothermal tension/compression and/or shear edge loads, 3pcsolver009 solver calculates in-plane force resultants and displacements going around the hole $0^{\circ} \leq \theta \leq 360^{\circ}$ in clockwise direction, in both polar and Cartesian systems. Furthermore, stresses and strains, margins of safety/failure indices in each ply are obtained from the calculated in-plane force resultants using laminate theory
* There is high stress gradients at the contour of the cutout (stress concentration effects) as shown in Figure on next Slide. Hence, it is prudent to apply the selected failure criteria away from the hole boundary to get a good estimate of the notched strength (or failure loads) for laminated plates with cutouts. Typically, an experimentally validated characteristic distance d_{0} away from the contour of the hole is used to calculate the quantities mentioned above in the step increments. Both the characteristic distance d_{0} and the number of steps are provided by the user
* Details of the theoretical approach along with verification and application examples are provided in the training module 3pcmodule009

Theoretical Background

* High gradients of in-plane force resultants reaching far-filed applied loads away from the hole

Inputs

* All inputs should be in consistent units. Use either ($\mathrm{N}, \mathrm{m}, \mathrm{kg}$, Celsius, $\mathrm{N} / \mathrm{mm} \mathrm{N}-\mathrm{m} / \mathrm{m}$) OR ($\mathrm{N}, \mathrm{mm}, \mathrm{Kg}$, Celsius, $\mathrm{N} / \mathrm{mm}, \mathrm{N}-\mathrm{mm} / \mathrm{mm}$) or (lbs, in, Fahrenheit, $\mathrm{lb} / \mathrm{in}, \mathrm{lb}-\mathrm{in} / \mathrm{in}$) consistently. Inputs in scientific notation ($0.0+\mathrm{e}$) are acceptable
* Input process is intuitive and uses the following logical order:
- Analysis Options
- Materials
- Plies / Laminae
- Laminates
- Panels
- Loads
- Output Options
* The type of analysis selected dictates the required inputs. In general, the loads are applied to the panels consisting of laminates, which are built from specifically oriented plies/laminae fabricated from individual materials

Inputs: Analysis Options

* Analysis Options:

Four types of analyses can be performed using this solver, viz. (i) Mechanical (ii) Thermo-mechanical (iii) Hygro-mechanical, and (iv) Hygro-thermo-mechanical, In addition, Failure analysis of the laminates can be performed based on First-ply failure criteria using one of the four commonly used composite failure theories, viz. (i) Maximum Stress (ii) Maximum Strain (iii) Tsai-Hill, and (iv) Tsai-Wu. In total there are Twenty (20) possible ways of using this solver to perform stress concentration analysis of laminated composite plates subjected to Hygro-thermo-mechanical loads. A few combination of analyses are shown below:

Analysis Options

Analysis Options

Analysis Options

Analysis Options

Analysis Options

Inputs: Materials

* Material Properties:

In the SI system, MPa or Pa, and in the US system Psi are used to input the orthotropic lamina Moduli $E_{1}, E_{2}, G_{12}, G_{13}$ and G_{23}. Coefficient of thermal expansions α_{1} and α_{2} are expressed in $\mathrm{mm} / \mathrm{mm}$ or m / m per degree Celsius in SI system, and in/in per Fahrenheit in the US system. Similarly, Coefficient of moisture expansions β_{1} and β_{2} are in $\mathrm{mm} / \mathrm{mm}$ per $\mathrm{Kg} / \mathrm{Kg}$ or m / m per $\mathrm{Kg} / \mathrm{Kg}$ in SI system and $\mathrm{in} / \mathrm{in}$ per $\mathrm{lb} / \mathrm{lb}$ in the US system. Coefficients of Thermal and Moisture expansions are required to perform hygrothermal analysis due change in temperature and/or moisture content. v_{12} is major Poison's ratio. Multiple lamina types and lamina materials can be input by simply clicking the ' + ' sign on the extreme right. Based on the type of analyses selected, the required material inputs for an orthotopic Lamina can vary as shown below:

Materials 图 (i) \uparrow

ID	E_{1}	E_{2}	G_{12}	G_{23}	G_{13}	v_{12}	
1	0	0	0	0	0	0	

Materials 투ํ (i) $\boldsymbol{\Psi}$

ID	E_{1}	E_{2}	G_{12}	G_{23}	G_{3}	V12	α_{1}	α_{2}	β_{1}	β_{2}	
1	0	0	0	0	0	0	0	0	0	0	+ -

MUST BE +VE REAL MUST BE +VE REAL MUST BE +VE REAL MUST BE +VE REAL MUST BE +VEREAL MUST BE +VE REAL

Inputs: Materials

* Material Allowables:

Additional inputs are required to perform laminate failure analysis. Depending upon the type of failure theory selected for an orthotropic lamina, either strength ($\sigma_{11}^{T}, \sigma_{11}^{C}, \sigma_{22}^{T}, \sigma_{22}^{C}$ and τ_{12}) or strain ($\varepsilon_{11}^{T}, \varepsilon_{11}^{C}, \varepsilon_{22}^{T}, \varepsilon_{22}^{C}$ and γ_{12}) based material allowables, in tension, compression and shear should be input as shown below:

Allowables ©

ID	$\sigma_{11}{ }^{\top}$	$\sigma_{11}{ }^{\text {c }}$	$\sigma_{22}{ }^{\top}$	$\sigma_{22}{ }^{\text {C }}$	τ_{12}
1	0	0	0	0	0

Allowables (i)

1 D	$\varepsilon_{11}{ }^{\top}$	$\varepsilon_{11} \subset$	$\varepsilon_{22}{ }^{\top}$	$\varepsilon_{22}{ }^{\circ}$	γ_{12}
1	0	0	0	0	0

Allowables (i)

ID	$\sigma_{11}{ }^{\top}$	$\sigma_{22}{ }^{\top}$
1 0 0 τ_{12} 0 0		

Strength allowables are input as MPa or Pa in SI system, and in Psi in the US systems, and should be consistent with the unit system used for input of Moduli

Inputs: Plies

* Plies/Laminae:

Types of plies in a laminate are required as input. Each ply type is defined by its angle (or orientation) in degrees, material type and its thickness. Material of a ply/lamina can be selected from a predefined list of materials that are input in the Material Properties Section above. The thickness of the ply or lamina is in mm or m in the SI system or inch in the US system. Multiple ply or lamina types can be input by simply clicking the '+' sign on the extreme right. The required ply/lamina type inputs with few examples are shown below:

ID	Angle (deg) 0	Material Uni \vee	Thickness	$\pm \quad-$	Plies ㅈํํ (i) \downarrow				
1			0.005						
					ID	Angle (deg)	Material	Thickness	+ -
2	45	PW v	0.010	$\pm-$	1	0	CEP v	0.005	
3	90	Uni v	0.005	$\pm-$	2	45	CEP v	0.005	+ -
Plies 뚭 (i) \uparrow む					3	-45	CEP v	0.005	+ -
ID	Angle (deg)	Material	Thickness		4	90	CEP v	0.005	+ -
1	0	CEP v	0.005	$+\quad-$					
					5	0	Flax \vee	0.01	+ -
2	30	Flax \vee	0.010	$+\quad-$					
3	60	CEP v	0.005	$+\quad-$					

Inputs：Laminates

＊Laminates：

Multiple laminates can be quickly created by defining their stacking sequences using the plies defined in the previous step．Hybrid laminates can be defined using different ply and material combinations established in the previous steps．Additional laminates can be added by simply clicking the＇+ ＇sign on the extreme right．A few examples of laminates and their inputs are shown below：

Laminates ⿴囗大⺀⿺辶（i）\downarrow

ID	Stacking Sequence	Stacking Sequence（Angle）	Offset			
CEP－QI	$2,3,1,4,4,1,3,2$		$45,-45,0,90,90,0,-45$	Middle	\vee	+

Inputs: Panels

* Panels:

Panels are defined using the definitions of laminates, plate length and width dimensions, hole/cutout type and its dimensions. A laminated plate has a unique ID that facilitates its analyses for multiple load cases. Laminated plate analysis is based on middle surface being the reference plane. Additional laminated composite plates can be added by simply clicking the ' + ' sign on the extreme right (see below):

Panels $\uparrow \downarrow$

ID	Length	Width	Laminate	Cutout	Major Axis Length	Minor Axis Length	
1	10	10	1 v	Circle $~$	0.25	0.25	$\pm-$
2	6	6	2 v	Ellipse v	0.2	0.2	$\pm-$
3	6	6	3 v	Circle \checkmark	0.2	0.2	$\pm-$

Inputs: Loads

* Loads:

Hygrothermomechanical loads can be applied to the laminated plates with cutouts. Single or multiple panels (or laminates) can be analyzed for single or multiple load cases (upto 100 max). For analyses of laminates subjected to mechanical loads, in-plane force resultants are provided as inputs. For thermomechanical analysis, temperature change is required as input. For hygromechanical analysis, change in moisture absorption is required as input. Examples of the load inputs for typical mechanical or full hygrothermomechanical analyses are shown below. Additional load cases can be added by simply clicking the ' + ' sign on the extreme right as shown below:

Loads ث む

ID	Panel	$\mathrm{N}_{\text {sx }}$	Nyy	$\mathrm{N}_{x y}$	
1	1 v	10000	0	0	+ -
2	1 v	-10000	0	0	+ -
3	1 v	0	10000	0	+ -
4	1 v	0	-10000	0	+ -
5	1 v	0	0	10000	+ -
6	1 v	0	0	-10000	+ -
7	2 v	0	0	-10000	+ -

Inputs: Loads

Loads ↔ \downarrow

ID	Panel	$\mathrm{N}_{\text {sx }}$	$\mathrm{N}_{y y}$	$\mathrm{N}_{x y}$	ΔT	ΔC	
1	1 v	10000	0	0	0	0	+ -
2	1 v	-10000	0	0	0	0	+ -
3	1 v	0	10000	0	0	0	+ -
4	1 v	0	-10000	0	0	0	+ -
5	1 v	0	0	10000	0	0	+ -
6	1 v	0	0	-10000	0	0	+ -
7	2 v	0	0	-10000	0	0	+ -

In-plane force force resultants are input as N / mm or N / m in SI system, and $\mathrm{lb} / \mathrm{in}$ in provided as inputs. Differential Temperature is input in degree Celsius in SI system, and in Fahrenheit in the US system. Difference in moisture absorption is prescribed as $\mathrm{Kg} / \mathrm{Kg}$ in SI system and $\mathrm{lb} / \mathrm{lb}$ in the US system

Inputs: Output Options

* Output Options:

User can request ALL output quantities (see next Slide) along the contour of the cutout or hole $0^{\circ} \leq \theta \leq 360^{\circ}$ in clockwise direction at minimum 8 and maximum 72 points or subdivisions. As mentioned earlier, a characteristic distance d_{0} and number of radial points (maximum 4) can be provided by the user to obtain ALL output quantities along multiple contour(s) or concentric points of the cutout or hole as one moves away from the hole boundary

Outputs

* Analysis Outputs:

Once all the Input steps viz., Analysis Options, Materials, Plies / Laminae, Laminates, Panels and Loads are completed, analyses can be run by clicking the "submit" button. Maximum 100 Load Cases can be analyzed at one time

```
Submit
```

Upon completion of analyses, an output is displayed for each Load ID in the window underneath

Output $\stackrel{\downarrow}{ }$

Depending upon the analysis option selected, the analyses output contains the following information at minimum.

- Material Properties and Laminate Information
- Laminate [A], [B], [D] stiffness matrices
- Effective laminate in-plane and flexural engineering constants
- Effective hygrothermal engineering constants
- Applied Hygro-thermo-mechanical loads
- Laminated Plate in-plane force resultants around cutout in both polar and Cartesian Systems
- Ply-by-Ply in-plane strains and Stresses (TOTAL, MECHANICAL OR RESIDUAL) in global and ply coordinate systems
- Laminate/Lamina failure analysis- Failure Indices or Margins of Safety

Outputs: Laminate and Stiffnesses

3pc-solver009, v1.0b1
LOADS ID PANEL ID
$1 \quad 1$
PANEL GEOMETRY
LENGTH: 10.00
WIDTH: 10.00
CUTOUT: circle
MAJOR AXIS LENGTH: 0.25
MINOR AXIS LENGTH: 0.25
ANALYSIS OPTIONS
NUMBER OF POINTS AROUND CUTOUT: 72
CHARACTERISTIC LENGTH: 0.0300
NUMBER OF ADDL POINTS ON CHARACTERISTIC LENGTH: 2

MATERIAL PROPERTIES				
ID	E1 E2	2 G 12	v12	
Tuttle	$2.25 e+07$	$1.10 \mathrm{e}+06$	$6.40 \mathrm{e}+05$	0.3400
ID	HYGROTHERMAL MATERIAL PROPERTIES alpha1 alpha2 beta1 beta2			
Tuttle	$1.00 \mathrm{e}-06$	$1.00 \mathrm{e}-05$.00e-05	$1.00 \mathrm{e}-04$
MATERIAL ALLOWABLES				
ID	SIG11T	SIG22T	UU12	
Tuttle	+20000.00	+20000.00	+20000.	
LAMINATE GEOMETRY				
STACKING SEQUENCE (PLY ANG): [+0.0]				
STACKING SEQUENCE (PLY MAT): [Tuttle				
TOTAL THICKNESS: 1.0000				

Outputs: Effective Stiffnesses and Applied Loads

LAMINATE PROPERTIES A MATRIX			
+11780785.28	. $28+2$	274.41	+0.00
+2039274.41	$41+48$	01.95	+0.00
+0.00	+0.00	+2332	2000.00
B MATRIX			
+0.00	+0.00	+0.00	
+0.00	+0.00	+0.00	
+0.00	+0.00	+0.00	
D MATRIX			
+1.00	+0.00	+0.00	
+0.00	+1.00	+0.00	
+0.00	+0.00	+1.00	

EFFECTIVE LAMINATE INPLANE AND FLEXURAL ENGINEERING CONSTANTS

Ex	Ey	Gxy	vxy	vyx	Efx	Efy	Gfxy	vfxy	vfyx		
$+1.09 \mathrm{e}+07$	$+4.54 \mathrm{e}+06$	$+2.33 \mathrm{e}+06$	+0.4172	+0.1731	$+2.25 \mathrm{e}+07$	$+1.10 \mathrm{e}+06$	$+6.40 \mathrm{e}+05$	+0.3400	+0.0166		

EFFECTIVE LAMINATE HYGROTHERMAL ENGINEERING CONSTANTS

alphax alphay alphaxy betax betay betaxy					
$+1.98 \mathrm{e}-06$	$+1.52 \mathrm{e}-06$	$+0.00 \mathrm{e}+00$	$+1.98 \mathrm{e}-05$	$+1.52 \mathrm{e}-05$	$+0.00 \mathrm{e}+00$

MECHANICAL LOADS

$+10000.00^{\text {NY }}+0.00$| NXY |
| :--- |
| +0.00 |

THERMAL LOADS

DELTAT	NXT	NYT	NXYT
+10.00	+263.89	+114.39	+0.00

	HYGRAL LOADS		
DELTAC	NXH	NYH	NXYH
+10.00	+2638.91	$+1143.86 \quad+0.00$	

TOTAL LOADS
NX NY NXY
$+12902.81+1258.25+0.00$

Outputs: Force Resultants Around Cutout

Outputs: Force Resultants Around Cutout

LAMINATE	RUNNING LOADS AROUND CUTOUT			NXY NR	R NTT		
DISTANCE	ANGLE	NXX	NYY			NRT	
$1.5000 \mathrm{e}-02$	170.00	+131.73	-2023.15	-396.95	-69.01	-1822.41 -741	41.52
$1.5000 \mathrm{e}-02$	175.00	-75.63	-2335.56	-175.35	-123.25 -	-2287.94 -36	68.90
$1.5000 \mathrm{e}-02$	180.00	-141.21	-2442.38	-0.00 -	-141.21 -2	2442.38 -0.0	
$1.5000 \mathrm{e}-02$	185.00	-75.63	-2335.56	+175.35	-123.25	-2287.94 +3	368.90
$1.5000 \mathrm{e}-02$	190.00	+131.73	-2023.15	+396.95	-69.01	-1822.41 +	741.52
$1.5000 \mathrm{e}-02$	195.00	+512.31	-1529.10	+706.14	+22.49	-1039.28 +	+1121.88
$1.5000 \mathrm{e}-02$	200.00	+1116.79	-892.14	+1134.14	+152.78	+71.87	+1514.46
$1.5000 \mathrm{e}-02$	205.00	+2011.73	-163.84	+1696.51	+323.56	+1524.33	+1923.78
$1.5000 \mathrm{e}-02$	210.00	+3273.16	+594.77	+2387.24	+536.15	+3331.78	+2353.39
$1.5000 \mathrm{e}-02$	215.00	+4975.46	+1318.50	+3173.24	+790.49	+5503.48	+2803.52
$1.5000 \mathrm{e}-02$	220.00	+7173.82	+1945.66	+3990.74	+1083.55	+8035.92	+3267.35
$1.5000 \mathrm{e}-02$	225.00	+9879.59	+2428.11	+4746.52	+1407.33	+10900.37	+3725.74
$1.5000 \mathrm{e}-02$	230.00	+13032.54	+2742.26	+5328.14	$4+1746.76$	$6+14028.04$	$4+4141.75$
$1.5000 \mathrm{e}-02$	335.00	+2011.73	-163.84	-1696.51	+323.56	+1524.33	-1923.78
$1.5000 \mathrm{e}-02$	340.00	+1116.79	-892.14	-1134.14	+152.78	+71.87 -	-1514.46
$1.5000 \mathrm{e}-02$	345.00	+512.31	-1529.10	-706.14	+22.49	-1039.28 -1	1121.88
$1.5000 \mathrm{e}-02$	350.00	+131.73	-2023.15	-396.95	-69.01	-1822.41 -74	41.52
$1.5000 \mathrm{e}-02$	355.00	-75.63	-2335.56	-175.35	-123.25 -	-2287.94 -36	68.90
$3.0000 \mathrm{e}-02$	0.00	+271.06	-935.72	+0.00	+271.06 -	-935.72 +0.00	00
$3.0000 \mathrm{e}-02$	5.00	+404.86	-885.92	+517.42	+305.21	-786.26 +6	621.63
$3.0000 \mathrm{e}-02$	10.00	+813.65	-741.20	+1048.31	+408.22	-335.77 +	+1250.99
$3.0000 \mathrm{e}-02$	15.00	+1518.53	-515.38	+1601.45	+581.56	+421.59	+1895.37
$3.0000 \mathrm{e}-02$	20.00	+2550.74	-230.40	+2175.97	+826.72	+1493.61	+2560.73
$3.0000 \mathrm{e}-02$	25.00	+3944.44	+85.89	+2756.46	+1143.71	+2886.62	+3249.73
$3.0000 \mathrm{e}-02$	30.00	+5724.22	+403.80	+3308.91	+1528.52	+4599.50	+3958.26
$3.0000 \mathrm{e}-02$	35.00	+7886.60	+698.10	+3779.89	+1969.73	+6614.97	+4670.29
$3.0000 \mathrm{e}-02$	40.00	+10378.06	+955.81	+4102.39	+2444.95	+8888.92	+5351.93
$3.0000 \mathrm{e}-02$	45.00	+13077.97	+1182.80	+4211.31	+2919.07	+11341.70	+5947.59
$3.0000 \mathrm{e}-02$	50.00	+15801.30	+1404.25	+4067.10	+3347.45	+13858.09	+6382.92
$3.0000 \mathrm{e}-02$	285.00	+24078.99	+3118.08	-1206.63	+3918.88	+23278.19	-4195.25
$3.0000 \mathrm{e}-02$	290.00	+23325.94	+2729.60	-1787.14	+3990.16	+22065.37	-5250.51
$3.0000 \mathrm{e}-02$	295.00	+22151.09	+2328.97	$7-2442.26$	+3998.44	+20481.62	-6022.46
$3.0000 \mathrm{e}-02$	300.00	+20484.45	+1962.27	$7-3104.45$	+3904.28	+18542.44	-6468.11
$3.0000 \mathrm{e}-02$	305.00	+18332.57	+1655.06	-3677.80	+3685.79	+16301.84	-6577.99
$3.0000 \mathrm{e}-02$	310.00	+15801.30	+1404.25	-4067.10	+3347.45	+13858.09	-6382.92
$3.0000 \mathrm{e}-02$	315.00	+13077.97	+1182.80	-4211.31	+2919.07	+11341.70	-5947.59
$3.0000 \mathrm{e}-02$	320.00	+10378.06	+955.81	-4102.39	+2444.95	+8888.92	-5351.93
$3.0000 \mathrm{e}-02$	325.00	+7886.60	+698.10	-3779.89	+1969.73	+6614.97	-4670.29
$3.0000 \mathrm{e}-02$	330.00	+5724.22	+403.80	-3308.91	+1528.52	+4599.50	-3958.26
$3.0000 \mathrm{e}-02$	335.00	+3944.44	+85.89	-2756.46	+1143.71	+2886.62	-3249.73
$3.0000 \mathrm{e}-02$	340.00	+2550.74	-230.40	-2175.97	+826.72	+1493.61	-2560.73
$3.0000 \mathrm{e}-02$	345.00	+1518.53	-515.38	-1601.45	+581.56	+421.59 -	-1895.37
$3.0000 \mathrm{e}-02$	350.00	+813.65	-741.20	-1048.31	+408.22	-335.77 -1	1250.99
$3.0000 \mathrm{e}-02$	355.00	+404.86	-885.92	-517.42	+305.21	-786.26 -621	21.63

Outputs: Displacements Around Cutout

DISTANCE	ANGLE		JR	UT	
$0.0000 \mathrm{e}+00$	0.00	+5.1445e-04	+6.9496e-23	+5.1445e-04	+6.9496e-23
$0.0000 \mathrm{e}+00$	5.00	+5.1249e-04	+1.1808e-05	+5.1157e-04	-3.2904e-05
$0.0000 \mathrm{e}+00$	10.00	+5.0663e-04	+2.3525e-05	+5.0302e-04	-6.4808e-05
$0.0000 \mathrm{e}+00$	15.00	+4.9692e-04	+3.5064e-05	+4.8906e-04	-9.4742e-05
$0.0000 \mathrm{e}+00$	20.00	+4.8342e-04	+4.6336e-05	+4.7012e-04	-1.2180e-04
$0.0000 \mathrm{e}+00$	25.00	+4.6625e-04	+5.7255e-05	+4.4676e-04	-1.4515e-04
$0.0000 \mathrm{e}+00$	75.00	+1.3315e-04	+1.3086e-04	+1.6086e-04	-9.4742e-05
$0.0000 \mathrm{e}+00$	80.00	+8.9333e-05	+1.3342e-04	+1.4690e-04	-6.4808e-05
$0.0000 \mathrm{e}+00$	85.00	+4.4837e-05	+1.3496e-04	+1.3836e-04	-3.2904e-05
$0.0000 \mathrm{e}+00$	90.00	+2.9472e-20	+1.3548e-04	+1.3548e-04	-2.1176e-20
$0.0000 \mathrm{e}+00$	95.00	-4.4837e-05	+1.3496e-04	+1.3836e-04	+3.2904e-05
$0.0000 \mathrm{e}+00$	100.00	-8.9333e-05	+1.3342e-04	+1.4690e-04	+6.4808e-05
$0.0000 \mathrm{e}+00$	105.00	-1.3315e-04	+1.3086e-04	+1.6086e-04	+9.4742e-05
$0.0000 \mathrm{e}+00$	110.00	-1.7595e-04	+1.2731e-04	+1.7981e-04	+1.2180e-04
$0.0000 \mathrm{e}+00$	115.00	-2.1741e-04	+1.2278e-04	+2.0316e-04	+1.4515e-04
$0.0000 \mathrm{e}+00$	120.00	-2.5722e-04	+1.1733e-04	+2.3022e-04	+1.6410e-04
$1.5000 \mathrm{e}-02$	135.00	-3.3058e-04	+7.3418e-05	+2.8567e-04	+1.8184e-04
$1.5000 \mathrm{e}-02$	140.00	-3.6628e-04	+6.2892e-05	+3.2101e-04	+1.8726e-04
$1.5000 \mathrm{e}-02$	145.00	-3.9929e-04	+5.3048e-05	+3.5750e-04	+1.8557e-04
$1.5000 \mathrm{e}-02$	150.00	-4.2900e-04	+4.3900e-05	+3.9348e-04	+1.7648e-04
$1.5000 \mathrm{e}-02$	155.00	-4.5491e-04	+3.5420e-05	+4.2726e-04	+1.6015e-04
$1.5000 \mathrm{e}-02$	160.00	-4.7662e-04	+2.7542e-05	+4.5730e-04	+1.3713e-04
$1.5000 \mathrm{e}-02$	165.00	-4.9381e-04	+2.0178e-05	+4.8221e-04	+1.0832e-04
$1.5000 \mathrm{e}-02$	170.00	-5.0626e-04	+1.3218e-05	+5.0086e-04	+7.4893e-05
$1.5000 \mathrm{e}-02$	175.00	-5.1378e-04	+6.5379e-06	+5.1240e-04	+3.8266e-05
$1.5000 \mathrm{e}-02$	180.00	-5.1631e-04	+9.3448e-21	+5.1631e-04	+5.3884e-20
$1.5000 \mathrm{e}-02$	185.00	-5.1378e-04	-6.5379e-06	+5.1240e-04	-3.8266e-05
$1.5000 \mathrm{e}-02$	190.00	-5.0626e-04	-1.3218e-05	+5.0086e-04	-7.4893e-05
$1.5000 \mathrm{e}-02$	195.00	-4.9381e-04	-2.0178e-05	+4.8221e-04	-1.0832e-04
$1.5000 \mathrm{e}-02$	200.00	-4.7662e-04	-2.7542e-05	+4.5730e-04	-1.3713e-04
$1.5000 \mathrm{e}-02$	205.00	-4.5491e-04	-3.5420e-05	+4.2726e-04	-1.6015e-04
$3.0000 \mathrm{e}-02$	295.00	+1.5525e-04	-1.1726e-04	+1.7189e-04	+9.1150e-05
$3.0000 \mathrm{e}-02$	300.00	+1.9136e-04	-1.0326e-04	+1.8510e-04	+1.1409e-04
$3.0000 \mathrm{e}-02$	305.00	+2.2919e-04	-8.8689e-05	+2.0411e-04	+1.3687e-04
$3.0000 \mathrm{e}-02$	310.00	+2.6815e-04	-7.4305e-05	+2.2928e-04	+1.5765e-04
$3.0000 \mathrm{e}-02$	315.00	+3.0735e-04	-6.0749e-05	+2.6029e-04	+1.7437e-04
$3.0000 \mathrm{e}-02$	320.00	+3.4574e-04	-4.8480e-05	+2.9601e-04	+1.8510e-04
$3.0000 \mathrm{e}-02$	325.00	+3.8220e-04	-3.7765e-05	+3.3474e-04	+1.8829e-04
$3.0000 \mathrm{e}-02$	330.00	+4.1574e-04	-2.8685e-05	+3.7438e-04	+1.8303e-04
$3.0000 \mathrm{e}-02$	335.00	+4.4545e-04	-2.1186e-05	+4.1267e-04	+1.6906e-04
$3.0000 \mathrm{e}-02$	340.00	+4.7065e-04	-1.5110e-05	+4.4743e-04	4677e-04

Outputs: Ply-by-ply Strains

DISTANCE	ANGLE
$0.0000 \mathrm{e}+00$	0.00
$0.0000 \mathrm{e}+00$	5.00
$0.0000 \mathrm{e}+00$	10.00
$0.0000 \mathrm{e}+00$	15.00
$0.0000 \mathrm{e}+00$	20.00
$0.0000 \mathrm{e}+00$	25.00
$0.0000 \mathrm{e}+00$	30.00
$0.0000 \mathrm{e}+00$	35.00
$0.0000 \mathrm{e}+00$	40.00
$0.0000 \mathrm{e}+00$	45.00
$1.5000 \mathrm{e}-02$	150.00
$1.5000 \mathrm{e}-02$	155.00
$1.5000 \mathrm{e}-02$	160.00
$1.5000 \mathrm{e}-02$	165.00
$1.5000 \mathrm{e}-02$	170.00
$1.5000 \mathrm{e}-02$	175.00
$1.5000 \mathrm{e}-02$	180.00
$1.5000 \mathrm{e}-02$	185.00
$1.5000 \mathrm{e}-02$	190.00
$1.5000 \mathrm{e}-02$	195.00
$1.5000 \mathrm{e}-02$	200.00
$1.5000 \mathrm{e}-02$	205.00
$1.5000 \mathrm{e}-02$	210.00
$1.5000 \mathrm{e}-02$	215.00
$1.5000 \mathrm{e}-02$	220.00
$1.5000 \mathrm{e}-02$	225.00
$1.5000 \mathrm{e}-02$	230.00
$1.5000 \mathrm{e}-02$	235.00
$.0000 \mathrm{e}-02$	270.00
$3.0000 \mathrm{e}-02$	275.00
$3.0000 \mathrm{e}-02$	280.00
$3.0000 \mathrm{e}-02$	285.00
$3.0000 \mathrm{e}-02$	290.00
$3.0000 \mathrm{e}-02$	295.00
$3.0000 \mathrm{e}-02$	300.00
$3.0000 \mathrm{e}-02$	305.00
$3.0000 \mathrm{e}-02$	310.00
$3.0000 \mathrm{e}-02$	315.00
$3.0000 \mathrm{e}-02$	320.00

PLY BY PLY INPLANE STRAINS (TOTAL)

ANGLE	E Z	EPS1	EPS2 G	GAMMA12	EPSX	EPSY GAMMAXY	
	(x 1E-6)	(x 1E-6)	(x 1E-6)	(x 1E-6) ((x 1E-6) (x	(x 1E-6)	
+0.0	+0.00000	+187.61	-1083.82	+0.00	+187.61	-1083.82	+0.00
+0.0	+0.00000	+176.65	-1038.19	-176.87	+176.65	-1038.19	-176.87
+0.0	+0.00000	+145.82	-905.36	-312.13	+145.82	-905.36	-312.13
+0.0	+0.00000	+101.15	-697.05	-367.78	+101.15	-697.05	-367.78
+0.0	+0.00000	+52.20	-431.70	-312.73	+52.20	-431.70	-312.73
+0.0	+0.00000	+11.45	-132.98	-125.30	+11.45	-132.98	-125.30
+0.0	+0.00000	-6.35	+171.90	+204.82	-6.35	+171.90	+204.82
+0.0	+0.00000	+15.04	+453.82	+675.26	+15.04	+453.82	+675.26
+0.0	+0.00000	+92.62	+683.28	+1269.72	+92.62	+683.28	+1269.72
+0.0	+0.00000	+243.29	+831.94	+1956.53	$3+243.29$	+831.94	+1956.53
+0.0	+0.00000	+276.76	+6.21	-1023.69	+276.76	+6.21	-1023.69
+0.0	+0.00000	+190.31	-112.92	-727.49	+190.31	-112.92	-727.49
+0.0	+0.00000	+136.23	-239.35	-486.34	+136.23	-239.35	-486.34
+0.0	+0.00000	+105.24	-356.73	-302.80	+105.24	-356.73	-302.80
+0.0	+0.00000	+89.28	-451.15	-170.22	+89.28	-451.15	-170.22
+0.0	+0.00000	+82.23	-512.12	-75.19	+82.23	-512.12	-75.19
+0.0	+0.00000	+80.31	-533.17	-0.00	+80.31	-533.17 -0.	-0.00
+0.0	+0.00000	+82.23	-512.12	+75.19	+82.23	-512.12	+75.19
+0.0	+0.00000	+89.28	-451.15	+170.22	+89.28	-451.15	+170.22
+0.0	+0.00000	+105.24	-356.73	+302.80	+105.24	-356.73	+302.80
+0.0	+0.00000	+136.23	-239.35	+486.34	+136.23	-239.35	+486.34
+0.0	+0.00000	+190.31	-112.92	+727.49	+190.31	-112.92	+727.49
+0.0	+0.00000	+276.76	+6.21	+1023.69	+276.76	+6.21	+1023.69
+0.0	+0.00000	+404.88	+100.82	+1360.74	+ +404.88	+100.82	+1360.74
+0.0	+0.00000	+582.08	+155.21	+1711.30	+582.08	+155.21	+1711.30
+0.0	+0.00000	+811.21	+158.31	+2035.39	+811.21	+158.31	+2035.39
+0.0	+0.00000	+1087.69	+107.23	+2284.80	$0+1087.69$	$69+107.23$	$3 \mathrm{+} 2284.80$
+0.0	+0.00000	+1397.30	+9.75	+2412.63	+1397.30	$0+9.75$	+2412.63
+0.0	+0.00000	+2126.03	-123.56	+0.00	+2126.03	-123.56	+0.00
+0.0	+0.00000	+2123.02	-137.63	-144.89	+2123.02	-137.63	-144.89
+0.0	+0.00000	+2111.45	-176.68	-311.90	+2111.45	-176.68	-311.90
+0.0	+0.00000	+2084.00	-231.54	-517.42	+2084.00	-231.54	-517.42
+0.0	+0.00000	+2029.93	-288.46	-766.35	+2029.93	-288.46	-766.35
+0.0	+0.00000	+1937.74	-331.96	-1047.28	+1937.74	$4-331.96$	-1047.28
+0.0	+0.00000	+1799.25	-349.20	-1331.24	+1799.25	-349.20	-1331.24
+0.0	+0.00000	+1614.10	-334.81	-1577.10	+1614.10	- -334.81	-1577.10
+0.0	+0.00000	+1392.08	-293.49	-1744.04	+1392.08	8 -293.49	-1744.04
+0.0	+0.00000	+1151.37	-238.37	-1805.88	+1151.37	-238.37	-1805.88
+0.0	+0.00000	+913.02	-185.37	-1759.17	+913.02	-185.37	-1759.17

Outputs: Ply Stresses and FIs

PLY BY PLY INPLANE STRESSES (TOTAL)
DISTANCE ANGLE ANGLE Z $0.0000 \mathrm{e}+00$ $0.0000 \mathrm{e}+00$
0.00
5.00 $0.0000 \mathrm{e}+00 \quad 10.00$ $\begin{array}{ll}0.0000 \mathrm{e}+00 & 15.00\end{array}$ $0.0000 \mathrm{e}+00$ $0.0000 \mathrm{e}+00 \quad 25.00$ $0.0000 \mathrm{e}+00 \quad 30.00$ $0.0000 \mathrm{e}+00$ $0.0000 \mathrm{e}+00$ $0.0000 \mathrm{e}+00 \quad 40.00$ $0.0000 \mathrm{e}+00 \quad 50.00$ $0.0000 \mathrm{e}+00$ $0.0000 \mathrm{e}+00$ $0.0000 \mathrm{e}+00 \quad 60.00$ $0.0000 \mathrm{e}+00 \quad 70.00$ $0.0000 \mathrm{e}+00 \quad 75.00$ $0.0000 \mathrm{e}+00 \quad 80.00$ $0.0000 \mathrm{e}+00 \quad 85.00$ $1.5000 \mathrm{e}-02 \quad 60.00$ $1.5000 \mathrm{e}-02 \quad 65.00$ $1.5000 \mathrm{e}-0270.00$ $1.5000 \mathrm{e}-02 \quad 75.00$ $\begin{array}{ll}1.5000 \mathrm{e}-02 & 80.00 \\ 1.5000 \mathrm{e}-02 & 85.00\end{array}$ $1.5000 \mathrm{e}-02$ $\begin{array}{ll}1.5000 \mathrm{e}-02 & 95.00\end{array}$ $\begin{array}{ll}1.5000 \mathrm{e}-02 & 100.00\end{array}$ $1.5000 \mathrm{e}-02$ $1.5000 \mathrm{e}-02 \quad 105.00$ $\begin{array}{ll}1.5000 \mathrm{e}-02 & 110.00 \\ 1.5000 \mathrm{e}-02 & 115.00\end{array}$ $1.5000 \mathrm{e}-02$ $\begin{array}{ll}1.5000 \mathrm{e}-02 & 120.00 \\ 1.5000 \mathrm{e}-02 & 125.00\end{array}$ $\begin{array}{ll}1.5000 \mathrm{e}-02 & 125.00 \\ 1.5000 \mathrm{e}-02 & 130.00\end{array}$ $\begin{array}{ll}1.5000 \mathrm{e}-02 & 135.00\end{array}$ $1.5000 \mathrm{e}-02 \quad 140.00$ $\begin{array}{ll}1.5000 \mathrm{e}-02 & 145.00\end{array}$ $3.0000 \mathrm{e}-02 \quad 285.00$ $3.0000 \mathrm{e}-02 \quad 290.00$ $3.0000 \mathrm{e}-02 \quad 295.00$ $3.0000 \mathrm{e}-02 \quad 300.00$ $3.0000 \mathrm{e}-02 \quad 305.00$ $\begin{array}{ll}3.0000 \mathrm{e}-02 & 310.00\end{array}$ $\begin{array}{ll}3.0000 \mathrm{e}-02 & 310.00 \\ 3.0000 \mathrm{e}-02 & 315.00\end{array}$.0000e-02 320.00

FAILURE ANALYSIS - TSAI-HILL

ANGLE	Z	SIG1 S	SIG2 TAU	12 SIGX	$X \quad$ SIGY	TAUXY	FI	MS	
+0.0	+0.00000	+3837.57	-1128.41	+0.00	+3837.57	-1128.41	+0.00 +0.	+0.05	+3.44
+0.0	+0.00000	+3606.72	-1082.06	-113.20	+3606.72	-1082.06	-113.20 +	+0.05	+3.70
+0.0	+0.00000	+2959.16	-946.70	-199.76	+2959.16	-946.70	-199.76 +0.0	+0.03	+4.66
+0.0	+0.00000	+2026.69	-733.06	-235.38	+2026.69	-733.06	-235.38 +0.0	+0.02	+7.04
+0.0	+0.00000	+1018.72	-457.93	-200.15	+1018.72	-457.93	-200.15 +0.0	+0.00	+14.10
+0.0	+0.00000	+209.13	-142.80	-80.19	+209.13 -1	-142.80 -80	-80.19 +0.00	.00 NA	NA
+0.0	+0.00000	-78.99	+187.78	+131.09	-78.99 +18	+187.78 +	+131.09 +0	0.00 NA	NA
+0.0	+0.00000	+510.99	+507.69	+432.17	+510.99	+507.69	+432.17	+0.00	+28.94
+0.0	+0.00000	+2352.84	+790.72	+812.62	+2352.84	+790.72	+812.62	+0.01	+7.98
+0.0	+0.00000	+5817.94	+1011.84	+1252.18	+5817.94	+1011.84	+1252.18	+0.08	+2.62
+0.0	+0.00000	+11246.33	$3+1148.63$	+1719.50	+11246.33	$33+1148.63$	$63+1719.50$	$0+0.29$	$9+0.84$
+0.0	+0.00000	+18898.28	$8+1183.16$	+2170.60	+18898.28	$28+1183.16$	$16+2170.60$	$0+0.85$	$5+0.08$
+0.0	+0.00000	+28872.95	+1104.87	+2547.78	+28872.95	5 +1104.87	+2547.78	$8+2.02$	$2-0.30$
+0.0	+0.00000	+40983.20	+914.93	+2780.73	+40983.20	$0+914.93$	+2780.73	+4.13	-0.51
+0.0	+0.00000	+54592.79	+631.91	+2792.99	+54592.79	$9+631.91$	+2792.99	+7.39	-0.63
+0.0	+0.00000	+68469.09	+296.82	+2517.69	+68469.09	$9+296.82$	+2517.69	+11.69	$9-0.71$
+0.0	+0.00000	+80776.94	$4-26.87$	+1924.04	+80776.94	-26.87	+1924.04	+16.33	-0.75
+0.0	+0.00000	+89377.95	$5-264.06$	+1046.88	+89377.95	-264.06	+1046.88	+20.03	-0.78
+0.0	+0.00000	+38804.84	+517.29	+1527.49	+38804.84	+517.29	+1527.49	+3.72	-0.48
+0.0	+0.00000	+45586.93	+486.26	+1408.82	+45586.93	+486.26	+1408.82	+5.15	-0.56
+0.0	+0.00000	+51420.11	+457.57	+1202.66	+51420.11	+457.57	+1202.66	+6.56	-0.61
+0.0	+0.00000	+55963.11	+439.23	+935.35	+55963.11	+439.23	+935.35	+7.77	-0.64
+0.0	+0.00000	+59114.09	+431.69	+634.18	+59114.09	+431.69	+634.18	+8.67	-0.66
+0.0	+0.00000	+60934.08	+430.55	+319.01	+60934.08	+430.55	+319.01	+9.22	-0.67
+0.0	+0.00000	+61525.40	+430.87	+0.00	+61525.40	+430.87	+0.00 +	+9.40	-0.67
+0.0	+0.00000	+60934.08	+430.55	-319.01	+60934.08	+430.55	-319.01	+9.22	-0.67
+0.0	+0.00000	+59114.09	+431.69	-634.18	+59114.09	+431.69	-634.18	+8.67	-0.66
+0.0	+0.00000	+55963.11	$1+439.23$	-935.35	+55963.11	+439.23	-935.35	+7.77	-0.64
+0.0	+0.00000	+51420.11	$1+457.57$	-1202.66	+51420.11	+457.57	-1202.66	+6.56	-0.61
+0.0	+0.00000	+45586.93	$3+486.26$	-1408.82	+45586.93	+486.26	-1408.82	+5.15	-0.56
+0.0	+0.00000	+38804.84	+517.29	-1527.49	+38804.84	+517.29	-1527.49	+3.72	-0.48
+0.0	+0.00000	+31621.62	$2+536.34$	-1544.08	+31621.62	+536.34	-1544.08	+2.46	-0.36
+0.0	+0.00000	+24652.50	+527.74	-1462.27	+24652.50	+527.74	-1462.27	+1.49	-0.18
+0.0	+0.00000	+18415.62	$2+480.25$	-1302.65	+18415.62	+480.25	-1302.65	+0.83	+0.10
+0.0	+0.00000	+13229.52	+390.63	-1095.23	+13229.52	+390.63	-1095.23	+0.43	+0.53
+0.0	+0.00000	+9199.60	+263.82	-870.87	+9199.60	+263.82	-870.87 +	+0.21	+1.19
+0.0	+0.00000	+47069.43	$3+527.70$	-331.15	+47069.43	+527.70	-331.15	+5.48	-0.57
+0.0	+0.00000	+45824.55	+444.40	-490.47	+45824.55	+444.40	-490.47	+5.20	-0.56
+0.0	+0.00000	+43721.99	+361.60	-670.26	+43721.99	+361.60	-670.26	+4.74	-0.54
+0.0	+0.00000	$+40581.85$	+290.44	-851.99	+40581.85	+290.44	-851.99	+4.09	-0.51
+0.0	+0.00000	+36397.68	+236.72	-1009.35	+36397.68	+236.72	-1009.35	+3.29	-0.45
+0.0	+0.00000	+31389.45	+198.92	-1116.19	+31389.45	+198.92	-1116.19	+2.45	-0.36
+0.0	+0.00000	+25963.47	7 +169.36	-1155.76	+25963.47	+169.36	-1155.76	+1.68	-0.23
+0.0	+0.00000	+20589.96	+ +138.34	-1125.87	+20589.96	+138.34	-1125.87	+1.06	-0.03

Inputs and Outputs: Consistent Units

Quantity	SI System 1	SI system 2	US System
$\begin{gathered} E_{1}, E_{2}, G_{12}, G_{13}, G_{23} \\ E_{x}, E_{y}, G_{x y}, E_{f x}, E_{f y}, G_{f x y} \end{gathered}$	$M P a\left(N / m m^{2}\right)$	$P a\left(N / m^{2}\right)$	Psi (lb/in ${ }^{2}$)
$\alpha_{1}, \alpha_{2}, \alpha_{x}, \alpha_{y}, \alpha_{x y}$	$\mathrm{mm} / \mathrm{mm} /{ }^{\circ} \mathrm{C}$	$\mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	in/in/ ${ }^{\circ} \mathrm{F}$
$\beta_{1}, \beta_{2}, \beta_{x}, \beta_{y}, \beta_{x y}$	$\mathrm{mm} / \mathrm{mm} / \mathrm{Kg} / \mathrm{Kg}$	$\mathrm{m} / \mathrm{m} / \mathrm{Kg} / \mathrm{Kg}$	in/in/lb/lb
$\begin{gathered} \sigma_{11}^{T}, \sigma_{11}^{C}, \sigma_{22}^{T}, \sigma_{22}^{C} \tau_{12}^{\mathrm{S}}, \sigma_{1}, \sigma_{2}, \tau_{12}, \tau_{23}, \tau_{13} \\ \sigma_{x}, \sigma_{y}, \tau_{x y}, \tau_{y z}, \tau_{x z} \end{gathered}$	$M P a\left(N / m m^{2}\right)$	$P a\left(N / m^{2}\right)$	Psi (lb/in ${ }^{2}$)
$\begin{gathered} \varepsilon_{11}^{T}, \varepsilon_{11}^{C}, \varepsilon_{22}^{T}, \varepsilon_{22}^{C}, \gamma_{12}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{12}, \gamma_{13}, \gamma_{23}, \varepsilon_{x 0} \\ \varepsilon_{y 0}, \gamma_{x y 0}, \gamma_{y z 0}, \gamma_{x z 0} \varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z} \end{gathered}$	$\mathrm{mm} / \mathrm{mm}$	m / m	in/in
Ply Angle, θ	Degree	Degree	Degree
Ply or Laminate thickness or d_{0}	mm	m	in
$\begin{gathered} N_{x x}, N_{y y}, N_{x y}, Q_{y z}, Q_{x z}, \\ N_{x x}^{T}, N_{y y}^{T}, N_{x y}^{T}, N_{x x}^{H}, N_{y y}^{H}, N_{x y}^{H} \text { [A] } \end{gathered}$	N / mm	N / m	lb/in
$\begin{gathered} M_{x x}, M_{y y}, M_{x y}, M_{x x}^{T}, M_{y y}^{T}, M_{x y}^{T}, \\ M_{x x}^{H}, M_{y y}^{H}, M_{x y}^{H}[\mathrm{~B}] \end{gathered}$	$N-m m / m m$	$N-m / m$	$l b-i n / i n$
ΔT	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
ΔC	$\mathrm{Kg} / \mathrm{Kg}$	$\mathrm{Kg} / \mathrm{Kg}$	$l b / l b$
[D]	$N-m m$	$N-m$	$l b-i n$
$\kappa_{x 0}, \kappa_{y 0}, \kappa_{x y 0}$	$1 / \mathrm{mm}$	$1 / \mathrm{m}$	1/in

Other Features

* Upload/Download:

Users can upload and download material properties, Plies, Laminates, Panels and Loads data files (*.json) using the upload \uparrow and download \downarrow buttons next to these inputs. Sample input and output files can be downloaded from the 3p Composites website at www.3pcomposites.com

* Additional Output:

Users can review a few intermediate calculations such as minor Poison's ratios v_{21}, $Q_{i j}$ for each ply type and laminate ABD by using the calculation button 图. Examples are shown below:

Other Features

Plies 图 © $\uparrow \downarrow$

ID	Angle (deg)	Material		Thickness	
1	0	Tuttle	\vee	0.0075	+
		Tuttle		\vee	0.0075

ID	Q	Q44	Q55	Qbar	Q44bar	Q45bar	Q55bar \times
1	$\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0 \text {, }} \\ & 640000.0]] \end{aligned}$	640000	640000	[[22627882.74, 376125.7, 0.0], [376125.7, 1106252.04, 0.0], [0.0, 0.0, 640000.0]]	640000	0	640000
2	$\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\ & 640000.0]] \end{aligned}$	640000	640000	[[1106252.04, 376125.7, 0.0], [376125.7, 22627882.74, 0.0], [0.0, 0.0, 640000.0]]	640000	0	640000
3	$\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0} \\ & 640000.0]] \end{aligned}$	640000	640000	$\begin{aligned} & \text { [[6761596.54, 5481596.54, 5380407.67], [5481596.54, 6761596.54, 5380407.67], [5380407.67, 5380407.67, } \\ & 5745470.85]] \end{aligned}$	640000	0	640000
4	$\begin{aligned} & {[[22627882.74,376125.7,0.0],[376125.7,1106252.04,0.0],[0.0,0.0,} \\ & 640000.0]] \end{aligned}$	640000	640000	$\begin{aligned} & \text { [[6761596.54, 5481596.54, -5380407.67], [5481596.54, 6761596.54, -5380407.67], [-5380407.67, } \\ & -5380407.67,5745470.85]] \end{aligned}$	640000	0	640000

General Information

* Subscription fee is \$49/year per single-login license to access 3pcsolver009
* Training module 3pcmodule009 supports the solver 3pcsolver009. Users' can buy the training module 3pcmodule009 online at
https://www.3pcomposites.com/etraining.
* 3P Composites, LLC can conduct online or in-class trainings, for the 3pcsolver009 and 3pcmodule009. The training can be adapted to meet the requirements of individual company and/or industrial applications
* For questions, issues, comments, suggestions, trainings, please contact us at 3pcomps@gmail.com. Your feedback is always appreciated, and helps us continuously improve the product and services

Strength Analysis of a Laminate with a hole

* Unidirectional Lamina Properties:

$$
\begin{aligned}
& E_{1}=1.68 e 7 p s i, E_{2}=1.16 e 6 p s i ; G_{12}=G_{13}=8.0 e 5 p s i, G_{23}=6.0 e 5 p s i ; \\
& v_{21}=0.35, t_{p l y}=0.00525 \text { inch, } \alpha_{1}=1.0 \times 10^{-8} / \mathrm{F}, \alpha_{2}=12.5 \times 10^{-6} / \mathrm{F} \\
& \quad \varepsilon_{11}^{T}=5000 \mu \varepsilon, \varepsilon_{11}^{c}=-5000 \mu \varepsilon, \varepsilon_{22}^{T}=20000 \mu \varepsilon, \varepsilon_{22}^{c}=-20000 \mu \varepsilon, \gamma_{12}=20000 \mu \varepsilon ;
\end{aligned}
$$

* Laminate Stack-up $[0 / 90 / \pm 45 / 90 / 0]_{T}$, Max Strain Failure Criteria, Characteristic Distance: $d_{0}=0.05$ in, number of radial points $=2$
* Panel Geometry: Length $=$ Width $=12.00$ in,
- Case I: Circular Cutout, Diameter $=1.0$ in
- Case II: Elliptical Cutout, Major Axis = 1.5 in, Minor Axis $=0.75$ in
* Applied Far Field Load:
- $N_{x x}=100 \mathrm{lb} / \mathrm{in}$ for Case I and II
- $\Delta T=-225 \mathrm{~F}$ for Case I

Strength Analysis of a Laminate with a hole

* Laminate [A] MATRIX

```
+248285.53 +49895.58 +0.00
+49895.58 +248285.53 +0.00
+0.00 +0.00 +62197.49
```

* Equivalent or smeared properties of laminate

$$
\begin{aligned}
& E_{x}=7.56 e 6 \text { psi, } E_{y}=7.56 e 6 \text { psi, } G_{x y}=1.97 e 6 \text { psi, } v_{y x}=0.201, t_{l a m}=0.0315 \mathrm{inch} \\
& \alpha_{x}=\alpha_{y}=1.05 \times 10^{-6} / \mathrm{F}
\end{aligned}
$$

* Mid Plane Strains and Curvatures:
$\varepsilon_{x 0}=419.7 \mu \varepsilon, \varepsilon_{y 0}=-84.4 \mu \varepsilon_{1}, \gamma_{x y 0}=\kappa_{x 0}=\kappa_{y 0}=\kappa_{x y 0}=0$
* Applied Thermal Loads due to temperature $\Delta T=-225 \mathrm{~F}$
$N_{x x}^{T}=N_{y y}^{T}=-70.58 \mathrm{lb} / \mathrm{in}$

Circular Hole : Force Resultants $N_{x x}$ and $N_{y y}$

* Applied Far Field Load: $N_{x x}=100 \mathrm{lb} / \mathrm{in}$

Circular Hole: Force Resultants $N_{\theta \theta}$ and $N_{r r}$

* Applied Far Field Load: $N_{x x}=100 \mathrm{lb} / \mathrm{in}$

Circular Hole : Force Resultants $N_{x y}$ and $N_{r \theta}$

* Applied Far Field Load: $N_{x x}=100 \mathrm{lb} / \mathrm{in}$

Deformation of Circular Hole

Elliptical Hole : Force Resultants $N_{x x}$ and $N_{y y}$

* Applied Far Field Load: $N_{x x}=100 \mathrm{lb} / \mathrm{in}$

Elliptical Hole : Force Resultants $N_{\theta \theta}$ and $N_{r r}$

* Applied Far Field Load: $N_{x x}=100 \mathrm{lb} / \mathrm{in}$

Elliptical Hole : Force Resultants $N_{x y}$ and $N_{r \theta}$

* Applied Far Field Load: $N_{x x}=100 \mathrm{lb} / \mathrm{in}$

Deformation of Elliptical Hole

* Applied Far Field Load: $N_{x x}=100 \mathrm{lb} / \mathrm{in}$

Failure Prediction : Max Strain Criteria

Cistance	Location around Hole, degrees	Ply Angle, degrees	Fiber Strain, Micro strains	Margin of Safety
from Hole, in	0,270	0	1674	1.99
0.0	0,270	0	1414	2.54
0.025	0,270	0	1237	3.04
0.05				
	Elliptical Hole			
Distance from Hole, in	Location around Hole, degrees	Ply Angle, degrees	Fiber Strain, Micro strains	Margin of Safety
0.0	0,270	0	1090	3.59
0.025	0,270	0	1023	3.89
0.05	0,270	0	965	4.18

* Applied Far Field Load: $N_{x x}=100 \mathrm{lb} / \mathrm{in}$
> Magnitudes of strains (and stress) decrease away from the hole boundary
> Generally, Elliptical holes have lower strain (or stress) concentration than circular holes

Circular Hole : Force Resultants $N_{x x}$ and $N_{y y}$

* Applied Thermal Loads due to temperature $\Delta T=-225 \mathrm{~F}$
$N_{x x}^{T}=N_{y y}^{T}=-70.58 \mathrm{lb} / \mathrm{in}$

Circular Hole: Force Resultants $N_{\theta \theta}$ and $N_{r r}$

* Applied Thermal Loads $N_{x x}^{T}=N_{y y}^{T}=-70.58 \mathrm{lb} / \mathrm{in}$

Circular Hole : Force Resultants $N_{x y}$ and $N_{r \theta}$

* Applied Thermal Loads $N_{x x}^{T}=N_{y y}^{T}=-70.58 \mathrm{lb} / \mathrm{in}$

Deformation of Circular Hole

