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➢ This course material was developed by Dr. Naveen Rastogi while 
teaching graduate students at Embry-Riddle Aeronautical 
University, Daytona Beach, Florida, USA as an Adjunct Faculty

➢ This is a one-semester (3 Credit Hours) first level course in 
“Finite Element Methods” that can be taught to the senior-level 
undergraduates and graduate students in engineering

➢ The course is also useful for the mid-to-entry level engineering 
professionals who are using finite element analysis tools as part 
of their daily work to design, analyze and optimize various 
products across many industries

➢ Users can send their questions/comments/feedback about this 
course to 3pcomps@gmail.com

mailto:3pcomps@gmail.com
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➢ The course material is arranged in the order of increasing 
complexity. Hence, it is recommended to study the Sections in 
the order they are arranged

➢ There are eleven practice problems given at the end. Users 
should attempt to solve these problems to gain better 
understanding of the subject

➢ It is recommended to use MS- Excel, Matlab, MathCAD or any 
suitable software to program the formulae and perform matrix 
algebra
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➢ Foundations of Finite Element Method for Structural Analysis
▪ Energy Principles
▪ Ritz Method
▪ Shape Functions
▪ Jacobian and Hooke’s Law
▪ Element Stiffness Matrices and Force Vectors 
▪ Global Stiffness Matrix and Force Vector
▪ Solution to System of Equations
▪ Post processing - Nodal Displacements and Forces, Element Strains 

and Stresses, Free-Body Diagram

➢ One Dimensional Spring, Bar, Beam and Rigid Frame Elements

➢ Two Dimensional Constant and Linear Strain Triangular Elements, and 
Linear and Quadratic Quadrilateral Elements

➢ Static, Dynamic and Thermal analyses of Structures using Finite 
Element Method
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Finite Element Model - Aircraft

Ref: Lozici-Brînzei, Dorin & Tătaru, Simion & Bîscă, Radu. (2011). IAR-99 GVT CORRELATION 
FOR DYNAMICS STORES FEM. INCAS BULLETIN. 3. 10.13111/2066-8201.2011.3.1.7. 
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Ref: Rastogi, Naveen, “Stress Analysis and Lay-Up Optimization of an All-Composite Light 
Pick-Up Truck Chassis Structure”, Transactions of Society of Automotive Engineers: 2004
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Systems", 2005 SAE NVH Conference, Traverse City, MI, May 2005
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Ref: Rastogi, Naveen and 
Akhtar, Junaid, "Transient 
heat transfer analysis of 
electric motors ", Visteon 
Technical Report B600-
031, Chassis Advanced 
Technology, Visteon 
Corporation, Dearborn, MI 
48126, September 2003 
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Ref: Rastogi, Naveen, “Design of Composite Driveshaft for Automotive Applications”, SP-
1858: Special Publication of 2004 SAE World Congress & Exhibition, SAE Paper No. 2004-
01-0485, Detroit, MI, March 2004.
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Ref: Crash Analysis of Adhesively Bonded Structures (CAABS), Automotive Lightweighting 
Materials, FY2004 Progress Report
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Field of Mechanics

THEORETICAL APPLIED

Analytical mechanics
Computational mechanics
Contact mechanics
Continuum mechanics
Dynamics (mechanics)
Elasticity (physics)
Experimental mechanics
Fatigue (material)
Fluid mechanics
Fracture mechanics
Mechanics of materials
Mechanics of structures
Rotordynamics
Solid mechanics
Soil mechanics
Viscoelasticity
…

Statics
Dynamics
Kinematics
Rigid body dynamics 
Equations of Motion
Friction 
Simple harmonic motion 
…
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❖ Computational mechanics uses computational methods to 
study physical phenomena governed by the principles of 
mechanics

❖ Computational mechanics (CM) is interdisciplinary
• Mathematics 
• Computer Science
• Mechanics

❖ Specializations within CM
 - Computational fluid dynamics (CFD)
 - Computational thermodynamics (CT)
 - Computational electromagnetics (CEM)
 - Computational solid mechanics (CSM)
 …
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• Mathematical models 
 -  Expressing the physical phenomenon of the engineering 

system in terms of partial differential equations
 - Variational Principles

• Discretization 
 - Creating an approximate discrete model from the original 

continuous model
 - Translating system of PDEs into a system of algebraic 

equations as in the field of numerical analysis
 - Finite Element Method, Finite Difference Method, Boundary 

Element Method, Finite Volume Method

• Computer Programs
 - To solve the large system of discretized equations

 -  Direct methods (which are single step methods resulting in 
the solution) 

 -  Iterative methods (which start with a trial solution and 
arrive at the actual solution by successive refinement)

 -  Supercomputers or parallel computers, Distributed Computing 
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o Stress Deformation 

o Compatibility 

o Finite / Infinitesimal strain 

o Elasticity linear  

o Plasticity 

o Bending 

o Hooke's law

o Failure theory 

o Fracture mechanics 

o Contact mechanics (Frictionless or Frictional)

❖ Computational Solid Mechanics  (CSM) uses computational 
methods to study behavior of solid matter under external 
actions (e.g., external forces, temperature changes, applied 
displacements, etc.)
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Matrix Algebra
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𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

…….
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

where 𝑥1, 𝑥2,…, 𝑥𝑛 are the unknowns. 

In matrix form:  A 𝑥 = 𝑏  where

A = [𝑎𝑖𝑗] = 

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

… … … …
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

x = {𝑥𝑖} = 

𝑥1

𝑥2

. .
𝑥𝑛

b = {𝑏𝑖} = 

𝑏1

𝑏2

. .
𝑏𝑛

A is called a n x n (square) matrix, and x and b are (column) vectors 
of dimension n
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• For two matrices A and B both of the same size (m x n), the 
addition and subtraction are defined by

C = A + B    with 𝑐𝑦 = 𝑎𝑦 + 𝑏𝑦 

D = A – B    with 𝑑𝑦 = 𝑎𝑦 − 𝑏𝑦 

• Scalar Multiplications

λA = λ𝑎𝑦

• For two matrices A (of size l x m) and B (of size m x n), the 
product of AB is  defined by C = AB   with   

𝑐𝑖𝑗 = 

𝑘=1

𝑚

𝑎𝑖𝑘 𝑏𝑘𝑗 where i = 1, 2,……l  j = 1, 2,……n.
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• Transpose of a Matrix

If A = 𝑎𝑖𝑗 , then the transpose of A is 𝐴𝑇 = 𝑎𝑗𝑖 

Note that

• Symmetric Matrix : A square (n x n) matrix A is called symmetric, if
           
          A = 𝐴𝑇   or      𝑎𝑖𝑗 = 𝑎𝑗𝑖 

• Unit ( Identify) Matrix
     
       Note that AI = A, Ix = x.

       

𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

I =

1 0 … 0
0 1 … 0
… … … …
0 0 … 1
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• The determinant of square matrix A is a scalar number denoted 
by A or 𝐴 . For 2 x 2 and 3 x 3 matrices, the determinants are 
given by

    

    det
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐 , and 

𝑑𝑒𝑡

𝑎11 𝑎12 𝑎13 

𝑎21 𝑎22 𝑎23 

𝑎31 𝑎32 𝑎33 

= 𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31+𝑎21𝑎32 − 𝑎13𝑎22𝑎31 −

𝑎12𝑎21𝑎33 − 𝑎23𝑎32𝑎11

• A square matrix  A is singular if det A = 0

• For a square and nonsingular matrix A (det A ≠ 0), its inverse 𝐴−1 

is given as
𝐴−1 = 

1

det 𝐴
 𝐶𝑇

The cofactor matrix C of matrix A is defined by 𝐶𝑖𝑦

= −1 𝑖+𝑗𝑀𝑖𝑗 where Mij the determined of the smaller matrix obtained 

by eliminating the ith row and jth column of A
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𝐿𝑒𝑡 𝐴 𝑡 = 𝑎𝑖𝑗 𝑡

The differentiation is defined by

𝑑

𝑑𝑡
𝐴 𝑡 =

𝑑𝑎𝑖𝑗(𝑡)

𝑑𝑡

and the integration by

න 𝐴 𝑡 𝑑𝑡 = න 𝑎𝑖𝑗 𝑡 𝑑𝑡  

• A square (n x n) matrix A is said to be positive definite, if for 
all nonzero vector x of dimension n,

𝑥𝑇Ax > 0

Note that positive definite matrices are nonsingular
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2𝜃 +
2𝜋

𝑛
= π

𝜃 = 𝜋(
1

2
−

1

𝑛
)

cos 𝜃 =
𝑏

𝑟
 = cos 𝜋

1

2
−

1

𝑛
 =  sin

𝜋

𝑛
 

∴ 2𝑏 = 2𝑟 sin
𝜋

𝑛
  

2𝑏𝑛 = 2𝑛𝑟 sin
𝜋

𝑛
 = π𝑑

∴ 𝜋 = 𝑛 sin
𝜋

𝑛

• Value of 𝜋 

b b

r r

𝜃
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Boundary Value Problem
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Domain W

𝐿𝜑 = f

Boundary  • Governing Differential Equation:

𝐿 is differential operator
f is forcing function
𝜑 is unknown quantity

Boundary conditions on  that encloses domain W

• Desirable to solve BVP analytically; However , approximate methods are 
used for complex problems

𝑢𝑡𝑡 = 𝛼2𝑢𝑥𝑥

• Examples:

Wave Equation 𝑢𝑡 = 𝛼𝑢𝑥𝑥 Heat Equation
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 𝐿𝜑, 𝜓  =  𝜙, 𝐿𝜓

⟨ 𝐿𝜑, 𝜑⟩ ቊ
> 0 𝜑 ≠ 0
= 0 𝜑 = 0

  

𝐹 𝜑  = 
1

2 
 𝐿 𝜑, 𝜑 −

1

2
𝜑, ʄ −

1

2
 ʄ, 𝜑  

𝜑 = 

𝑗=1

𝑛

𝑐𝑗𝑣𝑗 = {𝑐}𝑇 𝑣 = {𝑣}𝑇{𝑐}

𝜑, 𝜓 = න
Ω

𝜑 𝜓∗𝑑ΩDefine inner product

Operator L is self-adjoint

Operator L is positive definite

Functional F for BVP

𝜑 are trial functions
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𝜕𝐹

𝜕𝑐𝑖
=

1

2
න

Ω

 𝑣𝑖𝐿 {𝑣}𝑇𝑑Ω 𝑐  +
1

2
{𝑐}𝑇න

Ω

𝑣 𝐿𝑣𝑖𝑑Ω − න
Ω

𝑣𝑖 𝑓𝑑Ω

=
1

2


𝑗=1

𝑁

𝑐𝑗  න
Ω

( 𝑣𝑖𝐿𝑣𝑗 + 𝑣𝑗𝐿𝑣𝑖 )𝑑Ω −  න
Ω

𝑣𝑖 𝑓𝑑Ω

= 0 i = 1,2,3, … , N

𝐹 =
1

2
{𝑐}𝑇න

Ω

𝑣 𝐿{𝑣}𝑇𝑑Ω 𝑐 − {𝑐}𝑇න
Ω

𝑣 𝑓𝑑Ω Functional F

Minimize  F

𝑆 𝑐 = 𝑏 𝑏𝑖 = න
Ω

𝑣𝑖𝑓 𝑑Ω

𝑆𝑖𝑗 = න
Ω

𝑣𝑖𝐿 𝑣𝑗 𝑑𝛺

𝑆𝑖𝑗 =
1

2
න

Ω

𝑣𝑖𝐿𝑣𝑗 +  𝑣𝑗𝐿𝑣𝑖 𝑑Ω

Operator L is self-adjoint
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𝑤𝑖 =  𝑣𝑖  𝑖 = 1,2,3, … … 𝑁

𝑅𝑖 = ∫Ω 𝑣𝑖 ʆ {𝑣}𝑇 𝑐  − 𝑣𝑖ʄ dΩ = 0         ί= 1,2,3, ……… N

𝑅𝑖 = 𝐿{𝑣}𝑇 𝑐  − 𝑓 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝑖 = 0

𝑅𝑖 =  ∫Ωί  ʆ {𝑣}𝑇 𝑐  − 𝑓  dΩ = 0

I = 
1

2
 ∫Ω 𝑟2 𝑑 Ω

𝜕𝐼

𝜕𝑐𝑖
=  ∫Ω ʆ 𝑣𝑖  ʆ {𝑣}𝑇 𝑐  − 𝑓  dΩ = 0 

𝑟 = 𝐿 𝜑 − 𝑓 ≠ 0

𝑅𝑖 = න
Ω

𝑤𝑖𝑟 𝑑Ω = 0
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1. DIRICHLET

• Prescribed displacements (Essential, Kinematic)
 
 u, v, w, 𝜑

2. NEUMANN

• Prescribed derivatives (Static, Natural)
 

 
𝜕𝑢

𝜕𝑥
, 

𝜕𝑣

𝜕𝑥
 , 

𝜕𝜑

𝜕𝑛
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❖ Used to solve boundary value problems (inhomogeneous partial 
differential equations) posed as a minimization problem 
corresponding to the lowest energy state of the system

❖ Used for solving PDEs such as the heat equation, wave equation, 
and vibrating plate equation, etc.

❖ A trial function which depends on the variational parameters is 
used to minimize the function using these parameters. The 
accuracy of the solution dependents on the number of variational 
parameters and the type of trial function

❖ Ritz and Galerkin methods are based on variational principles 
where functional is minimized to obtain an approximate solution to 
boundary value problems subjected to boundary conditions
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General Formulation 
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• Linear 
• Nonlinear
 - Geometric
 - Material
 - Contact

• Static
• Modal
• Dynamic
• Fatigue

• Numerical analysis
• Approximate solution 
• Ritz method (Minimize Functional / Energy)
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• Displacement based (widely applicable)
• Stress based 
• Mixed (approximated by two different variables  such as 

displacements and stresses)
• Hybrid (Uses multifield variational principle , yet 

displacements are the only unknowns; use of Lagrange 
multiplier)

• Sub-parameteric 
 – Geometric interpolation lower than displacement
 
• Iso-parameteric
 – Geometric interpolation same as displacement
 
• Super-parameteric
 – Geometric interpolation higher than displacement 
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Rectangular Brick Wedge Cylindrical Brick

3-D

Quadrilateral Triangular Shell/Plate

2-D

[Plane Stress, Plane Strain or Axisymmetric]

1-D

Bar, Beam, RodSpring

MPCs
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1. Select Element type

2. Select Displacement (Shape) functions

3. Define Strain-Displacement relationship

4. Define Hooke’s law

5. Derive Element Stiffness Matrix

6. Assemble Global Stiffness Matrix [K]

7. Apply Boundary Conditions, i.e. known displacements/rotations

8. Assemble Global Displacement Vector {q} and Force Vector {f}

9. Solve [K]{q} = {f} 

10. Post process and Interpret results
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• Uses Energy Principle and Variational Formulation (Ritz Solution)

𝑞 = {𝑢1, 𝑣1, 𝑤1, 𝑢2, 𝑣2, 𝑤2, … }

𝑢 = 

𝑖=1

𝑁

𝑁𝑖 𝑢𝑖;  𝑣 = 

𝑖=1

𝑁

𝑁𝑖 𝑣𝑖;  𝑤 = 

𝑖=1

𝑁

𝑁𝑖 𝑤𝑖

3 N X 1 Vector

3 X 1 Vector

3 X 3 N  Matrix

𝑼  = [N] 𝑞  

[𝑁] = 

𝑁1 0 0 𝑁2 …
0 𝑁1 0 0 …
0 0 𝑁1 0 …

𝑢
𝑣
𝑤

 = 𝑼  

1

4 3

2

8
7

65

x, v

y, v
z, w



© 2023 3P Composites, LLC; All Rights Reserved 

{휀} = 𝐵 𝑞 𝐵 = [𝐵1, 𝐵2,… ]
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[𝐵𝑖] = 

𝜕𝑁𝑖

𝜕𝑥
0 0

0
𝜕𝑁𝑖

𝜕𝑦
0

0 0
𝜕𝑁𝑖

𝜕𝑧
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥
0

0
𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑧
0

𝜕𝑁𝑖

𝜕𝑥

6 X 3 N  Matrix6 X 1 Vector

6 X 3  Matrix
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{𝜎} = 𝐶 휀

[𝐶] = 

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶33 𝐶34 𝐶35 𝐶36

𝐶44 𝐶45 𝐶46

𝑆𝑌𝑀 𝐶55 𝐶56

𝐶66

6 X 1 Vector

6 X 6  Matrix

{휀} = {휀𝑥𝑥, 휀𝑦𝑦, 휀𝑧𝑧, 𝛾𝑥𝑦, 𝛾𝑦𝑧, 𝛾𝑥𝑧}

{𝜎} = {𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧}
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 = 𝑈 − 𝑊

𝑈 =
1

2
න

𝑉

{𝜖}𝑇 𝜎 𝑑𝑉 𝑊 =  න
𝑉

{𝑈}𝑇 𝐹 𝑑𝑉 {𝐹} =

𝐹𝑥

𝐹𝑦

𝐹𝑧

 =
1

2
න

𝑉

{𝜖}𝑇 𝐶 휀 𝑑𝑉 − න
𝑉

{𝑞}𝑇[𝑁]𝑇 𝐹 𝑑𝑉

 =
1

2
න

𝑉

{𝑞}𝑇[𝐵]𝑇 𝐶 [𝐵] 𝑞 𝑑𝑉 − න
𝑉

{𝑞}𝑇[𝑁]𝑇 𝐹 𝑑𝑉

∫𝑉
[𝐵]𝑇 𝐶 [𝐵] 𝑞 𝑑𝑉 − ∫𝑉

[𝑁]𝑇 𝐹 𝑑𝑉 = 0

𝐾 𝑞 = {𝑓}

𝜕

𝜕𝑞
= 0 →

𝐾 = න
𝑉

[𝐵]𝑇 𝐶 [𝐵] 𝑑𝑉 𝑓 = න
𝑉

[𝑁]𝑇 𝐹 𝑑𝑉 
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𝑢 𝑥 = 

𝑖=1

3

𝑁𝑖 𝑢𝑖  𝑜𝑟 𝑢 𝑥 = 𝑁1 𝑥 𝑢1 + 𝑁2 𝑥 𝑢2 + 𝑁3 𝑥 𝑢3

• Shape functions or Basis functions or Interpolation functions
 - Defines deformation shape (are assumed or approximated)

𝑢 𝑥 = 𝑢1 + 𝑥 𝑢2 + 𝑥2 𝑢3

𝑁1 𝑥 = 1
𝑁2 𝑥 = 𝑥

𝑁3 𝑥 = 𝑥2
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❖ Introduce a two-dimensional Natural Coordinate System r-s

r

s

1,1

1,-1-1,-1

-1,1

y

x
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𝑥 = 

𝑖=1

3

𝑁𝑖 𝑥𝑖  𝑜𝑟 𝑥 = 𝑁1 𝑟 𝑥1 + 𝑁2 𝑟 𝑥2 + 𝑁3 𝑟 𝑥3

• Shape functions also define global – to – local (element)  
coordinate transformations

𝑥 = 

𝑖=1

𝑁

𝑁𝑖 𝑥𝑖

𝑦 = 

𝑖=1

𝑁

𝑁𝑖 𝑦𝑖

𝑧 = 

𝑖=1

𝑁

𝑁𝑖 𝑧𝑖

.. And so on
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𝑁1 𝑟 =
1

2
1 − 𝑟

𝑁2 𝑟 =
1

2
1 + 𝑟

𝑥(𝑟) = 

𝑖=1

2

𝑁𝑖 𝑥𝑖  𝑜𝑟 𝑥 = 𝑁1 𝑟 𝑥1 + 𝑁2 𝑟 𝑥2

𝑢1 𝑢2

𝑥1 𝑥2

𝑢 𝑟 = 

𝑖=1

2

𝑁𝑖 𝑢𝑖  𝑜𝑟 𝑢 𝑟 = 𝑁1 𝑟 𝑢1 + 𝑁2 𝑟 𝑢2
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𝑢 𝑟 = 

𝑖=1

3

𝑁𝑖 𝑢𝑖  𝑜𝑟 𝑢 𝑟 = 𝑁1 𝑟 𝑢1 + 𝑁2 𝑟 𝑢2 + 𝑁3 𝑟 𝑢3

𝑥(𝑟) = 

𝑖=1

3

𝑁𝑖 𝑥𝑖  𝑜𝑟 𝑥 = 𝑁1 𝑟 𝑥1 + 𝑁2 𝑟 𝑥2 + 𝑁3 𝑟 𝑥3

𝑁1 𝑟 =
1

2
1 − 𝑟 −

1

2
(1 − 𝑟2)

𝑁2 𝑟 = (1 − 𝑟2)

𝑁3 𝑟 =
1

2
1 + 𝑟 −

1

2
(1 − 𝑟2)
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𝜕𝜑

𝜕𝑟
 = 

𝜕𝜑

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝜑

𝜕𝑦

𝜕𝑦

𝜕𝑟
+

𝜕𝜑

𝜕𝑧

𝜕𝑧

𝜕𝑟

𝜕𝜑

𝜕𝑠
 = 

𝜕𝜑

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝜑

𝜕𝑦

𝜕𝑦

𝜕𝑠
+

𝜕𝜑

𝜕𝑧

𝜕𝑧

𝜕𝑠
 ⇒

𝜕𝜑

𝜕𝑟
𝜕𝜑

𝜕𝑠
𝜕𝜑

𝜕𝑡

=

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕𝑧

𝜕𝑟
𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧

𝜕𝑠
𝜕𝑥

𝜕𝑡

𝜕𝑦

𝜕𝑡

𝜕𝑧

𝜕𝑡

𝜕𝜑

𝜕𝑥
𝜕𝜑

𝜕𝑦

𝜕𝜑

𝜕𝑧

 

𝜕𝜑

𝜕𝑡
 = 

𝜕𝜑

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝜑

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝜑

𝜕𝑧

𝜕𝑧

𝜕𝑡

𝜕

𝜕𝒓
= 𝐉

𝜕

𝜕𝒙
⇒

𝜕

𝜕𝒙
= 𝐉−𝟏

𝜕

𝜕𝒓

𝜑 = 𝑼 =
𝑢
𝑣
𝑤

𝐉 =  Jacobian Matrix
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❖ Jacobian transforms the physical coordinates to the natural 
coordinates. This transformation matrix is known as the Jacobian 
matrix and has terms that are functions of natural coordinates r, s
and t

❖ Jacobian can be regarded as a scale factor / ratio between the 
length of physical coordinates and the length of natural 
coordinates

❖ Since the natural coordinates r, s and t has between +1 and -1 
irrespective of the physical coordinates, numerical integration 
techniques can be used with ease to evaluate the Jacobian

❖ Jacobian Matrix is a square matrix which have dimension of 1x1 for 
1D elements, 2x2 2D elements and 3x3 for 3D elements. 
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1-D Elements
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휀 =
𝑑𝑢

𝑑𝑥
=

𝑑𝑢

𝑑𝑟

𝑑𝑟

𝑑𝑥

𝑥1,𝑢1, 𝑓1

𝑥2,𝑢2,𝑓2

𝑥

𝑟 = −1 𝑟 = +1

𝑥(𝑟) = 𝑁1 𝑟 𝑥1 + 𝑁2 𝑟 𝑥2𝑢 𝑟 = 

𝑖=1

2

𝑁𝑖 𝑢𝑖  𝑜𝑟 𝑢 𝑟 = 𝑁1 𝑟 𝑢1 + 𝑁2 𝑟 𝑢2

𝑁1 𝑟 =
1

2
1 − 𝑟

𝑑𝑢

𝑑𝑟
=

1

2
(𝑢2 − 𝑢1)

𝑑𝑥

𝑑𝑟
=

1

2
𝑥2 − 𝑥1 =

𝐿

2
=  𝐽

𝐿

𝑑𝑢

𝑑𝑥
=

1

𝐿
(𝑢2 − 𝑢1)

𝑁2 𝑟 =
1

2
1 + 𝑟
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휀 = 𝐵 𝑢

𝐵 =
1

𝐿
−1 1

𝑢 = {𝑢1, 𝑢2}

𝐾 𝑢 = 𝑓 ; {𝑓} = {𝑓1, 𝑓2}

𝜎 = 𝐸휀

𝐾 =  න
𝑉

𝐵𝑇𝐶𝐵𝑑𝑉

𝐾 =
1

𝐿2 න
−1

1

−1 1 𝑇𝐸 −1 1 𝐴𝑱𝑑𝑟

𝐾 =
𝐴𝐸

𝐿
1 −1

−1 1
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𝑘 −𝑘
−𝑘 𝑘

{
𝑢1

𝑢2
} = {

𝑓1

𝑓2
}

𝑘 =
𝐴𝐸

𝐿

𝐾 =
𝑘 −𝑘

−𝑘 𝑘

𝑥1,𝑢1, 𝑓1

𝐿
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𝛿 = 𝑢 𝐿 − 𝑢 0 =  𝑢2 − 𝑢1

𝑇 = 𝑘𝛿

𝑇 = 𝑘(𝑢2 − 𝑢1)

𝑓1𝑥 = −𝑇 𝑓2𝑥 = 𝑇

𝑇 = −𝑓1𝑥 = 𝑘(𝑢2 − 𝑢1)

𝑇 = 𝑓2𝑥 = 𝑘(𝑢2 − 𝑢1)

𝑓1𝑥 = 𝑘(𝑢1 − 𝑢2)

𝑓2𝑥 = 𝑘(𝑢2 − 𝑢1)

𝑓1𝑥

𝑓2𝑥
 = 

 𝑘 −𝑘
−𝑘  𝑘

𝑢1

𝑢2

𝑘 =
 𝑘 −𝑘
−𝑘  𝑘

𝑘𝑥1,𝑢1, 𝑓1

𝐿
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𝜃

𝑢1

𝑢2

𝑢𝑥1

𝑣𝑥1

𝑢𝑥2

𝑣𝑥2

𝑢2- 𝑢1 = 𝛿 = (𝑢𝑥2−𝑢𝑥1)cos 𝜃 +(𝑣𝑦2−𝑣𝑦1)sin 𝜃

𝐹 = (𝑓𝑥2−𝑓𝑥1)cos 𝜃 +(𝑓𝑦2−𝑓𝑦1)sin 𝜃

𝑢1

𝑢2
 = 

𝑐 𝑠 0 0
0 0 𝑐 𝑠

𝑢𝑥1

𝑣𝑦1

𝑢𝑥2

𝑣𝑦2

 
𝑓1

𝑓2
 = 

𝑐 𝑠 0 0
0 0 𝑐 𝑠

𝑓𝑥1

𝑓𝑦1

𝑓𝑥2

𝑓𝑦2

 

𝑢 = 𝑇′ {𝑢′} 𝑓 = 𝑇′ {𝑓′}

𝑓′ = 𝐾′ {𝑢′}
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𝑓𝑥1

𝑓𝑦1

𝑓𝑥2

𝑓𝑦2

 = 
𝐴𝐸

𝐿

𝑐2 𝑐𝑠 −𝑐2 −𝑐𝑠
𝑐𝑠 𝑠2 −𝑐𝑠 −𝑠2

−𝑐2 −𝑐𝑠 𝑐2 𝑐𝑠
−𝑐𝑠 −𝑠2 𝑐𝑠 𝑠2

𝑢𝑥1

𝑣𝑦1

𝑢𝑥2

𝑣𝑦2

 

𝑓′ = 𝐾′ {𝑢′}

𝑢 = 𝑇′ {𝑢′}𝑓 = 𝑇′ {𝑓′}

𝐾 𝑢 = {𝑓}

𝐾 𝑇′ {𝑢′} = 𝑇′ {𝑓′}

Can not invert 𝑇′ , so {u}, {f} and [K] need to expanded to 4x4 order

[𝑇] = 

𝑐 𝑠 0 0
−𝑠 𝑐 0 0
0 0 𝑐 𝑠
0 0 −𝑠 𝑐

𝐾  = 
𝐴𝐸

𝐿

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

𝐾′ = 𝑇𝑇 𝐾 [𝑇]
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Example 1 – Spring Elements

      4             2

[𝑘(3)]=
 3000 −3000
−3000  3000

4

2

      3             4

[𝑘(2)]=
 2000 −2000
−2000  2000

3

4

      1             3

[𝑘(1)]=
 1000 −1000
−1000  1000

1

3

Element Matrices:

1 2 3

𝑘1 = 1000 𝑙𝑏/𝑖𝑛 𝑘2 = 2000 𝑙𝑏/𝑖𝑛 𝑘3 = 3000 𝑙𝑏/𝑖𝑛

𝑷 = 𝟓𝟎𝟎𝟎 𝒍𝒃

1 43 2



© 2023 3P Composites, LLC; All Rights Reserved 

𝐾 = 𝑘(1) + 𝑘(2) + 𝑘(3)

𝐹1𝑥

𝐹2𝑥

𝐹3𝑥

𝐹4𝑥

 =

 1000  0 −1000  0
 0  3000  0 −3000

−1000  0  3000 −2000
 0 −3000 −2000  5000

𝑢1

𝑢2

𝑢3

𝑢4

0
5000

 =
 3000 −2000
−2000  5000

𝑢3

𝑢4
𝑢3 =

10

11
 in.  𝑢4=

15

11
 in.

Global Stiffness Matrix:

𝑢1 𝑢2         𝑢3      𝑢4

[𝐾] =

 1000  0 −1000  0
 0  3000  0 −3000

−1000  0  1000 + 2000 −2000
 0 −3000 −2000  2000 + 3000

𝑢1

𝑢2

𝑢3

𝑢4

Global System of Equations:

After Boundary Conditions: Solution:
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𝐹1𝑥

𝐹2𝑥

𝐹3𝑥

𝐹4𝑥

 =

 1000  0 −1000  0
 0  3000  0 −3000

−1000  0  3000 −2000
 0 −3000 −2000  5000

0
0
10
11
15
11

𝐹1𝑥 =
−10,000

11
lb 𝐹2𝑋 =

−45,000

11
 lb 𝐹3𝑥 = 0 𝐹4𝑥 =

55,000

11
 lb = 5000 lb

𝑓1𝑥

𝑓3𝑥
=

 1000 −1000
−1000  1000

0
10
11

𝑓1𝑥 =
−10,000

11
𝑙b 𝑓3𝑥 =

10,000

11
𝑙b

Example 1 – Spring Elements

Nodal Forces:

Element 1:

31
1

oo
10,000

11

10,000

11
o
1

𝐹1𝑥 𝑓1𝑥
(1)
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𝑓4𝑥

𝑓2𝑥
=

 3000 −3000
−3000  3000

15
11

0
𝑓4𝑥 =

45,000

11
𝑙b 𝑓2𝑥 =

−45,000

11
𝑙b

Element 3:

𝑓3𝑥

𝑓4𝑥
=

 2000 −2000
−2000  2000

10
11
15
11

𝑓3𝑥 =
−10,000

11
𝑙b 𝑓4𝑥 =

10,000

11
𝑙b

Element 2:

o
o

o45,000

11

45,000

11
4

2
2 𝐹2𝑥𝑓2𝑥

(3)3

43
2

oo
10,000

11

10,000

11
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𝑘(1) = 𝑘 2 = 𝑘 3 = 𝑘4 =
 200 −200
−200  200

𝐾 =

 200 −200  0  0  0
−200  400 −200  0  0

 0 −200  400 −200  0
 0 0 −200  400 −200
 0 0  0 −200  200

 
𝑘N

𝑚

1 2 3 4

oo o o
o

o1 2 3 4 5 5𝑘𝑘 𝑘 𝑘

𝛿

Element Matrices:

Global Stiffness Matrix:
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𝐹1𝑥

𝐹2𝑥

𝐹3𝑥

𝐹4𝑥

𝐹5𝑥

=

 200 −200  0  0  0
−200  400 −200  0  0

 0 −200  400 −200  0
 0 0 −200  400 −200
 0 0  0 −200  200

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

0
0
0

=
−200  400 −200  0  0

 0 −200  400 −200  0
 0 0 −200  400 −200

0
𝑢2

𝑢3

𝑢4

0.02 m

0
0

4 𝑘N
 =

 400 −200  0
−200  400 −200

 0 −200  400

𝑢2

𝑢3

𝑢4

Global System of Equations:

After Boundary Conditions:
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𝐹1𝑋 = −200 0.005 = −1.0𝑘N

𝐹2𝑥 = 400 0.005 − 200 0.01 = 0

𝐹3𝑥 = −200 0.005 + 400 0.01 − 200 0.015 = 0

𝐹4𝑥 = −200 0.01 + 400 0.015 − 200 0.02 = 0

𝐹5𝑥 = −200 0.015 + 200 0.02 = 1.0𝑘N

Element 1

𝑓1𝑥

𝑓2𝑥
=

 200 −200
−200  200

0
0.005

𝑓1𝑥 = −1.0 𝑘N 𝑓2𝑥 = 1.0 𝑘N
(1)(1)

𝑢2 = 0.005m 𝑢4 = 0.015m𝑢3 = 0.01m

Solution:

Nodal Forces:
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Element 3

𝑓4𝑥

𝑓5𝑥
=

 200 −200
−200  200

0.015
0.02

Element 2

𝑓3𝑥

𝑓4𝑥
=

 200 −200
−200  200

0.01
0.015

Element 4

𝑓2𝑥

𝑓3𝑥
=

 200 −200
−200  200

0.005
0.01

𝑓4𝑥 = −1 𝑘N 𝑓5𝑥 = 1 𝑘N
(4)(4)

𝑓3𝑥 = −1 𝑘N 𝑓4𝑥 = 1 𝑘N
(3)(3)

𝑓2𝑥 = −1 𝑘N 𝑓3𝑥 = 1 𝑘N
(2) (2)
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///////______

/
/
/
/
/
/
/

_
_
_
_
_
_

/////// ______

o

o o

o

____ ____

_______

____ ____

____

o

o

o

o o
2

2

2

o

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

1

4

3𝑘1

𝑘2

𝑘31

2

3

Rigid bar

𝑃 𝑥

𝑢1 = 0 𝑢3 = 0 𝑢4 = 0

4𝑥
𝐹4𝑥 = 𝑓(3)

𝐹3𝑥 = 𝑓(2)
3𝑥𝐹1𝑥 = 𝑓(1)

1𝑥

𝑢(1) = 𝑢(2) = 𝑢(3) = 𝑢22 22

𝑃 = 𝑓(1) + 𝑓(2) + 𝑓(3)
2𝑥 2𝑥 2𝑥

Boundary Conditions:

Compatibility Condition @ Node 2:

Nodal Equilibrium Conditions:
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𝑢1 𝑢2

𝑘(1) =
 𝑘1 −𝑘1

−𝑘1  𝑘1

𝑢2 𝑢3

𝑘(2) =
 𝑘2 −𝑘2

−𝑘2  𝑘2

𝑢2 𝑢4

𝑘(3) =
 𝑘3 −𝑘3

−𝑘3  𝑘3

𝐾 =

 𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 𝑘2 + 𝑘3 −𝑘2 −𝑘3

0 −𝑘2 𝑘2 0
0 −𝑘3 0 𝑘3

𝑢1 𝑢3 𝑢4𝑢2

Element Matrices:

Global Stiffness Matrix:
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𝐹1𝑥

𝑃
𝐹3𝑥

𝐹4𝑥

=

𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 𝑘2 + 𝑘3 −𝑘2 −𝑘3

0 −𝑘2 𝑘2 0
0 −𝑘3 0 𝑘3

𝑢1

𝑢2

𝑢3

𝑢4

𝑢2 =
𝑃

𝑘1 + 𝑘2 + 𝑘3

Solution:

After BCs

Nodal Forces:

𝐹1𝑥 = −𝑘1𝑢2 𝐹3𝑥 = −𝑘2𝑢2 𝐹4𝑥 = −𝑘3𝑢2

Global System of Equations:
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o

o

2𝑥
𝑓(1) 2

o
2

2

𝑓(2) 𝑓(2)

𝑓(3)

3𝑥

4𝑥

𝐹1𝑥  𝑓
(1)

oo

o o o

1 1 2

𝑓
(1)

𝑓
(1)

1𝑥 1𝑥 2𝑥

1
o

o

𝑓(3)

2𝑥

2𝑥

o

2

3

𝑃

3

4

o

𝐹4𝑥

𝐹3𝑥

Free body diagram:

𝐹1𝑥 = 𝑘1𝑢1 − 𝑘1𝑢2

𝑃 = −𝑘1𝑢1 + 𝑘1𝑢2 + 𝑘2𝑢2 − 𝑘2𝑢3 + 𝑘3𝑢3 − 𝑘3𝑢4

𝐹3𝑥= −𝑘2𝑢2 + 𝑘2𝑢3

𝐹4𝑥 = −𝑘3𝑢2 + 𝑘3𝑢4

Global Equilibrium Equations:

Same as earlier !
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Three bar assemblage

               1 2(1)

2 3(2)

𝑘(1) = 𝑘(2) =
(1)(30 x106)

30
 1 −1
−1  1

= 106  1 −1
−1  1

lb

in.

                                                                     3  4

𝑘(3) =
(2)(15 x106)

30
 1 −1
−1  1

= 106  1 −1
−1  1

lb

in.

/
/
/
/
/
/
/
/
//

/
/
/
/
/
/
/
/

o o oo
21 3 4

3000 lb

90 in

30 in 30 in 30 in

𝑥
1 2 3

Element Matrices:
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𝐾 = 106

 1 −1 0  0
−1 1 + 1 −1  0
 0 −1 1 + 1 −1
 0 0 0  1

lb

in.

𝑢1 𝑢3 𝑢4𝑢2

𝐹1𝑥

𝐹2𝑥

𝐹3𝑥

𝐹4𝑥

= 106

 1 −1  0  0
−1  2 −1  0
 0 −1  2 −1
 0  0 −1  1

𝑢1

𝑢2

𝑢3

𝑢4

𝑢1 = 0 𝑢4 = 03000
0

= 106  2 −1
−1  2

𝑢2

𝑢3

𝑢2 = 0.002 in.  𝑢3 = 0.001 in.

Global Stiffness Matrix:

Global system of equations:

After boundary conditions:

Solution:
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𝐹1𝑥 = 106( 𝑢1 − 𝑢2) = 106 0 − 0.002 = −2000 lb 

𝐹2𝑥 = 106 −𝑢1 + 2𝑢2 − 𝑢3 = 106 0 + 2 0.002 − 0.001 = 3000 lb

𝐹3𝑥 = 106 −𝑢2 + 2𝑢3 − 𝑢4 = 106 −0.002 + 2 0.001 − 0 = 0

𝐹4𝑥 = 106 −𝑢3 + 𝑢4 = 106 −0.001 + 0 = −1000 lb

Nodal Forces:
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An example of multipoint constraints !

2

1

3

1

2

3

𝑦′

𝑥′

𝑃

𝐿 𝑌

𝑋
450

Properties for plane truss:

𝑃 = 1000𝑘N 

𝐿 = 1𝑚

𝐸 = 210𝐺𝑃𝑎

𝐴1 = 𝐴2 = 6.0 x 10−4𝑚2

𝐴3 = 6 2 x 10−4𝑚2
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k1 =
(210 x 109)(6.0 x 10−4) 

1

0  0  0  0
0  1  0 −1
0  0  0  0
0 −1  0  1

(N/m)

𝑢1 𝑣1 𝑢2 𝑣2

Stiffness Matrix  Element 1:

𝜃 = 900,  𝑐 = 0,  𝑠 = 1

𝜃 = 00,  𝑐 = 1,  𝑠 = 0

k2 =
(210 x 109)(6.0 x 10−4) 

1

 1  0  −1  0
 0  0  0  0
−1  0  1  0
 0  0  0  0

(N/m)

𝑢2 𝑣2 𝑣3 𝑢3                    

Stiffness Matrix  Element 2:
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k3 =
(210 x 109)(6 2 x 10−4) 

2

 0.5  0.5  −0.5  −0.5
 0.5  0.5  −0.5  −0.5
−0.5  −0.5  0.5  0.5
−0.5  −0.5  0.5  0.5

(N/m)

𝑢1 𝑣1 𝑢3 𝑣3

𝜃 = 450,  𝑐 =
1

2
,  𝑠 =

1

2

Global Equations:

Stiffness Matrix  Element 3:

1260 x 105

0.5 0.5 0  0 −0.5 −0.5
1.5 0 −1 −0.5 −0.5

1  0 −1 0
 1  0 0

 1.5  0.5
𝑠𝑦𝑚.  0.5

𝑢1

𝑣1

𝑢2

𝑣2

𝑢3

𝑣3

=

𝐹1𝑋

𝐹1𝑌

𝐹2𝑋

𝐹2𝑌

𝐹3𝑋

𝐹3𝑌
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Boundary conditions:

𝑢1 = 𝑣1 = 𝑣2 = 0 and ư𝑣3 = 0 𝐹2𝑥 = 𝑃, 𝐹 ሗ3𝑥 = 0

ư𝑣3 = −𝑠 𝑐
𝑢3

𝑣3
=

1

2
−𝑢3 + 𝑣3 = 0

𝑢3 − 𝑣3 = 0; 𝑀𝑃𝐶

𝐹3 ư𝑥 = 𝑐 𝑠
𝐹3𝑋

𝐹3𝑌
=

1

2
𝐹3𝑋 + 𝐹3𝑌 = 0

𝐹3𝑋 + 𝐹3𝑌 = 0; Force Relation

Transformed Boundary conditions:

𝜃 = 450,  𝑐 =
1

2
,  𝑠 =

1

2
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1260 x 105
 1 −1  0
−1 1.5 0.5
 0 0.5 0.5

𝑢2

𝑢3

𝑣3

=
𝑃

𝐹3𝑋

𝐹3𝑌

1260 x 105
 1 −1  0
−1 1.5 0.5
 0 0.5 0.5

𝑢2

𝑢3

𝑢3

=
 𝑃

 𝐹3𝑋

−𝐹3𝑋

≡ 1260 x 105
1 −1

−1 2
0 1

𝑢2

𝑢3
=

 𝑃
 𝐹3𝑋

−𝐹3𝑋

𝐹3𝑋 = −1260 x 105𝑢3

1260 x 105  1 −1
−1  3

𝑢2

𝑢3
=

𝑃
0

Global Equations after BCs:

Global Equations after MPCs:

Reduced Global Equation:



© 2023 3P Composites, LLC; All Rights Reserved 

𝑢2

𝑢3
=

1

2520 x 105
3𝑃
𝑃

=
0.01191

0.003968
 (m)

𝐹1𝑋

𝐹1𝑌

𝐹2𝑌

𝐹3𝑋

𝐹3𝑌

= 1260 x 105

 0 −0.5 −0.5
 0 −0.5 −0.5
 0 0 0
−1  1.5  0.5
 0  0.5  0.5

𝑢2

𝑢3

𝑣3

=

−500
−500
 0.0

−500
 500

(kN)

Solution:

Nodal Forces:

𝑣3 = 𝑢3 = 0.003968 𝑚 

𝐹2𝑋 = P
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Two-bar truss with spring support

y

x

.

25 kN

.U
2

3

5 m

450

1
10 m

v
v

v
v

4

//////

𝑘 = 2000 kN/m

2

1

3

ƴ𝑥1

ƴ𝑥2
ƴ𝑥3

<
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Stiffness Matrix Element 1:

𝜃(1) = 1350,                         cos 𝜃(1) = − 2/2, sin 𝜃(1) = 2/2

𝑘(1) =
(5.0 x 10−4m2)(210 x106𝑘 ΤN m2)

5m

 0.5 −0.5 −0.5  0.5
−0.5  0.5  0.5 −0.5
−0.5  0.5  0.5 −0.5
 0.5 −0.5 −0.5  0.5

𝑢1     𝑣1      𝑢2 𝑣2

𝑘(1) = 105 x 102

 1  0 −1  0
 0  0  0  0
−1  0  1  0
 0  0  0  0



© 2023 3P Composites, LLC; All Rights Reserved 

Stiffness Matrix Element 2:

𝜃(2) = 1800,                         cos 𝜃(2) = −1.0, sin 𝜃(2) = 0

𝑘(2) =
(5 x 10−4m2)(210 x106𝑘 ΤN m2)

10m

 1  0 −1  0
 0  0  0  0
−1  0  1  0
 0  0  0  0

𝑢1     𝑣1      𝑢3 𝑣3

𝑘(2) = 105 x 102

 1  0 −1  0
 0  0  0  0
−1  0  1  0
 0  0  0  0
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𝜃(3) = 2700,                         cos 𝜃(3) = 0, sin 𝜃(3) = −1.0

𝑢1     𝑣1      𝑢4 𝑣4

𝑘(3) = 20 x 102

 0  0  0  0
 0  1  0  −1
 0  0  0  0
 0  −1  0  1

Stiffness Matrix Element 3:

𝑢2 = 𝑣2 = 𝑢3 = 𝑣3 = 𝑢4 = 𝑣4 = 0

𝐹1𝑥 = 0
𝐹1𝑦 = −25𝑘N  = 102  210 −105

−105  125

𝑢1

𝑣1

𝑢1 = −1.724 x 10−3m 𝑣1 = −3.448 x 10−3m

Boundary conditions:

Global system of equations after BCs:

Solution:
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𝜎(1) =
210 x 103 ΤMN m2

5m
[0.707 − 0.707 − 0.707 0.707]

−1.724 x 10−3

−3.448 x 10−3

0
0

𝜎(2) =
210 x 103 ΤMN m2

10m
[1.0 0 − 1.0 0]

−1.724 x 10−3

−3.448 x 10−3

0
0

𝜎(1) = 51.2 MP𝑎(𝑇)

𝜎(2) = −36.2 MP𝑎(C)

Stresses in Bar Elements:
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Beam Element
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BEAM ELEMENT
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𝑦

𝜃1, 𝑀1 𝜃2, 𝑀2

𝑣2, 𝐹2

1
𝐸, 𝐼

𝐿

𝑥
2

𝑣1, 𝐹1

𝐿                   length of the beam
𝐼 moment of inertia of the cross-sectional area
𝐸                  elastic modulus
𝑣 = 𝑣 𝑥        deflection (lateral displacement) of the neutral axis
𝜃 = 𝜃 𝑥        slope of the neutral axis
𝜅 = 𝜅 𝑥        curvature of the neutral axis
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𝑣 𝑥  = 𝑎1𝑥3 + 𝑎2𝑥2+ 𝑎3𝑥+ 𝑎4

Displacement Approximations:

Why Cubic?
 - Four dofs
 - Continuity of displacement & slope

 - Continuity of moment and non-zero shear force (𝑉 =
𝑑𝑀

𝑑𝑥
)

Hermite Cubic Shape Functions:

𝑣 0 = 𝑣1 = 𝑎4

𝑑𝑣(0)

𝑑𝑥
= 𝜃1 = 𝑎3

𝑣 𝐿 = 𝑣2 = 𝑎1𝐿3 + 𝑎2𝐿2 + 𝑎3𝐿 + 𝑎4

𝑑𝑣(𝐿)

𝑑𝑥
= 𝜃2 = 3𝑎1𝐿2 + 2𝑎2𝐿 = 𝑎3

𝑤ℎ𝑒𝑟𝑒 𝜃 =
𝑑𝑣

𝑑𝑥
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Hermite Cubic Shape Functions:

𝑣 =
2

𝐿3
𝑣1 − 𝑣2 +

1

𝐿2
(𝜃1 + 𝜃2)  𝑥3 +  −

3

𝐿2
𝑣1 − 𝑣2 −

1

𝐿2
(2𝜃1 + 𝜃2)  𝑥2 + 𝜃1𝑥 + 𝑣1

𝑣 = 𝑁 {𝑑}

𝑑 =

𝑣1

𝜃1

𝑣2

𝜃2

𝑁 = [𝑁1 𝑁2 𝑁3 𝑁4]

where

Hermite Cubic Interpolation Functions !

𝑁1 =
1

𝐿3 2𝑥3 − 3𝑥2𝐿 + 𝐿3

𝑁2 =
1

𝐿3 𝑥3𝐿 − 2𝑥2𝐿2 + 𝑥𝐿3

𝑁3 =
1

𝐿3 −2𝑥3 + 3𝑥2𝐿

𝑁4 =
1

𝐿3 𝑥3𝐿 − 𝑥2𝐿2
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𝑀 𝑥 = 𝐸𝐼
𝑑2𝑣

𝑑𝑥2 ;  𝐹 𝑥 = 𝐸𝐼
𝑑3𝑣

𝑑𝑥3

Beam Theory:

Element Forces and Moments:

𝐹1 = 𝑉(0) = 𝐸𝐼
𝑑3𝑣(0)

𝑑𝑥3 =
𝐸𝐼

𝐿3 (12𝑣1 + 6𝐿𝜃1 − 12𝑣2 + 6𝐿𝜃2)

𝑀1 = −𝑀(0) = −𝐸𝐼
𝑑2𝑣(0)

𝑑𝑥2 =
𝐸𝐼

𝐿3 (6𝐿𝑣1 + 4𝐿2𝜃1 − 6𝐿𝑣2 + 2𝐿2𝜃2)

𝐹2 = −𝑉(𝐿) = −𝐸𝐼
𝑑3𝑣 𝐿

𝑑𝑥3 =
𝐸𝐼

𝐿3 (−12𝑣1 − 6𝐿𝜃1 + 12𝑣2 − 6𝐿𝜃2)

𝑀2 = 𝑀(𝐿) = −𝐸𝐼
𝑑2𝑣(𝐿)

𝑑𝑥2 =
𝐸𝐼

𝐿3 (6𝐿𝑣1 + 2𝐿2𝜃1 − 6𝐿𝑣2 + 4𝐿2𝜃2)
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𝐹1

𝑀1

𝐹2

𝑀2

 = 
𝐸𝐼

𝐿3

 12  6𝐿 −12  6𝐿
 6𝐿  4𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  12 −6𝐿
 6𝐿  2𝐿2 −6𝐿  4𝐿2

𝑣1

𝜃1

𝑣2

𝜃2

Element system of equations :

Element Stiffness :

𝐾 =
𝐸𝐼

𝐿3

 12  6𝐿 −12  6𝐿
 6𝐿  4𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  12 −6𝐿
 6𝐿  2𝐿2 −6𝐿  4𝐿2



© 2023 3P Composites, LLC; All Rights Reserved 

Shape Functions:

𝑣 = 𝑁𝑣1𝑁𝜃1𝑁𝑣2𝑁𝜃2

𝑣1

𝜃1

𝑣2

𝜃2

𝑟 =
2𝑥

𝐿
− 1

𝑁𝑣1 𝑟 =
1

4
(1 − 𝑟)2(2 + 𝑟)

𝑁𝑣2 𝑟 =
1

4
 (1 + 𝑟)2(2 − 𝑟)

𝑁𝜃1 𝑟 =
1

8
 𝐿(1 − 𝑟)2(1 + 𝑟)

𝑁𝜃2 𝑟 = −
1

8
𝐿 (1 + 𝑟)2(1 − 𝑟)
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𝑈 𝑥, 𝑦 = −𝑦
𝑑𝑣

𝑑𝑥

𝑉 𝑥, 𝑦 = 𝑣 𝑥

휀𝑥 𝑥, 𝑦 =
𝑑𝑈

𝑑𝑥
= −𝑦

𝑑2𝑣

𝑑𝑥2 = 𝜅𝑦

𝜎𝑥 𝑥, 𝑦 = 𝐸휀 = −𝐸𝑦
𝑑2𝑣

𝑑𝑥2

휀 = 𝑦 𝐵 {𝑣}

Strain- Displacement & Hooke’s Law:

𝐵 = −[
𝑑2𝑁𝑣1

𝑑𝑥2

𝑑2𝑁𝜃1

𝑑𝑥2

𝑑2𝑁𝑣2

𝑑𝑥2

𝑑2𝑁𝜃2

𝑑𝑥2  ]

𝜅 =-[ 
𝑑2𝑁𝑣1

𝑑𝑥2

𝑑2𝑁𝜃1

𝑑𝑥2

𝑑2𝑁𝑣2

𝑑𝑥2

𝑑2𝑁𝜃2

𝑑𝑥2  ]

𝑣1

𝜃1

𝑣2

𝜃2
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𝑑𝑓(𝑥)

𝑑𝑥
=

𝑑𝑓(𝑟)

𝑑𝑟

𝑑𝑟

𝑑𝑥
=

2

𝐿

𝑑𝑓(𝑟)

𝑑𝑟

𝑑2𝑓(𝑥)

𝑑𝑥2 =
𝑑 Τ2 𝐿

𝑑𝑥

𝑑𝑓 𝑟

𝑑𝑟
+

2

𝐿

𝑑

𝑑𝑥

𝑑𝑓 𝑟

𝑑𝑟
 = 

4

𝐿2

𝑑2𝑓 𝑟

𝑑𝑟

0

𝐵 = −
1

𝐿
6

𝑟

𝐿
 3𝑟 − 1 − 6

𝑟

𝐿
 3𝑟 + 1

Chain Rule:

𝐵 = −
4

𝐿2 [
𝑑2𝑁𝑣1

𝑑𝑟2

𝑑2𝑁𝜃1

𝑑𝑟2

𝑑2𝑁𝑣2

𝑑𝑟2

𝑑2𝑁𝜃2

𝑑𝑟2  ]

𝑟 =
2(𝑥 − 𝑥1)

𝐿
− 1
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[𝐾] =  න
𝑉

 𝐁𝑇 𝐸 𝐁 𝑦2𝑑𝑉 =  න
−1

1

𝐸𝐼 𝐁𝑇 𝐁 
𝐿

2
 𝑑𝑟

Element Stiffness Matrix:

𝐼 = න
𝐴

𝑦2𝑑𝐴 𝑑𝑥 =
𝐿

2
 𝑑𝑟

[𝐾] =
𝐸𝐼

2𝐿3 ∫−1

1

36𝑟2 6𝑟(3𝑟 − 1) −36𝑟2 6𝑟 3𝑟 + 1 𝐿

(3𝑟 − 1)2𝐿2 −6𝑟 3𝑟 − 1 𝐿 (9𝑟2 − 1)𝐿2

36𝑟2 −6𝑟 3𝑟 + 1 𝐿

𝑠𝑦𝑚𝑚 (3𝑟 + 1)2𝐿2

 𝑑𝑟

𝐾 =
𝐸𝐼

𝐿3

 12  6𝐿 −12  6𝐿
 6𝐿  4𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  12 −6𝐿
 6𝐿  2𝐿2 −6𝐿  4𝐿2
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𝑓 = න
𝑉

[𝑁]𝑇 𝐹 𝑑𝑉 

𝑓 = න
𝐿

[𝑁]𝑇 𝑞 𝑑𝑥+ න
𝐴

[𝑁]𝑇 𝑝 𝑑𝐴 + න
𝑉

[𝑁]𝑇 𝐵 𝑑𝑉+  𝑁𝑖𝐹𝑖  

𝑞

𝑝

𝐹𝑥

𝐵 = 𝑚𝑔 𝐹𝑧
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𝑁𝑣1 𝑟 =
1

4
(1 − 𝑟)2(2 + 𝑟)

𝑁𝑣2 𝑟 =
1

4
 (1 + 𝑟)2(2 − 𝑟)

𝑁𝜃1 𝑟 =
1

8
 𝐿(1 − 𝑟)2(1 + 𝑟)

𝑁𝜃2 𝑟 = −
1

8
𝐿 (1 + 𝑟)2(1 − 𝑟)

{𝑓} =  න
0

𝐿

𝐍𝑇𝑞 𝑑𝑥 =  න
−1

1

𝐍𝑇 𝑞
𝐿

2
 𝑑𝑟
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𝑓 =
𝑞𝐿

2

−1

−
𝐿

6
−1
𝐿

6

𝑞 𝑟 = 𝑞;  𝑈𝐷𝐿

1 2𝐿
𝑟

1 2 𝑟

𝑞𝐿2/12

−𝑞𝐿/2

−𝑞𝐿2/12

−𝑞𝐿/2

Work Equivalent Nodal Loads

𝑞 𝑟 =
𝑞

2
1 − 𝑟 ; 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝐿𝑜𝑎𝑑

1 2𝐿
𝑟

1 2 𝑟

𝑞𝐿2/30

−3𝑞𝐿/20

−𝑞𝐿2/20

−7𝑞𝐿/20

Work Equivalent Nodal Loads

𝑓 =
𝑞𝐿

2

−
7

10

−
𝐿

10

−
3

10
𝐿

15
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1 2

𝑦

𝐿

𝐸, 𝐼

𝑞

𝑥

A cantilever beam with distributed lateral load 𝑞

𝐸𝐼

𝐿3

 12  6𝐿 −12  6𝐿
 6𝐿  4𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  12 −6𝐿
 6𝐿  2𝐿2 −6𝐿  4𝐿2

𝑣1

𝜃1

𝑣2

𝜃2

= −𝑞𝐿

1

2
𝐿

12
1

2

−
𝐿

12

Global [K] :
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𝑣1 = 𝜃1 = 0

𝐸𝐼

𝐿3
 12 −6𝐿
−6𝐿  4𝐿2

𝑣2

𝜃2
= 𝑞𝐿

−1/2
𝐿/12

𝑣2

𝜃2
=

Τ−𝑞𝐿4 8𝐸𝐼

Τ−𝑞𝐿3 6𝐸𝐼

BCs and Loads:

Reduced Equations:

Solution:

Downward displacement
Clockwise rotation
Exact at nodes !
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𝐹1

𝑀1
=

𝐿3

𝐸𝐼
−12 6𝐿
−6𝐿  2𝐿2

𝑣2

𝜃2
=

𝑞 Τ𝐿 2

Τ5𝑞𝐿2 12

Nodal Forces:

Effective Global Nodal Forces

Eq. 4.4.11: Subtract applied forces
 Correct Nodal Forces !

𝐹1

𝑀1

𝐹2

𝑀2

= 𝑞𝐿

1

2
5𝐿

12

−
1

2
𝐿

12

− 𝑞𝐿

−
1

2

−
𝐿

12

−
1

2
𝐿

12

 =  𝑞𝐿

1
𝐿

2

0
0

𝐹2

𝑀2
=

𝐿3

𝐸𝐼
12 −6𝐿

−6𝐿  4𝐿2

𝑣2

𝜃2
=

−𝑞 Τ𝐿 2

Τ𝑞𝐿2 12

1 2

𝑦

𝑥

𝑞𝐿2/12

−𝑞𝐿/2

−𝑞𝐿2/12

−𝑞𝐿/2 Work Equivalent Nodal Loads
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𝑣(𝑥) = 
1

𝐸𝐼

−𝑞𝑥4

24
+

𝑞𝐿𝑥3

6
−

𝑞𝐿2𝑥2

4

Exact Beam Solution:

𝜃(𝑥) = 
1

𝐸𝐼

−𝑞𝑥3

6
+

𝑞𝐿𝑥2

2
−

𝑞𝐿2𝑥

2

𝑣(𝐿)
𝜃(𝐿)

=
Τ−𝑞𝐿4 8𝐸𝐼

Τ−𝑞𝐿3 6𝐸𝐼

• Beam theory predicts a quartic (4th order) polynomial for v(x)
• FEA assumes a cubic polynomial for v(x)
• FEA solution is exact at nodes
• FEA solution predicts lower displacement for 0 < x < L (Prove?)
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O

1 2

3

1

4

32

3 m3 m

𝑃 = 50 kN

𝑘 = 200 kN/m

𝑣1

𝐾 =
𝐸𝐼

𝐿3

12 6𝐿 −12 6𝐿 0 0 0
4𝐿2 −6𝐿 2𝐿2 0 0 0

24 0 −12 6𝐿 0
8𝐿2 −6𝐿 2𝐿2 0

12 +
𝑘𝐿3

𝐸𝐼
−6𝐿 −

𝑘𝐿3

𝐸𝐼
4𝐿2 0

𝑠𝑦𝑚𝑚
𝑘𝐿3

𝐸𝐼

𝜃3𝜃2𝑣2 𝑣4𝜃1 𝑣3

Global [K] :
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𝑘′ =
𝑘𝐿3

𝐸𝐼

𝐹1

𝑀1

𝐹2

𝑀2

𝐹3

𝑀3

𝐹4

=
𝐸𝐼

𝐿3

12 6𝐿 −12 6𝐿 0 0 0
4𝐿2 −6𝐿 2𝐿2 0 0 0

24 0 −12 6𝐿 0
8𝐿2 −6𝐿 2𝐿2 0

12 + 𝑘′ −6𝐿 −𝑘′

4𝐿2 0
𝑠𝑦𝑚𝑚 𝑘′

𝑣1

𝜃1

𝑣2

𝜃2

𝑣3

𝜃3

𝑣4

𝑣1 = 0 𝜃1 = 0 𝑣2 = 0 𝑣4 = 0

Global system of equations :

BCs:

 0
−𝑃
 0

=
𝐸𝐼

𝐿3

 8𝐿2  −6𝐿  −2𝐿2

−6𝐿 12 + 𝑘′ −6𝐿
 2𝐿2  −6𝐿  4𝐿2

𝜃2

𝑣3

𝜃3

Reduced equations :
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𝑣3 = −
7𝑃𝐿3

𝐸𝐼

1

12 + 7𝑘′ 𝜃2 = −
3𝑃𝐿2

𝐸𝐼

1

12 + 7𝑘′ 𝜃3 = −
9𝑃𝐿2

𝐸𝐼

1

12 + 7𝑘′

𝑣3 =
−7(50kN)(3m)3

(210 x 106  ΤkN m2)(2 x10−4m4)

1

12 + 7(0.129)
= −0.0174 m

𝜃2 = −0.00249 rad 𝜃3 = −0.00747 rad

Solution:

Numerical Solution:

𝐹1 = −69.9kN

𝑀2 = 0.0kN ∙ m

𝐹3 = −50.0kN

𝑀1 = −69.7kN ∙ m

𝐹2 = 116.4kN

𝑀3 = 0.0kN ∙ m

𝐹4 = −𝑣3k = 0.0174 200 = 3.5 kN
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116.4 kN

3 m 3 m

21

69.9 kN 50  kN

3.5 kN

69.7 kN ∙ m

3

Free Body Diagram
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Rigid Frame Element
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𝑦′

𝑥′

𝑥

𝑦

𝜃

𝐹2𝑥, 𝑢2′′

𝐹2𝑦 , 𝑣2′′

𝐹1𝑥, 𝑢1
′ ′

𝜃2, 𝑀2
′′

′′𝐹1𝑦, 𝑣1

′′𝑀1, 𝜃1

A rigid frame is defined as series of beam elements rigidly 
connected to each other:
 - Moments transmitted from one element to another
 - Moment continuity at rigid joints
 - Elements and loads  lie in common x-y plane
 - Both axial and transverse loads (beam columns)
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 Tyxyx MFFMFFf '
2

'
2

'
2

'
1

'
1

'
1 ,,,,,}{ =

𝐾′ {𝑢′} ={𝑓′}

 Tvuvuu '

2

'

2

'

2

'

1

'

1

'

1 ,,,,,}{ =

𝐾′ =
𝐸

𝐿

𝐴 0 0 −𝐴 0 0
12𝐼

𝐿2

6𝐼

𝐿
0 −

12𝐼

𝐿2

6𝐼

𝐿

4𝐼 0 −
6𝐼

𝐿
2𝐼

𝐴 0 0
12𝐼

𝐿2
−

6𝐼

𝐿
𝑠𝑦𝑚𝑚 4𝐼

Local (x’ – y’) Stiffness Matrix :
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Transformations:

𝑇 =

𝐶 𝑆 0 0 0 0
−𝑆 𝐶 0 0 0 0
0 0 1 0 0 0
0 0 0 𝐶 𝑆 0
0 0 0 −𝑆 𝐶 0
0 0 0 0 0 1

𝐶 = 𝐶𝑜𝑠𝜃 𝑆 = 𝑆𝑖𝑛𝜃

{𝑢′} = 𝑇  {𝑢}

Transformation Matrix:

{𝑓′} = 𝑇  {𝑓}

𝐾 = 𝑇 𝑇 𝐾′ 𝑇  

𝑇 −1 = 𝑇 𝑇



© 2023 3P Composites, LLC; All Rights Reserved 

𝐾 {𝑢} ={𝑓}

Global (x - y) Transformed Stiffness Matrix :

𝐾 =
𝐸

𝐿

𝐴𝐶2 +
12𝐼

𝐿2
𝑆2 𝐴 −

12𝐼

𝐿2
𝐶𝑆 −

6𝐼

𝐿
𝑆 − 𝐴𝐶2 +

12𝐼

𝐿2
𝑆2 − 𝐴 −

12𝐼

𝐿2
𝐶𝑆 −

6𝐼

𝐿
𝑆

𝐴𝑆2 +
12𝐼

𝐿2
𝐶2

6𝐼

𝐿
𝐶 − 𝐴 −

12𝐼

𝐿2
𝐶𝑆 − 𝐴𝑆2 +

12𝐼

𝐿2
𝐶2

6𝐼

𝐿
𝐶

4𝐼
6𝐼

𝐿
𝑆 −

6𝐼

𝐿
𝐶 2𝐼

𝐴𝐶2 +
12𝐼

𝐿2
𝑆2 𝐴 −

12𝐼

𝐿2
𝐶𝑆

6𝐼

𝐿
𝑆

𝐴𝑆2 +
12𝐼

𝐿2
𝐶2 −

6𝐼

𝐿
𝐶

𝑠𝑦𝑚𝑚 4𝐼

𝑓 = {𝐹1𝑥, 𝐹1𝑦, 𝑀1, 𝐹2𝑥, 𝐹2𝑦 , 𝑀2}𝑇  𝑢 = {𝑢1, 𝑣1, 𝜃1, 𝑢2, 𝑣2, 𝜃2}𝑇 

➢ Axially and Transversely Loaded Beam
➢ Can recover Bar/Spring/Rotated Bars/Rotated Springs and Beam [K]
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////////////

10 ft

10 ft

5 ft

4

32

1

5,000 lb10,000 lb

2

31

𝑥

𝑥′

𝑦

𝑥′

𝑥′

𝐸 = 30 x 106psi
A = 10 in.2

 I = 200 in.4  for 1 & 3
I = 100 in.4 for 2
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𝐸𝑙𝑒𝑚𝑒𝑛𝑡 1

𝑢1 𝑣1         𝜃1           𝑢2            𝑣2        𝜃2

𝑘(1) = 250,000

 0.167  0 −10 −0.167  0 −10
 0  10  0  0 −10  0
 −10  0 800  10  0 400
−0.167  0  10 0.167  0 10
 0 −10  0  0 10  0

 −10  0 400  10  0 800

lb

in.

𝐶 = cos 900 =
𝑥2 − 𝑥1

𝐿(1)
=

−60 − (−60)

120
= 0 𝑆 = sin 900 =

𝑦2 − 𝑦1

𝐿(1)
=

120 − 0

120
= 1

12𝐼

𝐿2 =
12(200)

(10 x 12)2 = 0.167 in.2
6𝐼

𝐿
=

6 (200)

10 x 12
= 10.0 in.3

𝐸

𝐿
=

30 x 106

10 x 12
= 250,000 lb/ in.3
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𝐶 = 1 𝑆 = 0

12𝐼

𝐿2 =
12(200)

1202 = 0.0835 in.2
6𝐼

𝐿
=

6(100)

120
= 5 in.3

𝐸

𝐿
= 250,000 lb/ in.3

𝐸𝑙𝑒𝑚𝑒𝑛𝑡 2

𝑢2 𝑣2         𝜃2         𝑢3             𝑣3          𝜃3

𝑘(2) = 250,000

 10  0  0 −10  0  0
 0  0.0835  5  0 −0.0835  5
 0  5 400  0  −5 200
−10  0  0  10  0  0
 0 −0.0835  −5  0  0.0835  −5
 0  5 200  0  −5 400

lb

in.
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𝐸𝑙𝑒𝑚𝑒𝑛𝑡 3

𝐶 = 0 𝑆 = −1

𝑢3 𝑣3      𝜃3             𝑢4          𝑣4        𝜃4

𝑘(3) = 250,000

 0.167  0  10 −0.167  0  10
 0  10  0  0 −10  0

 10  0 800  −10  0 400
−0.167  0  −10  0.167  0 −10

 0 −10  0  0  10  0
 10  0 400  −10  0 800

lb

in.

10,000
0
0
0
0

5000

= 250,000

 10.167  0  10 −10  0  0
 0  10.0835  5  0 −0.0835  5

 10  5 1200  0  −5  200
 −10  0  0  10.167  0  10
 0 −0.0835  −5  0  10.0835  −5
 0  5  200  10  −5 1200

𝑢2

𝑣2

𝜃2

𝑢3

𝑣3

𝜃3

𝐺𝑙𝑜𝑏𝑎𝑙 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠:
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𝑢2

𝑣2

𝜃2

𝑢3

𝑣3

𝜃3

=

0.211 in.
 0.00148 in.

 −0.00153 rad
0.209 in.

−0.00148 in.
 −0.00149 rad

𝑇 𝑑 =

 0 1 1  0 0  0
−1 0 0  0 0 0
 0 0 1  0 0 0
 0 0 0  0 1 0
 0 0 0  −1 0 0
 0 0 0  0 0 1

𝑢1 = 0
𝑣1 = 0
𝜃1 = 0

𝑢2 = 0.211
𝑣2 = 0.00148

𝜃2 = −0.00153

=

0
0
0

0.00148
−0.211

−0.00153

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛:

Top frames move to the right; small vertical 
Displacement and small rotations

𝐸𝑙𝑒𝑚𝑒𝑛𝑡 1 𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠:
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𝑓′ = 𝑘′ 𝑇 𝑑 = 250,000

 10 0 1  −10 0  0
 0 0.167 10  0 −0.167  10
 0 10 800  0 −10 400

 −10 0 0  10 0  0
 0 −0.167 −10  0 0.167 −10
 0 10 400  0 −10 800

0
0
0

0.00148
−0.211

−0.00153































−

−

=

































in.-lb 

lb 

lb 

in.-lb 

lb 

lb 

000,223

4990

3700

000,376

4990

3700

'
2

'
2

'
2

'
1

'
1

'
1

m

f

f

m

f

f

y

x

y

x

𝐸𝑙𝑒𝑚𝑒𝑛𝑡 1 𝑙𝑜𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠:

Eq. 5.1.6
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//////

/
/
/
/
/
/

3
2

1
𝑥

𝑦

450

𝑥1

′

𝑥2

′

1000 lb/ft

30 ft

40 ft

2

1

(a)

/
/
/
/
/
/

//////

−1600 k − in. 1600 k − in.

−20 kip. −20 kip.

(b)

(a) Plane frame for analysis and (b) equivalent nodal forces on frame

❖ To illustrate the procedure for solving frames subjected to distributed loads, solve the rigid 
plane frame shown in Figure. The frame is fixed at nodes 1 and 3 and subjected to a 
uniformly distributed load of 1000 lb/ft applied downward over element 2. The global 
coordinate axes have been established at node 1. The element lengths are shown. Let 𝐸 =
30 x 106 psi, 𝐴 = 100 in.2, and 𝐼 = 1000in4 for both elements 
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Solution:

Replacing the distributed load acting on element 2 by nodal forces and 
moments acting at nodes 2 and 3. 

𝑓2𝑦 = −
𝑤𝐿

2
−

1000 40

2
= −20,000 lb = −20 kip

𝑚2 = −
𝑤𝐿2

12
−

1000 402

12
= −133,333 lb−ft = −1600 k−in.

𝑓3𝑦 = −
𝑤𝐿

2
−

1000 40

2
= −20,000 lb = −20 kip

𝑚3 =
𝑤𝐿2

12
−

1000 402

12
= 133,333 lb−ft = 1600 k−in.
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Element 1:

𝜃(1) = 450 𝐶 = 0.707 𝑆 = 0.707 𝐿(1) = 42.4 ft = 509.0 in.

𝐸

𝐿
=

30 x 103

509
= 58.93

𝑘(1) = 58.93
50.02 49.98  8.33
49.98 50.02 −8.33
 8.33 −8.33  4000

kip

in.

𝑢2 𝑣2 𝜃2 

𝑘(1) =
2948 2945  491
2945 2948  −491
 491 −491  235,700

kip

in.

Element 2:

𝜃(2) = 00 𝐶 = 1 𝑆 = 0 𝐿(2) = 40 ft = 480 in.

𝐸

𝐿
=

30 x 103

480
= 62.50

𝑘(2) = 62.50
100  0  0
 0 0.052  12.5
 0  12.5  4000

kip

in.

𝑢2 𝑣2 𝜃2 

𝑘(2) =
6250 0  0

 0 3.25  781.25
 0 781.25  250,000

kip

in.
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𝐹2𝑥 = 0
𝐹2𝑦 = −20

𝑀2 = −1600
=

9198 2945  491
2945 2951  290
 491 290  485,700

𝑢2

𝑣2

𝜃2

𝑢2

𝑣2

𝜃2

= 𝑧
 0.0033 in.
−0.0097in.
−0.0033rad

The results indicate that node 2 moves to the right (𝑢2 = 0.0033in.) and down (𝑣2 = −0.0097in.) 
and the rotation of the joint is clockwise (𝜃2 = −0.0033 rad).

The local forces in each element can now be determined. The procedure for elements that are
subjected to a distributed load must be applied to element 2. Recall that the local forces are

given by 𝑓′ = 𝑘′ 𝑇 𝑢 . 

𝑇 𝑢 =

 0.707 0.707 1  0 0  0
 −0.707 0.707 0  0 0  0

 0 0 1  0 0  0
 0 0 0  0.707 0.707  0
 0 0 0  −0.707 0.707  0
 0 0 0  0 0  1

0
0
0

 0.0033
−0.0097
−0.0033

{𝑢′} =

0
0
0

 −0.00452
−0.0092
−0.0033

For element 1, we have
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'
2

'
2

'
2

'
1

'
1

'
1

m

f

f

m

f

f

y

x

y

x

=

5893 0 0 −5893 0 0
2.730 694.8 0 −2.730 694.8

117,900 0 −694.8 117,900
5893 0 0

2.730 −694.8
𝑠𝑦𝑚𝑚 235,800

0
0
0

−0.00452
−0.0092
−0.0033

𝑓1𝑥 = 26.64 kip′

𝑓2𝑥 = −26.64 kip′ 𝑓2𝑦 = 2.268 kip′

𝑓1𝑦 = −2.268 kip′

𝑚2𝑥 = −778.2 k−in.′

𝑚1𝑥 = −389.1 k−in.′

𝑇 𝑢 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 0.0033
−0.0097
−0.0033

 0
 0
 0

{𝑢′} =

 0.0033
−0.0097
−0.0033

 0
 0
 0

𝑓′ = 𝐾′ {𝑢′} 

For element 2, we have
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𝐾′ 𝑢′ = 𝑓′ =

6250 0 0 −6250 0 0
3.25 781.1 0 −3.25 781.1

250,000 0 −781.1 125,000
 6250 0 0

3.25 −781.1
𝑠𝑦𝑚𝑚 250,000

 0.0033
−0.0097
−0.0033

0
0
0

𝑓′ =

20.63
−2.58

−832.57
−20.63

2.58
−412.50 
































'
3

'
3

'
3

'
2

'
2

'
2

m

f

f

m

f

f

y

x

y

x

=

20.63
−2.58

−832.57
−20.63

2.58
412.50

−

0
−20

−1600
0

−20
1600

𝑓2𝑥 = 20.63 kip′

𝑓3𝑥 = −20.63 kip′

′𝑓2𝑦 = 17.42kip

𝑓3𝑦 = 22.58 kip′ 𝑚3 = −2013 k−in.′

𝑚2 = 767.4k−in.′
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389.1 k − in.

26.64 kip

1.00 k/ft
2013 k − in.26.64 kip

767.4 k − in.

22.58 kip.

20.63 kip.

17.42 kip.

20.63 kip.

2.268 kip

2.268 kip

778.2 k − in.

40 ft
1 2

1

2
2 3

Free body diagrams of elements 1 and 2
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Two-Dimensional 
Elements
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Triangular Element

1. Plane Stress
 - State of stress in which normal and shear stresses 

perpendicular to the (x-y) plane are assumed zero
 𝜎𝑧 = 0; 𝜏𝑥𝑧 = 0; 𝜏𝑦𝑧 = 0

 - Thin structures having small z- dimension as 
compared 
 x-y plane
 - Loads act only in x-y plane

2. Plane Strain
 - State of strain in which normal and shear strains 

perpendicular to the (x-y) plane are assumed zero
 𝜖𝑧 = 0; 𝛾𝑥𝑧 = 0; 𝛾𝑦𝑧 = 0

 - Long structures in z- dimension with constant cross 
section in x-y plane

 - Loads act only in x-y plane and not vary along z-axis
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(a, b)

1
(1,0)

2
(0,1)

3 (0,0)
𝑟 = 0

𝑠 = 0

𝑟 = 1

𝑟 = 𝑎

𝑠 = 𝑏

𝑠 = 1

𝑁1 = 𝑟, 𝑁2 = 𝑠, 𝑁3 = 1 − 𝑟 − 𝑠 𝑁1 + 𝑁2 + 𝑁3 = 1

𝑁𝑖 = ቊ
1,
0,

 
at node i;

at the other nodes

𝑟 = 0

1

1

2

3

𝑟 = 1

𝑁1

➢ Linear triangular element is also known as Constant Strain 
Triangular (CST) Element
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𝑥 = 𝑁1𝑥1 + 𝑁2𝑥2 + 𝑁3𝑥3 𝑦 = 𝑁1𝑦1 + 𝑁2𝑦2 + 𝑁3𝑦3

𝑥 = 𝑥13𝑟 + 𝑥23𝑠 + 𝑥3 𝑦 = 𝑦13𝑟 + 𝑦23𝑠 + 𝑦3

or

𝑥𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗  and  𝑦𝑖𝑗 = 𝑦𝑖 − 𝑦𝑗  (𝑖, 𝑗 = 1,2,3)

𝑢(𝑟, 𝑠) = 𝑁1𝑢1 + 𝑁2𝑢2 + 𝑁3𝑢3 𝑣(𝑟, 𝑠) = 𝑁1𝑣1 + 𝑁2𝑣2 + 𝑁3𝑣3

𝑢
𝑣

=
𝑁1 0 𝑁2 0 𝑁3 0
0 𝑁1 0 𝑁2 0 𝑁3

𝑢1

𝑣1

𝑢2

𝑣2

𝑢3

𝑣3
𝐮 = N {𝑢} 𝑢 = {𝑢1, 𝑣1 , 𝑢2 , 𝑣2 , 𝑢3 , 𝑣3}
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𝐉 =
𝑥13 𝑦13

𝑥23 𝑦23
 𝐉−1 =

1

2𝐴

 𝑦23 −𝑦13

−𝑥23  𝑥13

𝐉 = 𝑥13𝑦23 − 𝑥23𝑦13 = 2𝐴

𝜕𝑢

𝜕x
𝜕u

𝜕y

=
1

2𝐴

 𝑦23 −𝑦13

−𝑥23  𝑥13

𝜕𝑢

𝜕r
𝜕u

𝜕s

=
1

2𝐴

 𝑦23 −𝑦13

−𝑥23  𝑥13

𝑢1 − 𝑢3

𝑢2 − 𝑢3

2𝐴 =

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

Jacobian is independent 
of r and s !

𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦

=
1

2𝐴

 𝑦23 −𝑦13

−𝑥23  𝑥13

𝑣1 − 𝑣3

𝑣2 − 𝑣3

𝜕𝑢

𝜕r
𝜕u

𝜕s

=

𝜕x

𝜕r

𝜕y

𝜕r
𝜕x

𝜕s

𝜕y

𝜕s

𝜕u

𝜕x
𝜕u

𝜕y

= 𝐉

𝜕𝑢

𝜕𝑥
𝜕𝑥

𝜕𝑦

𝐉 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
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휀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
=

1

2𝐴
𝑦23 𝑢1 − 𝑢3 − 𝑦13 𝑢2 − 𝑢3 =

1

2𝐴
𝑦23𝑢1 − 𝑦13𝑢2 + 𝑦13 − 𝑦23 𝑢3

휀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
=

1

2𝐴
𝑦23𝑢1 + 𝑦31𝑢2 + 𝑦12𝑢3 =

1

2𝐴
𝛽1𝑢1 + 𝛽2𝑢2 + 𝛽3𝑢3

Strains are constant in the element 
and are independent of r and s !

휀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
=

1

2𝐴
𝛾1𝑣1 + 𝛾2𝑣2 + 𝛾3𝑣3

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
=

1

2𝐴
𝛾1𝑢1 + 𝛾2𝑢2 + 𝛾3𝑢3 + 𝛽1𝑣1 + 𝛽2𝑣2 + 𝛽3𝑣3

[B] =
1

2𝐴

𝛽1 0 𝛽2 0 𝛽3 0
0 𝛾1 0 𝛾2 0 𝛾3

𝛾1 𝛽1 𝛾2 𝛽2 𝛾3 𝛽3

{휀} = B {u}
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𝐶 =

𝐶11 𝐶12 0
𝐶12 𝐶22 0
0 0 𝐶66

{𝜎} = C {ϵ}

𝐶11 = 𝐶22 =

𝐸

1 − 𝑣2  plane stress

𝐸 1 − 𝑣

1 + 𝑣 1 − 2𝑣
 plane strain

𝐶12 =

𝐸𝑣

1 − 𝑣2  plane stress

𝐸𝑣

(1 + 𝑣)(1 − 2𝑣)
 plane strain

𝐶66 = 𝐸
2(1+𝑣)

  plane stress and plane strain

𝜎 = {𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜏𝑥𝑦}

Stresses are constant in the element 
and are independent of r and s !
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𝐾 = න
𝑉

[𝐵]𝑇 𝐶 [𝐵] 𝑑𝑉 [B] is independent of r and s !

𝐾 = 𝑡𝐴[𝐵]𝑇 𝐶 𝐵 ; 𝑉 =𝑡  𝑑𝑥𝑑𝑦 = 𝑡𝐴



























+

++

+++

++++

+++++

++++++

=

66
2
322

2
3

6633123366
2
311

2
3

663222326632122366
2
222

2
2

66231232663211326622122266
2
211

2
2

6631223166311213662122216621121266
2
122

2
1

661312316631113166121221662111216611121166
2
111

2
1

4
]K[

CCSYMM

CCCC

CCCCCC

CCCCCCCC

CCCCCCCCCC

CCCCCCCCCCCC

A

t













𝛽1 = 𝑦2 − 𝑦3

𝛽2 = 𝑦3 − 𝑦1

𝛽3 = 𝑦1 − 𝑦2

𝛾1 = 𝑥3 − 𝑥2

𝛾2 = 𝑥1 − 𝑥3

𝛾3 = 𝑥2 − 𝑥1

2𝐴 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3
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𝑓𝑏 = ම

𝑉

𝑁 𝑇 𝑋 𝑑𝑉 = 𝑡 ඵ

𝐴

𝑁 𝑇 𝑋 𝐽 𝑑𝑟𝑑𝑠

𝑋 =
𝑋𝑏

𝑌𝑏

𝑓 = න
𝐿

[𝑁]𝑇 𝑞 𝑑𝑥+ න
𝐴

[𝑁]𝑇 𝑝 𝑑𝐴 + න
𝑉

[𝑁]𝑇 𝑋 𝑑𝑉+  𝑁𝑖𝐹𝑖  

Weight densities/volume

𝑏

𝑦, 𝑌𝑏

3

ℎ
𝑥, 𝑋𝑏

21

Centroid

𝑓𝑏 =

𝑓𝑏1𝑥

𝑓𝑏1𝑦

𝑓𝑏2𝑥

𝑓𝑏2𝑦

𝑓𝑏3𝑥

𝑓𝑏3𝑦

=

𝑋𝑏

𝑌𝑏

𝑋𝑏

𝑌𝑏

𝑋𝑏

𝑌𝑏

𝑡𝐴

3

ඵ

𝐴

𝑁1 𝐽 𝑑𝑟𝑑𝑠 

= න
0

1

න
0

1−𝑟

𝑟 2𝐴 𝑑𝑟 𝑑𝑠; 𝑠 = 1 − 𝑟 

= 2𝐴 න
0

1

𝑟 1 − 𝑟 𝑑𝑟  =
A

3
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𝑠

𝑟

𝑝

2 (0,1)

3 (0,0)
1 (1,0)

𝑓𝑝 = න
𝐴

[𝑁]𝑇 𝑝 𝑑𝐴 

𝑁1 = 𝑟, 𝑁2 = 𝑠, 𝑁3 = 1 − 𝑟 − 𝑠

𝐴𝐿𝑜𝑛𝑔 𝑟 = 0:  𝑁1 = 0, 𝑁2 = 𝑠, 𝑁3 = 1 − 𝑠

𝑓𝑝 = 𝑡 න
𝑠

[𝑁𝐴𝑙𝑜𝑛𝑔 𝑟=0]𝑇 𝑝 𝑑𝑠 

[𝑁𝐴𝑙𝑜𝑛𝑔 𝑟=0]𝑇=

0 0
0 0
𝑠 0
0 𝑠

1 − 𝑠 0
0 1 − 𝑠

𝑝 =
𝑝𝑥

𝑝𝑦
=

𝑝
0

𝑏

𝑎
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𝑓𝑝 =

𝑓𝑏1𝑥

𝑓𝑏1𝑦

𝑓𝑏2𝑥

𝑓𝑏2𝑦

𝑓𝑏3𝑥

𝑓𝑏3𝑦

= 𝑡

0
0

𝑝𝑏

2
0

𝑝𝑏

2
0

𝑓𝑝 = 𝑡𝑏 න
0

1

0 0
0 0
𝑠 0
0 𝑠

1 − 𝑠 0
0 1 − 𝑠

𝑝
0

𝑑𝑠

In general: 

𝑓𝑝 =

𝑓𝑝1𝑥

𝑓𝑝1𝑦

𝑓𝑝2𝑥

𝑓𝑝2𝑦

𝑓𝑝3𝑥

𝑓𝑝3𝑦

= 𝑡

0
𝑝𝑦𝑎

2
𝑝𝑥𝑏

2
0

𝑝𝑥𝑏

2
𝑝𝑦𝑎

2

𝑝 =
𝑝𝑥

𝑝𝑦
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20 in.

1 in.

10 in.
𝑇 = 1000 psi

Element 2 Force Vector:
o

v
/
/
/
/
/
/

o

v
/
/
/
/
/
/

4

5000 lb

5000 lb

32

1

𝑦

𝑥

1

2

Plane Stress Problem - Discretized plate 

𝑓𝑝1𝑥

𝑓𝑝1𝑦

𝑓𝑝2𝑥

𝑓𝑝2𝑦

𝑓𝑝3𝑥

𝑓𝑝3𝑦

= 1.0

0
0

1000𝑋10

2

0
1000𝑋10

2

0

= 

0
0

5000
0

5000
0

lb = 

𝐹1𝑥

𝐹1𝑦

𝐹3𝑥

𝐹3𝑦

𝐹4𝑥

𝐹4𝑦

E = 30 Msi; n = 0.30
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Element 1 [K]:

1

𝟏 (0,0)

𝟑 (𝟎, 𝟏𝟎) 𝟐 (𝟐𝟎, 𝟏𝟎)
𝛽1 = 𝑦2 − 𝑦3 = 0

𝛽2 = 𝑦3 − 𝑦1 = 10
𝛽3 = 𝑦1 − 𝑦2 = -10

𝛾1 = 𝑥3 − 𝑥2 = −20
𝛾2 = 𝑥1 − 𝑥3 = 0
𝛾3 = 𝑥2 − 𝑥1 = 20

2𝐴 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 = 200

𝐶11 = 𝐶22 =
𝐸

1 − 𝑣2 𝐶66 = 𝐸
2(1+𝑣)

  𝐶12 = 𝐶22 =
𝑣𝐸

1 − 𝑣2

𝑢1 𝑣1 𝑢3 𝑣3 𝑢2 𝑣2

𝑘(1) =
75,000

0.91

 140  0  0 −70 −140  70
 0  400  −60  0  60 −400
 0  −60  100  0 −100  60
 −70  0  0  35  70  −35
−140  60 −100  70  240 −130
 70 −400  60 −35 −130  435

lb

in.
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Element 2 [K]:

𝛽1 = 𝑦2 − 𝑦3 = −10
𝛽2 = 𝑦3 − 𝑦1 = 10
𝛽3 = 𝑦1 − 𝑦2 = 0

2𝐴 = 200

𝐶11 = 𝐶22 =
𝐸

1 − 𝑣2 𝐶66 = 𝐸
2(1+𝑣)

  𝐶12 = 𝐶22 =
𝑣𝐸

1 − 𝑣2

2

𝟑  (20, 10)

𝟐 (𝟐𝟎, 𝟎)𝟏 (𝟎, 𝟎)

𝑢1 𝑣1 𝑢4 𝑣4 𝑢3 𝑣3

𝑘(2) =
75,000

0.91

 100  0 −100  60  0  −60
 0  35  70  −35  −70  0
−100  70  240 −130 −140  60
 60  −35  −130  435  70  −400
 0  −70 −140  70  140  0
 −60  0  60 −400  0  400

lb

in.

𝛾1 = 𝑥3 − 𝑥2 = 0
𝛾2 = 𝑥1 − 𝑥3 = −20
𝛾3 = 𝑥2 − 𝑥1 = 20
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Global  System:

𝑅1𝑥

𝑅1𝑦

𝑅2𝑥

𝑅2𝑦

5000
0

5000
0

=
375,000

0.91

48 0 −28 14 0 −26 −20 12
0 87 12 −80 −26 0 14 −7

−28 12 48 −26 −20 14 0 0
14 −80 −26 87 12 −7 0 0
0 −26 −20 12 48 0 −28 14

−26 0 14 −7 0 87 12 −80
−20 14 0 0 −28 12 48 −26
12 −7 0 0 14 −80 −26 87

0
0
0
0

𝑢3

𝑣3

𝑢4

𝑣4

𝐹1𝑥

𝐹1𝑦

𝐹2𝑥

𝐹2𝑦

𝐹3𝑥

𝐹3𝑦

𝐹4𝑥

𝐹4𝑦

= 𝐾

𝑢1

𝑣1

𝑢2

𝑣2

𝑢3

𝑣3

𝑢4

𝑣4

→

𝑅1𝑥

𝑅1𝑦

𝑅2𝑥

𝑅2𝑦

5000
0

5000
0

= [𝐾]

0
0
0
0

𝑢3

𝑣3

𝑢4

𝑣4
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Reduced System and Solution:

5000
0

5000
0

=
375,000

0.91

 48  0 −28  14
 0  87  12 −80
−28  12  48 −26
 14 −80 −26  87

𝑢3

𝑣3

𝑢4

𝑣4

𝑢3

𝑣3

𝑢4

𝑣4

=

609.6
4.2

663.7
104.1

 ×  10−6 in.

𝛿 (= 𝑢3 = 𝑢4) =
𝑃𝐿

𝐴𝐸
=

10,000 × 20

10 × 30 × 106 = 670 × 10−6 in. Bar solution

Invert 4 X 4 reduced [K]
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Element Stresses:

𝜎 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 1 =
30 106 10−6

0.91(200)

 1 0.3  0
0.3  1  0
 0  0 0.35

 0  0 10  0 −10  0
 0 −20  0  0  0  20
−20  0  0 10  20 −10

0
0

609.6
4.2
0
0𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

1

=
1005
 301
2.4

 psi

𝜎 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 2 =
30 106 10−6

0.91(200)

 1 0.3  0
0.3  1  0
 0  0 0.35

−10  0  10  0  0  0
 0  0  0 −20  0  20
 0  −10  −20  10  20  0

0
0

663.7
104.1
609.6

0𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

2

=
995

 −1.2
 −2.4

 psi

{𝜎} = C B {𝑢}
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Principal Stresses:

𝜎1 =
𝜎𝑥 + 𝜎𝑦

2
+

𝜎𝑥 − 𝜎𝑦

2

2

+ 𝜏𝑥𝑦

Τ1 2

𝜎1 =
995 + (−1.2)

2
+

995 − (−1.2)

2

2

+ (−2.4)2

Τ1 2

𝜎1 = 497 + 498 = 995 psi 𝜎2 =
995 + (−1.2)

2
− 498 = −1.1 psi

𝜃𝑃 =
1

2
tan−1

2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦

𝜃𝑃 =
1

2
tan−1

2(−2.4)

995 − (−1.2)
= 00
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Linear Quadrilateral Element 

11

1

1

4 3

21

1,1

1, −1

−1,1

−1, −1

r

𝑠

(𝑥4, 𝑦4)

(𝑥1, 𝑦1)
(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

𝑃(𝑥, 𝑦)

𝑠 =
1

2

𝑟 =
1

2

𝑢

𝑠

𝑟

𝑣
Edge  𝑠 = 1

Edge 𝑠 = −1

Edge 
 𝑟 = −1

Edge  𝑠 = 1

1 2

3

4

𝑦, 𝑣

𝑥, 𝑢

𝑥 =

𝑖=1

4

𝑁𝑖𝑥𝑖 𝑦 =

𝑖=1

4

𝑁𝑖𝑦𝑖 𝑢 =

𝑖=1

4

𝑁𝑖𝑢𝑖
𝑣 =

𝑖=1

4

𝑁𝑖𝑣𝑖
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𝑥

𝑦 𝑠

1

2

3

4𝑠 = 1

𝑟 = −1

𝑠 = −1 𝑟 = 1

𝑟

𝑢3

𝑣3

𝑢2

𝑣2

𝑣1

𝑢4

𝑣4

𝑢1

𝑁1 =
1

4
1 − 𝑟 1 − 𝑠

𝑁3 =
1

4
1 + 𝑟 1 + 𝑠

𝑁2 =
1

4
1 + 𝑟 1 − 𝑠

𝑁4 =
1

4
1 − 𝑟 1 + 𝑠



𝑖=1

4

𝑁𝑖 = 1

𝑢
𝑣

=
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

𝑢1

𝑣1

⋮
𝑣4
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휀𝑥

휀𝑦

𝛾𝑥𝑦

=
1

𝐽

𝜕𝑦

𝜕𝑠

𝜕( )

𝜕𝑟
−

𝜕𝑦

𝜕𝑟

𝜕( )

𝜕𝑠
0

0
𝜕𝑥

𝜕𝑟

𝜕( )

𝜕𝑠
−

𝜕𝑥

𝜕𝑠

𝜕( )

𝜕𝑟
𝜕𝑥

𝜕𝑟

𝜕( )

𝜕𝑠
−

𝜕𝑥

𝜕𝑠

𝜕( )

𝜕𝑟

𝜕𝑦

𝜕𝑠

𝜕( )

𝜕𝑟
−

𝜕𝑦

𝜕𝑟

𝜕( )

𝜕𝑠

𝑢
𝑣

𝐽 =
1

8
𝑋𝑐

𝑇

0 1 − 𝑠 𝑠 − 𝑟 𝑟 − 1
𝑠 − 1 0 𝑟 + 1 −𝑟 − 𝑠
𝑟 − 𝑠 −𝑟 − 1 0 𝑠 + 1
1 − 𝑟 𝑟 + 𝑠 −𝑠 − 1 0

𝑌𝑐  =
A

4
 (for rectangles)

𝑋𝑐
𝑇 = 𝑥1 𝑥2 𝑥3 𝑥4  where and 𝑌𝑐 =

𝑦1

𝑦2

𝑦3

𝑦4

𝐽 =

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟
𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

{휀} = B {𝑢}
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𝐾 = ඵ

𝐴

[𝐵]𝑇 𝐷 𝐵 𝑡 𝑑𝑥 𝑑𝑦

ඵ

𝐴

𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ඵ

𝐴

𝑓(𝑟, 𝑠) 𝐽 𝑑𝑟𝑑𝑠

𝐾 = න
_1

1

න
−1

1

[𝐵]𝑇 𝐷 𝐵 𝑡 𝐽 𝑑𝑟 𝑑𝑠

{𝜎} = C  {휀}
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𝑠

−1, −1

1,1−1,1

1, −1

34

21

𝑟

𝑝𝑠
𝑝𝑟

𝑓𝑠

4 x 1
= න

−1

1
𝑁𝑠=1

𝑇 𝑇  ℎ
𝑎

2
𝑑𝑟

4 x 2 2 x 1

𝑓𝑠 = 𝑡
𝑎

2
[0 0 0 0 𝑝𝑟 𝑝𝑠 𝑝𝑟 𝑝𝑠]𝑇

Surface traction : 𝑝𝑟 and 𝑝𝑠 acting at edge 𝑠 = 1

The surface−force matrix, along edge s=1 with overall length 𝑎 𝑖𝑠

𝑓𝑠3𝑟

𝑓𝑠3𝑠

𝑓𝑠4𝑟

𝑓𝑠4𝑠

=  ∫−1

1 𝑁3 0 𝑁4 0
0 𝑁3 0 𝑁4

𝑇 𝑝𝑟

𝑝𝑠
𝑡

𝑎

2
𝑑𝑟or

Because 𝑁1 = 𝑁2 = 0 along edge 𝑠 = 1, and hence, no nodal forces exist at nodes 1 and 2.For 
the case of uniform (constant) 𝑝𝑟  & 𝑝𝑠 along edge 𝑠 = 1, the total surface−force matrix is 
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𝑦

𝑇𝑥 = 2000 psi uniform

𝑥
(8,0)

(0,4) (5,4)

1
2

34

Length of side 2-3 is given by

𝐿 = 5 − 8 2 + 4 − 0 2 = 9 + 16 = 5

𝑓𝑠 = න
−1

1

𝑁𝑠
𝑇 𝑇 𝑡

𝐿

2
𝑑𝑠 = න

−1

1 𝑁2 0 𝑁3 0
0 𝑁2 0 𝑁3

𝑇 𝑝𝑟

𝑝𝑠
𝑡

𝐿

2
𝑑𝑠

𝑁2 & 𝑁 3 must be used along side 2 − 3 at 𝑟 = 1 .

evaluated along 𝑠 = 1.
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𝑁2 =
(1+𝑟)(1−𝑠)

4
=

(1−𝑠)

2
    and   𝑁3 =

(1+𝑟)(1+𝑠)

4
=

(1+𝑠)

2
 𝑎𝑡 𝑟 = 1

𝑇 =
𝑝𝑟

𝑝𝑠
=

2000
0

;  t = 0.1 in

𝑓𝑠 = න
−1

1

𝑁𝑠
𝑇 𝑇 𝑡

𝐿

2
𝑑𝑡 = න

−1

1
𝑁2 0
0 𝑁2

𝑁3 0
0 𝑁3

2000
0

0.1
5

2
𝑑𝑠

𝑓𝑠 = 0.25 ∫−1

1

2000𝑁2

0
2000𝑁3

0

𝑑𝑠 = 500 ∫−1

1

1−𝑠

2

0
1+𝑠

2

0

𝑑s = 500

0.50𝑠 −
𝑠2

4

0

0.50𝑠 +
𝑠2

4

0

1

 = 500

1
0
1
0

𝑙𝑏

−1

𝑓𝑠2𝑟

𝑓𝑠2𝑠

𝑓𝑠3𝑟

𝑓𝑠3𝑠

=

500
0

500
0

𝑙𝑏
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Quadratic Triangular Element

𝑁1 = 𝑟(2𝑟 − 1)

𝑁3 = (1 − 𝑟 − 𝑠)(1 − 2 𝑟 + 𝑠 )

𝑁2 = 𝑠(2𝑠 − 1)

𝑁5 = 4𝑠(1 − 𝑟 − 𝑠)

𝑁4 = 4𝑟𝑠

𝑁6 = 4𝑟(1 − 𝑟 − 𝑠)

𝑟 = 0

4

6

3

5

21

1

𝑁1
𝑟 = 1

𝑟 = Τ1 2

𝑢 = 

𝑖=1

6

𝑁𝑖𝑢𝑖 , 𝑣 = 

𝑖=1

6

𝑁𝑖𝑣𝑖

𝑢
𝑣

=
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0 𝑁5 0 𝑁6 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0 𝑁5 0 𝑁6

𝑢1

𝑣1

⋮
𝑣6

𝑥 = 

𝑖=1

6

𝑁𝑖𝑥𝑖 , 𝑦 = 

𝑖=1

6

𝑁𝑖𝑦𝑖 ,

Shape Function  𝑁1

➢ Quadratic triangular element is also known as Linear Strain 
Triangular (LST) Element
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Jacobian is NOT independent of r and s anymore !

𝜕𝑢

𝜕r
𝜕u

𝜕s

=

𝜕x

𝜕r

𝜕y

𝜕r
𝜕x

𝜕s

𝜕y

𝜕s

𝜕u

𝜕x
𝜕u

𝜕y

= 𝐉

𝜕𝑢

𝜕𝑥
𝜕𝑥

𝜕𝑦

𝐉 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥

𝜕𝑥

𝜕r
= 4𝑟 − 1 𝑥1+ 0 𝑥2+ 4𝑟 + 4𝑠 − 3 𝑥3+ 4𝑠 𝑥4+ −4𝑠 𝑥5+ 4 − 8𝑟 − 4𝑠 𝑥6

𝜕𝑥

𝜕s
= 0 𝑥1+ 4𝑠 − 1 𝑥2+ 4𝑟 + 4𝑠 − 3 𝑥3+ 4𝑟 𝑥4+ 4 − 4𝑟 − 8𝑠 𝑥5+ −4𝑟 𝑥6

…

𝐾 = න
𝑉

[𝐵]𝑇 𝐶 [𝐵] 𝑑𝑉

{𝜎} = C B {𝑢}
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𝑠

1

2

3

4𝑠 = 1

𝑟 = −1

𝑠 = −1 𝑟 = 1

𝑟7

8

6

5

𝑁1 =
1

4
(1 − 𝑟)(𝑠 − 1)(𝑟 + 𝑠 + 1)

𝑁2 =
1

4
(1 + 𝑟)(𝑠 − 1)(𝑠 − 𝑟 + 1)

𝑁3 =
1

4
(1 + 𝑟)(1 + 𝑠)(𝑟 + 𝑠 − 1)

𝑁4 =
1

4
(𝑟 − 1)(𝑠 + 1)(𝑟 − 𝑠 + 1)

𝑁5 =
1

2
(1 − 𝑠)(1 − 𝑟2)

𝑁6 =
1

2
(1 + 𝑟)(1 − 𝑠2)

𝑁7 =
1

2
(1 + 𝑠)(1 − 𝑟2)

𝑁8 =
1

2
(1 − 𝑟)(1 − 𝑠2)



𝑖=1

8

𝑁𝑖 = 1 𝑢 =

𝑖=1

8

𝑁𝑖𝑢𝑖 𝑣 =

𝑖=1

8

𝑁𝑖𝑣𝑖,
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Solving [K]{q}={f}
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❖ Solution to system of equations [K]{q}={f} requires inversion of 
global stiffness matrix since {q} =[K]-1 {f}. The inverse of a 
Hermitian positive-definite matrix exists when its determinant is 
non-zero. Finding the [K]-1 is computationally expensive. Hence, 
sometimes, iterative methods are preferred over the direct inversion 
methods

Solution Procedure

Direct

Matrix Inversion

Gauss 
Elimination

Gauss-
Jordan

Cholesky’s

Iterative

Gauss-
Seidel

Jacobi
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❖ Gauss elimination is a form of LU factorization refers to the 
factorization of A, with proper row and/or column orderings or 
permutations, into two factors – a lower triangular matrix L and 
an upper triangular matrix U. Hence,

A = LU 

❖ Gauss elimination involves producing an upper or lower triangular 
matrix as first step, and then use backward or forward 
substitution to solve for the unknowns

1 A’12 A’13

A21 A22 A23

A31 A32 A33

X1

X2

X3

B’1

B2

B3

❖ Divide the first row by (pivot element a11) to get

=

A11 A12 A13

A21 A22 A23

A31 A32 A33

X1

X2

X3

B1

B2

B3

=
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❖ Pivot element A22 to get

1 A’12 A’13

0 1 A”23

0 A’32 A’33

X1

X2

X3

B’1

B”2

B’3

=

❖ Backward substitution to solve for the components of X. One can 
produce a lower triangular matrix and use a forward substitution

❖ Pivot element A’33 to get

1 A’12 A’13

0 1 A”23

0 0 1

X1

X2

X3

B’1

B”2

B’”3

=
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❖ Gauss Jordan elimination is an adaptation of Gauss elimination in 
which both elements above and below the pivot element are 
manipulated to zero values; Hence, the entire column except the 
pivot (or the diagonal) elements attain zero values

❖ Advantage is that no backward/forward substitution is necessary 
anymore

1 0 0

0 1 0

0 0 1

X1

X2

X3

B”’1

B’”2

B’”3

=



© 2023 3P Composites, LLC; All Rights Reserved 

❖ Cholesky’s method involves LDL decomposition of 
a Hermitian positive-definite matrix A as

 A = LDL* 

 where L is a lower triangular matrix with real and positive 
diagonal entries, and L* denotes the conjugate transpose 
of L. D is a diagonal matrix

❖ The solution to [K]{q} = {f} is obtained by first computing the 

Cholesky decomposition  [K] = [L][D][L]*. Then solving [L]{y} = {f} 
for {y}, and finally, solving [D][L]*{q} = {y} for {q} 

❖ For linear systems that can be put into symmetric form, the 
Cholesky decomposition (or its LDL variant) is the method of 
choice, for superior efficiency and numerical stability. Compared to 
the LU decomposition, it is roughly twice as efficient
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❖ The first iterative technique to obtain solutions of a strictly diagonally 
dominant system of linear equations is called the Jacobi method, after Carl 
Gustav Jacobi . This method makes two assumptions:

 (1) that the system given by has a unique solution

     a11 x1 + a12 x2  +  an xn  =  b1

 a21 x1 + a22 x2  +  a2n xn   =  b2

 …

           an1 x1 + an2 x1  +  ann xn  =  bn

 (2) that the diagonal coefficient matrix A has no-zero values. If any 
of the diagonal entries are zero, then rows or columns must be 
interchanged to obtain a coefficient matrix that has nonzero entries 
on the main diagonal

❖ For the given linear equations to solve using the Jacobi method the 
computation of xi

(k+1) requires each element in x(k) except itself. The 
minimum amount of storage is two vectors of size n. The iterations 
continue until the values converges to specified tolerance per chosen 
convergence criteria
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❖ With the Jacobi method, the values of  xi obtained in the nth 
approximation remain unchanged until the entire (n+1) th
approximation has been calculated. With the Gauss- Seidel 
method, on the other hand, you use the new values of each xi as 
soon as they are known. That is, once you have determined  x1 
from the first equation, its value is then used in the second 
equation to obtain the new  x2. Similarly, the new  x1  and  x2  
are used in the third equation to obtain the new  x3 and so on

❖ Though Gauss-Seidel method can be applied to any matrix with 
non-zero elements on the diagonals, convergence is only 
guaranteed if the matrix is either diagonally dominant, 
or symmetric and positive definite

❖ Unlike the Jacobi method, only one storage vector is required as 
elements can be overwritten as they are computed, which can be 
advantageous for very large problems
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Thermal Analysis
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Thermal Analysis

𝑈 = න
𝑉

1

2
휀 − 휀𝑇

𝑇 𝐶 휀 − 휀𝑇 𝑞𝑉

𝑈 =
1

2
න

𝑉

𝐵 𝑞 − 휀𝑇
𝑇 𝐶 𝐵 𝑞 − 휀𝑇 𝑑𝑉

𝑈 =
1

2
න

𝑉

{𝑞}𝑇[𝐵]𝑇 𝐶 𝐵 𝑞 − 𝑞 𝑇 𝐵 𝑇 𝐶 휀𝑇 − 휀𝑇
𝑇 𝐶 𝐵 𝑞 + 휀𝑇

𝑇 𝐶 휀𝑇 𝑑𝑉

𝑈𝑀 =
1

2
න

𝑉

𝑞 𝑇 𝐵 𝑇 𝐶 𝐵 𝑞 𝑑𝑉 𝑈𝑇 = න
𝑉

𝑞 𝑇 𝐵 𝑇 𝐶 휀𝑇 𝑑𝑉

𝜕𝑈

𝜕{𝑞}
= 0 →

𝜕(𝑈𝑀 − 𝑈𝑇 + 𝑈𝐶)

𝜕{𝑞}
= 0

𝜕𝑈

𝜕{𝑞}
= න

𝑉

𝐵 𝑇 𝐶 𝐵 𝑞 𝑑𝑉 − 𝐵 𝑇 𝐶 휀𝑇 𝑑𝑉 = 0

න
𝑉

𝐵 𝑇 𝐶 휀𝑇 𝑑𝑉 = 𝑓𝑇

𝑈𝐶 = න
𝑉

휀𝑇
𝑇 𝐶 휀𝑇 𝑑𝑉

𝐾 = න
𝑉

[𝐵]𝑇 𝐶 [𝐵] 𝑑𝑉K 𝑞 = 𝑓𝑀 + 𝑓𝑇
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휀𝑇 = 휀𝑥𝑇 = 𝛼𝑇

𝑓𝑇 = 𝐴 න
0

𝐿

𝐵𝑇 𝐶 𝛼𝑇 𝑑𝑥 𝐶 = 𝐸 𝐵 = −
1

𝐿
 

1

𝐿

𝑓𝑇 =
𝑓𝑇1

𝑓𝑇2
=

−𝐸𝛼𝑇𝐴
 𝐸𝛼𝑇𝐴

Plane stress and Plane Strain

where the units on 𝛼 are typically Τin. in. /οF or Τmm mm /οC. 

휀𝑇 =

휀𝑥𝑇

휀𝑦𝑇

𝛾𝑥𝑦𝑇

///////////////////
𝑑𝑥

𝑑𝑦 𝑦

𝑥
///////////////////

𝜋

2
− 𝛾𝑥𝑦𝑇

𝑑𝑦+휀𝑦𝑇𝑑𝑦

𝑑𝑥+휀𝑥𝑇𝑑𝑥

(𝑎) (𝑏)

Element Thermal Force Vector

Bar Element:
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휀𝑇 =
𝛼𝑇
𝛼𝑇
0

휀𝑇 = 1 + 𝑣
𝛼𝑇
𝛼𝑇
0

𝑓𝑇 = 𝐵 𝑇 𝐶 휀𝑇 𝑡𝐴

𝑓𝑇 =

𝑓𝑇1𝑥

𝑓𝑇1𝑦

⋮
𝑓𝑇3𝑦

=
𝛼𝐸𝑡𝑇

2(1 − 𝑣)

𝛽𝑖

𝛾𝑖

𝛽𝑗

𝛾𝑗

𝛽𝑚

𝛾𝑚

For isotropic materials: 

Plane Stress 

Plane Strain

𝜎 = 𝐶 휀 − 휀𝑇 = 𝐶 𝐵 𝑞 − [𝐶]{휀𝑇}
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For the bar assemblage shown in figure, determine the reactions at the fixed
           ends and the axial stress in each bar. Bar 1 is subjected to a temperature drop of 100 C .

                       Let bar 1 be aluminum with 𝐸 = 70 GPa, α = 23 x 10−6(mm/mm)/0 C, 𝐴 = 12 x 10−4m2,
                   and 𝐿 = 2 m. Let bars 2 and 3 be brass with 𝐸 = 100GPa, α = 20 x 10−6(mm/mm)/0C,
                       𝐴 = 6 x 10−4m2, and 𝐿 = 2 m. 

//////////
o o

/
/
/
/
/
/
/
/
/
/

/
/
/
/
/

//////////
o o

/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/

/
/
/
/
/

1

3

4

2

2

2 .

..
.
.

. 2 m

2 m

2 m

3

2

1 𝑥

Rigid bar
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Element 1 [K]:

1 2

𝑘(1) =
12 x 10−4 70 x 106

2
 1 −1
−1  1

= 42,000
 1 −1
−1  1

kN

m

Element 2 and 3 [K]:

2 3

                                                                                                                             2       4

𝑘(1) = 𝑘(3) =
6 x 10−4 100 x 106

2
 1 −1
−1  1

= 30,000
 1 −1
−1  1

kN

m

−𝐸𝛼𝑇𝐴 = − 70 x 106 23 x 10−6 −10 12 x 10−4 = 19.32kN

𝑓(1) =
𝑓1𝑥

𝑓2𝑥
=

 19.32
−19.32

kN 𝑓(2) = 𝑓(3) =
0
0

No temperature change in 
elements 2 and 3

Thermal Force Vector [f]:
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1

𝑢1 = 0 𝑢3 = 0 𝑢4 = 0

where the right−side thermal forces are considered to be equivalent nodal forces. Using the
boundary conditions.

from the second equation,1000 102 𝑢2 = −19.32

𝑢2 = −1.89 x 10−4m

Global System:

1000

 42 −42  0  0
−42  42 + 30 + 30 −30 −30
 0 −30  30  0
 0 −30  0  30

𝑢1

𝑢2

𝑢3

𝑢4

=

 19.32
−19.32

0
0
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𝐹1𝑥

𝐹2𝑥

𝐹3𝑥

𝐹4𝑥

= 1000

 42 −42  0  0
−42  102 −30 −30
 0 −30  30  0
 0 −30  0  30

0
−1.89 x 10−4

0
0

−

 19.32
−19.32

0
0

1 3

4

2

2

2

.
.
.

.

Free-body diagram of the bar assemblage

5.69 kN

5.69 kN

11.38 kN

𝐹1𝑥

𝐹2𝑥

𝐹3𝑥

𝐹4𝑥

=

−11.38
0

5.69
5.69

kN
𝜎(1) =

11.38

12 x 10−4
= 9.48 x 103 kN/m2 (9.48 MPa)

𝜎(2) = 𝜎(3)=
5.69

6 x 10−4
= 9.48 x 103 kN/m2 (9.48 MPa)
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𝛽1 = 𝑦1 − 𝑦3 = −3 𝛾1 = 𝑥3 − 𝑥1 = −1

𝛽2 = 𝑦3 − 𝑦1 = 3 𝛾2 = 𝑥1 − 𝑥3 = −1

𝛽3 = 𝑦1 − 𝑦2 = −3 𝛾3 = 𝑥2 − 𝑥1 = 2

𝐴 =
3 2

2
= 3in2

𝑦

2000 lb/in2

𝑥

𝟑

𝟏 𝟐

𝑡 = 1 in.
𝐸 = 30 x 106psi

𝛼 = 7 x 10−6 Τin. in. 0F
𝑣 = 0.25
𝑇 = 300F

1 in.

2 in.

3 in.

𝐵 =
1

6

−3  0  3  0 0 0
 0 −1  0 −1 0 2
−1 −3 −1  3 2 0
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𝐶 =
𝐸

1 − 𝑣2

1 𝑣 0
𝑣 1 0

0 0
1 − 𝑣

2

=
30 x106

1 − 0.25 2

1 0.25 0
0.25 1 0

0 0 0.375
= 4 x 106

8 2 0
2 8 0
0 0 3

psi

𝐵 𝑇 𝐶 =
1

6

−3  0 −1
 0 −1 −3
 3  0 −1
 0 −1  3
 0  0  2
 0  2  0

4 x 106
8 2 0
2 8 0
0 0 3

=
4 x 106

6

−24 −6 −3
 −2 −8 −9
 24  6 −3
 −2 −8  9
 0  0  6
 4  16  0

𝐾 = 1 in.
3in.2

6

4 x 106

6

−24  −6 −3
 −2  −8 −9
 24  6 −3
 −2  −8  9
 0  0  6
 4  16  0

−3  0  3  0 0 0
 0 −1  0 −1 0 2
−1 −3 −1  3 2 0
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𝐾 =
1 x 106

3

 75  15  −69  −3  −6 −12
 15  35  3  −19 −18 −16
−69  3  75  −15  −6  12
 −3  −19  −15  35  18 −16
 −6  −18  −6  18  12  0
 −12  −16  12  −16  0  32

lb

in.

𝑓𝑇 =
𝛼𝐸𝑡𝑇

2(1 − 𝑣)

𝛽𝑖

𝛾𝑖

𝛽𝑗

𝛾𝑗

𝛽𝑚

𝛾𝑚

=
7 x 10−6 30 x 106 1 30

2(1 − 0.25)

−3
−1
 3
−1
 0
 2

= 4200

−3
−1
 3
−1
 0
 2

𝑓𝑇 =

−12,600
−4200
12,600
−4200

0
8400

lb
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𝐿2−3 = 2 − 1 2 + 3 − 0 2 Τ1 2= 3.163 in.

𝑝𝑥 = 𝑝 cos 𝜃 = 2000
3

3.163
= 1896 lb/in2 𝑝𝑦 = 𝑝 sin 𝜃 = 2000

1

3.163
= 632 lb/in2

The force matrix due to the pressure applied alongside 2 − 3 is determined as follows: 

𝑓𝑝 = ඵ

𝑆𝑗−𝑚

𝑁𝑠
𝑇

𝑝𝑥

𝑝𝑦
𝑑𝑆 = ඵ

𝑆𝑗−𝑚

𝑁𝑖 0
0 𝑁𝑖

𝑁𝑗 0

0 𝑁𝑗

𝑁𝑚 0
0 𝑁𝑚

𝑝𝑥

𝑝𝑦
𝑑𝑆 =

𝑡𝐿𝑗−𝑚

2

0 0
0 0
1 0
0 1
1 0
0 1

𝑝𝑥

𝑝𝑦

evaluated
alongside 𝑗 − 𝑚

where θ is the angle measured from the 𝑥 axis to the normal to surface 2 − 3

𝑓𝑝 =
1 in. 3.163 in.

2

0 0
0 0
1 0
0 1
1 0
0 1

1896
 632

=

0
0

3000
1000
3000
1000

 lb
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1 x 106

3

75 15 −69  −3  −6 −12
35  3 −19 −18 −16

 75 −15  −6  12
 35  18 −16

 12  0
𝑠𝑦𝑚𝑚  32

𝑢1

𝑣1

𝑢2

𝑣2

𝑢3

𝑣3

=

−12,600
 −4200
 15,600
 −3200
 3000
 9400

where the force matrix is 𝑓𝑇 + 𝑓𝑝

𝑓𝑝 = 𝑡

0
0

𝑝𝑥𝑏

2
𝑝𝑦𝑎

2
𝑝𝑥𝑏

2
𝑝𝑦𝑎

2

=

0
0

3000
1000
3000
1000

 lb

𝑝𝑥 = 1896 lb/in2

𝑝𝑦 = 632 lb/in2

Alternately:

𝑎 = 𝑏 = 3.163 𝑖𝑛
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Dynamic Analysis
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Dynamic Analysis

1-D Spring-Mass System

//////////////////////////

/
/
/
/
/
/
/
/
/
/
/
/

_____\\__

o o

𝐹(𝑡)
𝑥

𝑘

𝑚

𝑇 = 𝑘𝑥 𝐹(𝑡) 𝑚𝑎 = 𝑚 ሷ𝑥=

𝐹 𝑡 − 𝑘𝑥 = 𝑚 ሷ𝑥 → 𝑚 ሷ𝑥 + 𝑘𝑥 = 𝐹(𝑡)

𝜔2 =
𝑘

𝑚
 or ω =  𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐹𝑟𝑒𝑒 𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠:  𝐹 𝑡 = 0; 𝑥 𝑡 = 𝑋𝑒𝑖𝜔𝑡
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𝑇 = 𝑘𝑢 𝐹(𝑡) 𝑚𝑎 = 𝑚 ሷ𝑢=

𝑚 ሷ𝑢 + 𝑘𝑢 = 𝐹(𝑡)

E, A, L

𝑚 =
𝜌𝐴𝐿

2
1 0
0 1

Mass = 𝜌𝐴𝐿

Mass lumped equally at the two nodes

𝑚 = ම

𝑣

𝜌 𝑁 𝑇 𝑁 𝑑𝑉 Consistent Mass Matrix

𝑚 =
𝜌𝐴𝐿

6
2 1
1 2

Consistent Mass Matrix

𝑓𝑏 = ම

𝑉

𝑁 𝑇 𝑋 𝑑𝑉

𝑋  = 𝜌 ሷ𝑞 = 𝜌[𝑁] ሷ𝑢
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𝑣1 𝜃1 𝑣2 𝜃2 

𝑚 =
𝜌𝐴𝐿

2

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

𝑚 = ම

𝑣

𝜌 𝑁 𝑇 𝑁 𝑑𝑉

𝑚 = න
0

𝐿

ඵ

𝐴

𝜌

𝑁1

𝑁2

𝑁3

𝑁4

𝑁1 𝑁2 𝑁3 𝑁4 𝑑𝐴𝑑𝑥

𝑚 =
𝜌𝐴𝐿

420

 156  22𝐿  54 −13𝐿
 22𝐿  4𝐿2  13𝐿  −3𝐿2

 54  13𝐿  156 −22𝐿
 −13𝐿 −3𝐿2 −22𝐿  4𝐿2

Mass lumped equally at the two nodes 
corresponding to translational dof

Consistent Mass Matrix
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𝑚′ = 𝜌𝐴𝐿

Τ2 6 0 0 Τ1 6 0 0
Τ156 420 Τ22𝐿 420 0 Τ54 420 Τ−13𝐿 420

Τ4𝐿2 420 0 Τ13𝐿 420 Τ−3𝐿2 420
Τ2 6 0 0

Τ156 420 Τ−22𝐿 420

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 Τ4𝐿2 420

𝑢1 𝑣1 𝜃1 𝑢2 𝑣2 𝜃2 

𝑚′ =
𝜌𝐴𝐿

2

1  0  0  0  0 0
0  1  0  0 0 0
0  0  0  0 0 0
0  0  0  1 0 0
 0  0  0  0 1 0
 0  0  0  0  0  0

′ ′ ′ ′ ′′

Consistent Mass Matrix

Lumped Mass Matrix

𝑚 = 𝑇 𝑇 𝑚′ 𝑇  
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𝑚 =
𝜌𝑡𝐴

12

2 0 1 0 1 0
2 0 1 0 1

2 0 1 0
2 0 1

2 0
𝑆𝑌𝑀 2

Consistent Mass Matrix
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/
/
/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/
/
/
/

.2 3

(𝑎)

1

𝐿𝐿

.3

𝐿

/
/
/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/
/
/
/

.2 4

(𝑏)

1

𝐿𝐿

Two elements

(Using boundary conditions 𝑣1= 0, 𝜃1 = 0, 𝑣3 = 0, and 𝜃3 = 0 to reduce the matrices) as

𝑣2 𝜃2

𝐾 =
𝐸𝐼

𝐿3
24 0
0 8𝐿2 𝑀 =

𝜌𝐴𝐿

2
2 0
0 0

𝐸𝐼

𝐿3

24 0
0 8𝐿3 − 𝜔2𝜌𝐴𝐿

1 0
0 0

 = 0

Three elements

Two element Solution:

𝜔2 =
24𝐸𝐼

𝜌𝐴𝐿4
𝜔 =

4.90

𝐿2

𝐸𝐼

𝐴𝜌

Τ1 2

OR
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𝑣1 𝜃1 𝑣2 𝜃2 

𝑚(1) =
𝜌𝐴𝐿

2

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

𝑣2 𝜃2 𝑣3 𝜃3 

𝑚(2) =
𝜌𝐴𝐿

2

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

𝑣3 𝜃3 𝑣4 𝜃4 

𝑚3 =
𝜌𝐴𝐿

2

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

𝑣2 𝜃2 𝑣3 𝜃3 

𝑀 =
𝜌𝐴𝐿

2

2 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

Three element Solution:

(Using boundary conditions 𝑣1= 0, 𝜃1 = 0, 𝑣4 = 0, and 𝜃4 = 0 to reduce the matrices) as
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𝑣1 𝜃1 𝑣2 𝜃2 

𝑘(1) =
𝐸𝐼

𝐿3

 12  6𝐿 −12  6𝐿
 6𝐿  4𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  12 −6𝐿
 6𝐿  2𝐿2 −6𝐿  4𝐿2

𝑣2 𝜃2 𝑣3 𝜃3 

𝑘(2) =
𝐸𝐼

𝐿3

 12  6𝐿 −12  6𝐿
 6𝐿  4𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  12 −6𝐿
 6𝐿  2𝐿2 −6𝐿  4𝐿2

𝑣3 𝜃3 𝑣4 𝜃4 

𝑘(3) =
𝐸𝐼

𝐿3

 12  6𝐿 −12  6𝐿
 6𝐿  4𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  12 −6𝐿
 6𝐿  2𝐿2 −6𝐿  4𝐿2

𝑣2 𝜃2 𝑣3 𝜃3 

=
𝐸𝐼

𝐿3

 0  12𝐿 −12  6𝐿
 0  6𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  24 0
 6𝐿  2𝐿2 0  8𝐿2

𝑣2 𝜃2 𝑣3 𝜃3 

𝐾 =
𝐸𝐼

𝐿3

 12 − 12  6𝐿 + 6𝐿 −12  6𝐿
 6𝐿 − 6𝐿  4𝐿2 + 2𝐿2 −6𝐿  2𝐿2

−12 −6𝐿  12 + 12 −6𝐿 + 6𝐿
 6𝐿  2𝐿2 −6𝐿 + 6𝐿  4𝐿2 + 4𝐿2
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𝐸𝐼

𝐿3

 0 12𝐿  12  6𝐿
 0 6𝐿2 −6𝐿 2𝐿2

−12 −6𝐿  24  0
 6𝐿  2𝐿2  0 8𝐿2

− 𝜔2𝜌𝐴𝐿

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

= 0

→

−𝜔2𝜌𝐴𝐿 12 Τ𝐸𝐼 𝐿2 −12 Τ𝐸𝐼 𝐿3 Τ6𝐸𝐼 𝐿2

0 6 Τ𝐸𝐼 𝐿 −6 Τ𝐸𝐼 𝐿2 2 Τ𝐸𝐼 𝐿

−12 Τ𝐸𝐼 𝐿3 −6 Τ𝐸𝐼 𝐿2 24 Τ𝐸𝐼 𝐿3 − 𝜔2𝜌𝐴𝐿 0

6 Τ𝐸𝐼 𝐿2 2 Τ𝐸𝐼 𝐿 0 8 Τ𝐸𝐼 𝐿

= 0

→

−𝜔2𝛽 12 Τ𝐸𝐼 𝐿2 −12 Τ𝐸𝐼 𝐿3 Τ6𝐸𝐼 𝐿2

0 6 Τ𝐸𝐼 𝐿 −6 Τ𝐸𝐼 𝐿2 2 Τ𝐸𝐼 𝐿

−12 Τ𝐸𝐼 𝐿3 −6 Τ𝐸𝐼 𝐿2 24 Τ𝐸𝐼 𝐿3 − 𝜔2𝛽 0

6 Τ𝐸𝐼 𝐿2 2 Τ𝐸𝐼 𝐿 0 8 Τ𝐸𝐼 𝐿

= 0

where 𝛽 = 𝜌𝐴𝐿
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𝜔2
1 =

29.817254𝐸𝐼

𝛽𝐿3
𝜔1 =

29.817254𝐸𝐼

𝐴𝜌𝐿4
=

5.46

𝐿2

𝐸𝐼

𝐴𝜌
OR

𝜔1 =
5.59

𝐿2

𝐸𝐼

𝐴𝜌

Τ1 2

𝜔1 =
5.46

𝐿2

𝐸𝐼

𝐴𝜌

𝜔1 =
4.90

𝐿2

𝐸𝐼

𝐴𝜌

Τ1 2

Two element Solution

Three element Solution

Exact Solution
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❖ For a given dynamic system, time integration methods 
enables us to determine the nodal displacements, element 
strains & stresses and many other quantitates of interest at 
different time increments

❖ Time integration methods using Direct Integration Techniques

▪ Explicit Method

o Central Difference Method

▪ Implicit Method

o Newmark-Beta

o Wilson-Theta



© 2023 3P Composites, LLC; All Rights Reserved 

❖ In explicit method the state of a dynamic system at a later 
time is calculated using the its state at the current time 

▪ Y(t) is the current state of the system at time ‘t’

▪ Y(t + Δt) is the state at a later time ‘t+Δt’

▪ Δt is a small time step

▪ Y(t + Δt) = F(Y(t))

❖ In implicit method the state of a dynamic system at a later 
time is calculated using the its state at the current time as 
well as its state at the later time 

▪ Y(t) is the current state of the system at time ‘t’

▪ Y(t + Δt) is the state at a later time ‘t+Δt’

▪ Δt is a small time step

▪ G(Y(t),Y(t + Δt)) = 0, to find Y(t + Δt)
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Given:
F(t) = 2000 lb (decreases to 0 lb at .2s)
k = 100 lb/in
Δt = 0.05 s (upto .2s)

Required:
Determine the displacement, velocity, and acceleration 
throughout the time interval

Solve using three different time integration 
methods
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❖ Finite (Central) difference expressions for velocity and 
acceleration are used in an iterative process to obtain the 
solution for a dynamic system

{di}” =
{di+1} – 2{di} + {di-1} 

(Δt)2

{di}’ =
{di+1} – {di-1}

2(Δt)

{di} Nodal Displacements

Velocity

Acceleration

𝑚𝑑𝑖
′′ + 𝑘𝑑𝑖 = 𝐹 → 𝑚 ×

𝑑𝑖+1−2𝑑𝑖+𝑑𝑖−1

∆𝑡2 + 𝑘𝑑𝑖 = 𝐹
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Time (s) F(t) (lb) di (in) Q (lb) di" (in/s^2) di' (in/s)

d-1 - - - - - -

d0 0.00 2000.00 0.00 0.00 62.83 0.00

d1 0.05 1500.00 0.08 7.85 46.88 2.75

d2 0.10 1000.00 0.27 27.48 30.55 4.71

d3 0.15 500.00 0.55 54.91 13.98 5.85

d4 0.20 0.00 0.86 86.03 -2.70 6.17

d5 0.25 0.00 1.17 116.56 -3.66 6.00

d6 0.30 0.00 1.46 146.03 -4.59 -11.66
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❖ Acceleration varies linearly

❖ Utilizes two “adjustable” arguments β and γ to “tune” 
the calculations to specific applications

❖ Method is unconditionally stable for γ ≥ ½ and 

β ≥ ¼(γ + ½)2
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Time (s) F(t) (lb) di (in) Q (lb) di" (in/s^2) di' (in/s)

d-1 - - - - - -

d0 0.00 2000.00 0.00 0.00 62.83 0.00

d1 0.05 1500.00 0.07 7.20 47.06 2.75

d2 0.10 1000.00 0.26 26.16 31.38 4.71

d3 0.15 500.00 0.53 52.97 15.69 5.89

d4 0.20 0.00 0.84 83.68 -0.74 6.26

d5 0.25 0.00 1.15 114.91 0.00 6.24

d6 0.30 0.00 1.46 146.11 0.00 6.27
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❖ Acceleration varies linearly

❖ Utilizes an adjustable parameter Θ as multiplier to the 
time step Δt where Θ ≥ 1.0

❖ Method is unconditionally stable for linear systems for Θ
≥ 1.37 and for non-linear at Θ ≥ 1.4
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Time (s) F(t) (lb) di (in) Q (lb) di" (in/s^2) di' (in/s)

d-1 - - - - - -

d0 0.00 2000.00 0.00 0.00 62.83 0.00

d1 0.05 1500.00 0.07 7.19 46.90 2.74

d2 0.10 1000.00 0.26 26.09 30.60 4.68

d3 0.15 500.00 0.53 52.63 14.06 5.80

d4 0.20 0.00 0.83 82.68 -2.60 6.08

d5 0.25 0.00 1.13 112.73 -3.54 5.93

d6 0.30 0.00 1.42 141.90 -4.46 5.73
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Numerical Integration 
Techniques in FEA
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❖ The computation of the stiffness matrix and load vectors requires the 
evaluation of one or more integrals depending on the dimension of the 
requested analysis

❖ Analytical solution for integrals is not always feasible, can be cumbersome 
and can take too much computational time 

❖ Division by zero and machine precision induced errors can be issues affecting 
accuracy and convergence 

❖ Numerical Integration techniques such as Trapezoidal rule, Simpsons rule, 
Newton-Cotes quadrature rules, and Gaussian Quadrature are commonly used 

❖ Reduced integration requires using fewer integration points than a full 
conventional Gaussian quadrature. This has the effect of using a lower degree 
of polynomial in the integration process. This can be beneficial when 
encountering shear locking as in for example the Timoshenko beam since we 
assume the same order of polynomial for displacements and rotations, even 
though we know they are related by derivative, using reduced integration 
numerically simulates the use of a lower polynomial. Thus the inherent 
relations between displacements and rotations can be better accounted for
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❖ An integration point is the point within an element at which integrals are 
evaluated numerically. These points are chosen in a way so that the results 
for a particular numerical integration scheme are the most accurate

❖ Gauss points are also called integration points because at 
these points numerical integration is carried out. Stresses are generally the 
most accurate at Gauss points and thus instead of calculating them at 
nodes, we do it at integration points and then extrapolate to the rest of the 
element
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h- and p-Type Elements in FEA
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❑ Two main types of elements used in FEA 

❖ h-type

• Classical lower order element

• Linear or quadratic shape functions

• Increase number of elements to achieve convergence

• Local refinement to achieve accuracy

• Completeness & Compatibility

• Longer computing time

❖ p-type

• No mesh refinement and change needed

• Adaptable polynomial order
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p-type element

+ Faster, more accurate, easier to use

+ No remeshing for greater accuracy

+ Good for fatigue and fracture where 
local accuracy is required

+ Local or global error estimates

- Used only for linear structural and 
nonlinear solutions applications

- Required significantly greater 
computational resources 

h-type element

+ Solution times know in advance

+ Adaptive Meshing to automatically 
achieve  desired accuracy

+ Can be used for Dynamics, CFD, 
Coupled field and Magnetics

- Mesh refinement for precise 
accuracy control could be tedious
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Computer Softwares for 
Finite Element Analysis
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Advantages Disadvantages

Special 
knowledge not 
required

Initial cost 
high

Can solve variety
of problems

Low efficiency

Computer Programs

Commercial programs
 

Special purpose

Advantages Disadvantages

Low development 
cost

Inability to solve 
variety of 
problems

Can run on small 
computers

Can be easily 
revised
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Algor Abaqus ANSYS

General purpose FEA software Routine and sophisticated
engineering problems

Widely used FEA software

Bricks, shells, beams and 
trusses

Extensive range of material 
models 

Structural, thermal, 
mechanical, electrical, 
electromagnetic

Bending, mechanical, thermal,
fluid dynamics, coupled or 
uncoupled multiphysics

Automotive industry Performs global structural 
assessment

Easy to use features Coupled acoustic-structural, 
piezoelectric, and 
structural-pore capabilities

Automation with flexibility to
customize

Multiple view windows Generates report, image, 
animation, etc. from the 
output file

Parametric geometry creation

Contours or plots, image 
formats, animation, report 
wizard

4 core software products Preparing existing geometry 
for analysis
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COSMOS/M GR-STRUDL

Complete, modular, self-contained 
finite element system

Architectural Engineering, offshore,
civil works

Elastic beam elements, curved and 
straight pipe element, spar/truss, 
plates, shells

Plane truss, frame, grid, triangular 
prisms, bricks, shells

Static and dynamic structural 
problems, heat transfer, fluid 
mechanics, electromagnetics and 
optimization, buckling

Frame and finite static, dynamic, and 
nonlinear analysis, finite element 
analysis, structural frame design

Completely modular Graphical modeling and result display

Powerful, intuitive, easy to learn and
use

Different material properties

Reduce solution time and disk spacee Joint loads, displacements, 
concentrated, uniformly
and linearly distributed  loads, 
temperature loads, element loads
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MARC MSC/NASTRAN NISA

Nonlinear FEA solver World's  most widely used 
FEA solver

State-of-the-art GUI, 
seamless interoperability

Segment-segment contact 
method: smoother results 
contours

Comprehensive element 
library

Completely integrated 
pre/post- processing 
environment

Automatically replaces a 
distorted mesh

Offers a complete set of 
implicit and explicit nonlinear 
analysis

Extremely User Friendly

Static, Dynamic, Multi physics 
and Coupled Analysis

Unparalleled support for 
super elements

Analysis type: Redundancy, 
Static equilibrium, Quasi-static 
equilibrium, Dynamic 
Kinematic, Inverse dynamic

Models a broad range of 
materials

Nonlinear and contact 
analysis

Extensive finite element 
library

Creates bolt models easily Real and complex 
eigenvalues in vibration 
analysis

No restriction on the 
lamination 

Customizes databases Dynamic response to 
transient loads including 
random excitation

Edge effects and delamination 
can be predicted

Creates images and movies for 
reports and presentations

Solves large, complex 
assemblies more efficiently.

Power spectral density (PSD) 
for random load
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Pro/MECHANICA SAP 2000

Broad Range of Analysis Capabilities Sophisticated and Versatile

Powerful Design Intent functionality Creates any arbitrary shape and any 
user defined material

Material properties shared with the 
design model

Elements: Frame, Tendon, Cable, Shell, 
Solid, Link

One file stores all simulation and 
design data

Advanced SAPFire Analysis Engine

Captures actual model geometry as 
designed, not as an approximation

Multiple 64-Bit Solvers for analysis 
optimization

Compare model iterations side-by-side Automatically generates: 
wind loads, seismic loads, wave-loads

Automate results-creation using 
templates

Bi-directional direct link to MS Excel for 
editing, Moment, Shear and Axial Force 
Diagrams
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❖ Logan ,Daryl L., A FIRST COURSE IN THE FINITE ELEMENT 
METHOD, Cengage Learning, Stamford, CT, 2012, Fifth Edition
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Practice Problems
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𝑑2𝜑

𝑑𝑥2 = x + 1; 0 < x < 1

𝜑 0 = 0
𝜑 1 = 1

𝐹( ത𝜑)=
1

2
∫0

1
(

𝑑 ഥ𝜑

𝑑𝑥
)2𝑑𝑥 + ∫0

1
(𝑥 + 1) ത𝜑𝑑𝑥

• Find Exact Solution 
• Use Ritz Solution Method and find approximate solution
• Use Galerkin method and find approximate solution
• Compare the three solutions
Note that the functional is given above.
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• Write shape functions for a 4-node, 8-node and 9-node 2-D 
quadrilateral element  in (r, s) system

• Write shape functions for a 8-node brick element in (r, s, t) system
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𝑦

oo o

o

//////////////////////////

(1)
(2)

(3)𝛼𝛼

𝑥

𝑃

𝐻

𝐿

𝟒𝟑𝟐

𝟏

𝐸 and 𝐴 same for
 all three bars

Consider the truss problem defined here. 
Geometric and material properties are: 𝐿, 𝛼 ≠
0, 𝐸 and 𝐴,  as well as the applied forces 
𝑃 and 𝐻, are to be kept as variables. 

(i) Derive Global Stiffness K and system of 
equations
(ii) Apply BC , find reduced equations and 
solve for unknown nodal displacements 
(iii) Find nodal forces and check for 
equilibrium
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oo
1 2 31 2 3 4 𝑥

𝐴1, 𝐸1, 𝐿1 𝐴2, 𝐸2, 𝐿2 𝐴3, 𝐸3, 𝐿3

A. Compute the global stiffness matrix 𝐾  of the assemblage shown in figure by 
      superimposing the stiffness matrices of the individual bars. Note that 𝐾  should
      be in terms of 𝐴1, 𝐴2, 𝐴3, 𝐸1, 𝐸2, 𝐸3, 𝐿1, 𝐿2, and 𝐿3. Here 𝐴, 𝐸, and 𝐿 are generic symbols
      used for cross-sectional area, modulus of elasticity, and length, respectively.

B. Now let 𝐴1 = 𝐴2 = 𝐴3 = 𝐴, 𝐸1 = 𝐸2 = 𝐸3 = 𝐸 and 𝐿1 = 𝐿2 = 𝐿3 = 𝐿. If nodes 1 and 4 
are fixed and a force 𝑃 acts at node 3 in the positive 𝑥 direction, find 
expressions for the displacement of nodes 2 and 3 in terms of 𝐴, 𝐸, 𝐿 and 𝑃.

C. Now let 𝐴 = 1 in2, 𝐸 = 10 x 106 psi, 𝐿 = 10 in. , and 𝑃 = 1000 lb. 
       i.  Determine the numerical values of the displacement of nodes 2 and 3.
      ii.  Determine the numerical values of the reactions at nodes 1 and 4.
     iii.  Determine the stresses in element 1-3.
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For the beam shown in Figure, determine the displacements and the
Slopes at the nodes, the forces in each element, and the reactions. 
Use symmetry at Node 3 to reduce the problem.

𝐸 = 70 GPa
𝐼 = 1 x 10−4m4

o o
.

v v
\\\\\ \\\\\ \\\\\ \\\\\

5
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2
1

3 m 3 m4 m

2 m

8 kN
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y

x
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1
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v
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4

//////

𝑘 = 2000 kN/m

2

1

3

ƴ𝑥1

ƴ𝑥2
ƴ𝑥3

<

For the problem shown in Figure determine the (1) nodal 
displacements and (2) stresses in bar elements. 
Let 𝐸 = 210 𝐺𝑃𝑎, and 𝐴 = 5.0 × 10−4 m2 for both bar elements.
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\\\\\\\\\\

1 3

2
32

1 4

20 ft

20 ft

5000 lb

For the rigid frame shown in Figure determine (1) the nodal displacement
components and rotations, (2) the support reactions, and (3) the forces in each
element. Let 𝐸 = 30 x 106 psi, 𝐴 = 10 in2, and 𝐼 = 200 in4 for all elements.
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/

v

o 4

32

1

30 in.

20 in. 𝑠 = 1000 Τlb in.

Determine the (i) nodal displacements and (ii) element stresses for the thin plate subjected 
to a uniform shear load acting on the right edge as shown in Figure. 
Use 𝐸 = 30 x106psi, 𝑣 = 0.30,  and 𝑡 = 1 𝑖𝑛𝑐ℎ

1

2
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o

o

o

1 2

Steel

Steel

Brass

A bar assemblage consists of two outer steel bars and an inner brass bar. The 
three−bar assemblage is then heated to raise the temperature by an amount 

𝑇 = 400F. Let all cross-sectional areas be 𝐴 = 2 in2 and 𝐿 = 60 in., 𝐸steel = 30 x 

106psi, 𝐸brass = 15 x 106psi, 𝛼steel = 6.5 x 10−6/0F, 𝛼brass = 10 x 10−6/0F.

Determine (a) the displacement of node 2 and (b) the stress in the steel and 
brass bars.
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///////
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/
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/

v

𝐿

For the beam shown in Figure, determine the natural frequencies using
(i) Three elements and  lumped mass matrix , and 
(ii) Two elements and  consistent mass matrix

Let 𝐸, 𝜌, and 𝐴 be constant for the beam.
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80 kN

𝐸 = 210 𝐺𝑃𝑎
𝐴 = 1.0 x 10−2m2

 𝐼 = 1.0 x 10−4m4

4

For the rigid frame in the Figure, determine the displacements and 
rotations of the nodes, the element forces, and the reactions.
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