Saturation in metal Binder Jetting: Simple in principle, complicated in practice?

As metal Binder Jetting (BJT) transitions from a technology for the future to a technology for now - and one that is increasingly being installed at Metal Injection Moulding (MIM) producers around the world - one of the basics of the process that we can no longer avoid getting to grips with is saturation. In this article, longtime metal Binder Jetting expert Dan Brunermer, from technology consultancy B-jetting LLC, explains saturation and how to measure it, considers voxels and DPI, and finally presents control options and how choices in controls affect saturation.

Saturation, for the uninitiated, is the primary driving variable used when xecuting the manufacturing step Binder otting (BJT) It is simplo Bnderstand in principle but can be difficult to understand when reducin rinciple to practice This article will principle to practice. This article wit understanding Binder Jetting tech nology's \#1 variable, including:

- The absolute basic steps of B. Additive Manufacturing
- What saturation is and some basic units of measure
What voxels are and how they are defined
- Binder nozzle geometries and how they relate to voxels
- Control options and how choices in controls affect saturation options.

A Binder Jetting primer

BJT Additive Manufacturing is a fast growing manufacturing technology that is finding increasing uses in the

Metal Injection Moulding industry, rom the production of low-quanty prototypes to high-volume products
Like all Additive Manufacturing this is a layer-based AM process nd parts are built up one layer at time, in this case by binding layers
of powder together in a build box. A complete process for creating consists of dense part usually consists of manulacturing, curing, are many articles explaining the are many aricles explaing the man factur

Fig. 1 Dan Brunermer, from technology consultancy B-jetting LLC, has
decades of experience in metal BJT technology and application development

Fig. 2 A step-by-step view of the building step during Binder Jetting

As illustrated in Fig. 2, three basic operations are repeated inside a typical Binder Jetting machine during manufacturing

- Spread a uniform layer of powder
- Additively manufacture an image in binder that represents the cross-section of the part at that layer height
Add some amount of energy. usually heat, to slightly dry the surface

These three activities happen epeatedly, from the bottom to the op. The engineering complexity of any Binder Jetting machine is much larger than what I have described, but this is the essence. The rest of this paper is meant to describe how the machine decides where to place the binder droplets and how much gets used in the build.

Saturation defined

Let us get the easy part out of the way and start with the basic definifion of saturation and its underlying assumptions. Of the latter, the most mportant is that the powder we are binding is made of whole granules and that these are insoluble in the binder being jetted as the glue. This is true for 99% of metal BJT, as the inder is not normally mixed into the powder, but it is not true for several erms of BJT, nor when binding some agglomerates. This discuss sized drops, as they are an emerging aydown strategy
Given a contained volume of powder V_{c} with dimensions X, Y, Z, we can say the container is filled with solid granules and air. That is,

$$
\begin{gathered}
V_{C}=X * Y * Z \\
V_{C}=V_{\text {powder }}+V_{\text {air }}
\end{gathered}
$$

We can introduce the term Packing Rate', PR, to express the ratio of the measured powder density to the material's solid density, and rewrite.

$$
\begin{gathered}
V_{C}=P R * V_{C}+(1-P R) V_{C} \text { and } \\
V_{\text {powder }}=P R * V_{C} ; V_{\text {air }}=(1-P R) V_{C}
\end{gathered}
$$

If we fill $V_{\text {air }}$ with some volume of binder, $V_{\text {binder }}$, we can define satura tion, S.
$S=\frac{V_{\text {binder }}}{V_{\text {air }}}=\frac{V_{\text {binder }}}{(1-P R) V_{C}}$ for any V_{C}

This bulk property of saturation is true all the way down to the base unit level: the Voxel - I love this word, I have to say. It means Volumetric Picture Element. This is the most accurate and descriptive word that has been coined in a long

Fig 3. A binder laydown schematic illustrating the method of calculating saturation
ime. It is one 'dot' in a picture, extruded through some thickness. It is perfect. In Fig. 3, you can see this principle at work. For the typical BJT machine, the volume s broken down into discrete, fractional pieces. These cubic shapes an be of any size, ratiometrically. and, in most cases, $X \neq Y \neq Z$. One needs to be familiar with few terms not common in manufacturing processes. A BJT machine is often rated by the unit DPI, or Dots Per Inch. BJT follows D printing technology and, since much of that is based on typographic printing, it continues to be based on the old system of units points' and 'picas'. You will often though not always) see multiples of 6, 12, and 72 DPI.
DPI and Droplet Spacing are
inverts, typically converted from
inches to microns. The equation is a simple one

Print density in DPI

$$
=\frac{25,400^{\mu m} / \text { in }}{d \mu m}
$$

where d is the distance between drops
$d \mu m=\frac{25,400^{\mu m} / \text { in }}{\text { Print Density in DPI }}$
where $D P I$ is the rated build density
You might see 'accuracy' listed in machine specification as a number, ike $63.5 \mu \mathrm{~m}$. Using the equation, can see this spacing describes 400 DPI process. This is invertible nd any distance can be used as a basis for a DPI that is, if you have all it 25 DPI).
With this as background, we can ake any volume V_{c} and decompose it to a combination of voxels
$d V_{\text {voxel }}=d X * d Y * d Z$

Where $d X$ is the X spacing between drops, $d Y$ is the Y spacing betwee drops, and $d Z$ is the Z spacing between drops. We can say that each voxel is additively manufactured with one droplet of binder with volume $V_{\text {drop }}$. With these new variables, we can rewrite the fundamental saturation equation:
$S=\frac{V_{\text {binder }}}{V_{\text {air }}}=\frac{V_{\text {drop }}}{(1-P R) d X * d Y * d Z}$

It is easy enough to understand that $d Z$ is the layer thickness and it is easy enough to imagine a way o measure the droplet's volume Where the confusion comes is under standing where $d X$ and $d Y$ come from and how a machine computes them. To understand that we need to understand real-world inkjet Binder Jetting modules.
Before I get too far in, though, it is mportant to understand two things:

Parameter	Polaris PQ- $512 / 85 \mathrm{AAA}$
Number of addressable jets	512
Print width	$64.897 \mathrm{~mm}(2.555$ inches $)$
Nozzle spacing:	
Single colour (4 rows of jets)	$127 \mu \mathrm{~m}[0.005 \mathrm{in}].(200 \mathrm{dpi})$
Two colour (2 rows of jets/per colour)	$254 \mu \mathrm{~m}[0.010 \mathrm{in}].(100 \mathrm{dpi})$
Jet straightness, 1 sigma*	$2.0 \mathrm{mrad}\left[0.11^{\circ}\right]$
Nominal drop velocity	$8 \mathrm{~m} / \mathrm{s}$
Calibrated drop mass	80 ng
typical	

Fig. 4 Spec sheet for the Polaris PQ-512/85AAA module from FujiFilm Dimatix (Courtesy FujiFilm.com)

- This is just algebra! This is not physics!
- Since it is just algebra, the equations can be easily manipulated
By 'not physics', I mean that this math cannot be used for things like simulations or making
predictions about the interactions between a fluid and a powder, even when the physical properties of everything are known. These simple equations do not account for the real wetting phenomenon of the process. It is a short-hand method for relating the Additiv Manufacturing strategy.

It is also based on volumes, no mass. Measuring volume is notoriously less precise than measuring weights, but, in this case, the percentages would feel strange to control. Saturation as a relationship between the volume of binder and volume of air in the powder is easy to understand and envision. This is especially true when moving between powder types.
Over the years, I have found that saturation does not generally vary a great deal and it is usually between $50-75 \%$. Also, it is as true when addiively manufacturing light materials like silica with non-reactive binders as it is when additively manufacturing denser materials like tungsten alloys. Likewise, most powders do not seem o vary that much by packing rate either, with a normal range of $50-60 \%$ solid. There are outliers, like sands and more filamentary particles, but, by and large, this is common.
If someone used mass ratio as the primary relationship expressing binder deposition rates to the mass of the voxel, they might be misled into thinking they are consuming much more binder in one case than the other. And the 'feel' for the consumpion would be backwards.
For example, silicon carbide has a normal density of $3.21 \mathrm{~g} / \mathrm{cm}^{3}$. If you had a 55% dense powder additively manufactured at a saturation rate of sixty percent and back-calculate with a binder density of $1.05 \mathrm{~g} / \mathrm{cm}^{3}$, you would be applying binder at the rate of 13.8% by mass.
But, if you were additively manu facturing tungsten carbide, with a density closer to $15.6 \mathrm{~g} / \mathrm{cm}^{3}$, the sam ate would be 3.3% by mass. And paradoxically, if you increase satura no easy to think, at first glance, that the ungsten carbide was consuming less inder, when, in fact, it is not. Using volume ratios allows consumption ates to be compared consistently across different powder types more easily for the user.
We often want to compute the pair $d X$ and $d Y$, given a desired satura tion, a specified layer thickness, and
a known powder packing rate. Here is the secret: it is as simple as rewriting the equation and understanding the constraints on $d X$ and $d Y$.
$d X * d Y=\frac{V_{\text {drop }}}{(1-P R) * S * d Z}$

This is where it starts to get confusing. To the user/operator the number pairs for $d X$ and $d Y$ can seem to come from nowhere, but, in fact, they are driven by two things he physical layout of the jetting moduless and the complexity of the controls available. To illustrate this consider the Polaris PQ-512/85AAA module from Fujifitm Dimatix, shown in Fig. 4.
Though they could be assigned ither way, X is generally defined as he axis in line with the nozzles, while is defined as the spacing between he jetted lines. In this example, the native $d X$ spacing would be 127 microns (200 DPI), but $d Y$ will require more explanation.
The first constraint a typical BJT machine will place on the calculafions is that they all must involve whole drops' and 'whole voxels'. For $d X$, it means we can only divide the spacing by an integer lor multiply the DPI by an integer) to achieve a new $d x$ spacing. Practically, this means you an additively manufacture with spac ngs of $127 \mu \mathrm{~m}, 63.5 \mu \mathrm{~m}, 42.33 \mu \mathrm{~m}$, etc., but you cannot choose $50 \mu \mathrm{~m}$ xactly
You will find that, with most piezoriven binder nozzles, there is an interplay and relationship between jetting frequency, droplet volume, and droplet velocity. Because of his, rely manes are by ietting with ively manuaclure by jelling wing a ead a conctan velocity (Fig 5) Tesulting spacing dY is thes build velocity times the jetting period

$$
=V \quad * T=V / f
$$

Mechanically, the same integer divider rule still applies vis-à-vis drop spacing. This example is challenging as the intra-row spacing and the

Fig. 5 The resultant spacing from the interplay of velocity and frequency, $d Y$, is the build velocity x the jetting period
"You will find that, with most piezo-driven binder nozzles, there is an interplay and relationship between jetting frequency, droplet volume, and droplet velocity. Because of this, most machines are designed to additively manufacture by jetting with a constant frequency while moving the head at a constant velocity. "
row-to-row spacing are not evenly divisible. The former, at 1.016 mm means it has a native Y resolution of 5 DPI. But the second row is spaced at $8 \mathrm{~mm}(3.175 \mathrm{DPI})$ and these do not mix. No single DPI can be used that will allow the head to be fired as a complete unit, while also perfectly aligning every drop.
As an aside, this highlights one of the difficulties designers face when implementing binder nozzle controllers. Though it is not entirely apparent, a 2D printing matrix like the one shown here can often be controlled by firing each line of piezos independently, or in groups. However his approach would require as many pulse generators and data-paths the designer wants line-level question.
For the sake of an example, let us specify a laydown of $200 \mathrm{DPI} \times 200 \mathrm{DP}$ and accept that the saturation value
would be correct. It means that there would be 62.992 DROPS between row and row 3 . So if nozzle one drops at position $=0$, nozzle two, 63 drops later, will drop at 0.001 mm , with a persistent .001 mm error in absolute drop placement in every line. The error is non-cumulative, but it is ever present. For our purposes, we shall gnore it, but; if this fine level of a control were required for an application, at least two generators would be needed.
On the flip-side, though, if the decision was made to control all our lines independently, the value for dY would be nearly free-settable is becaus bounds of saturation. Tha , up with a combination of position tracking and timing offsets to achieve nearly) perfect spacing.
All that said, for the purpose of this discussion, we shall say $D P I_{x}$ must be $D P I_{m \times}{ }^{*}$ where i is the number of passes. For this module, we shall use

DPIIX) at 1 Pass	200	(dpi)		DPI(Y) at 1 Line		25	(dpi)	
Packing Rate	0.5236	(\%/100 - packing rate)						
Volume of Droplet	80	(pl - drop volume)						
Saturation Desired	0.7	(\%/100 - saturation)						
Layer Thickness Z (um)	75	($\mu \mathrm{m}$ - layer thickness)		338.66	6667			
F	5000	(Hz - frequency)						
If \# of Passes is	1	then DPI is	2	then DPP is	3	then DPI is	4	then DPI is
$X(\mu \mathrm{~m})$	127.00	200.00	63.50	400.00	42.33	600.00	31.75	800.00
Y ($\mu \mathrm{m}$)	25.19	1008.51	50.37	504.25	75.56	336.17	100.74	252.13
Aspect Ratio	5.04	$=X / Y$	1.26	$=X / Y$	0.56	$=X / Y$	0.32	$=X / Y$
$V(\mathrm{~mm} / \mathrm{s})$	125.93		251.86		377.79		503.72	

Table 1 An example of the Binder Jetting process' ideal operations
"While saturation is just a number, and the actual physics involved with Additive Manufacturing are much more complex than this suggests, strict control of it has proven to be a reliable method of achieving your best results for over twenty years. "

DPI $m_{m x}=200 \mathrm{DPI}$. DPI must be $D P I_{m}{ }^{*} j$ and $D P l_{y}$ will further be constrained by the frequency/velocity relationship. For this module, we shall use DP/
$=25 D P /$. With everything defined. the control software now starts computing $d X$ and $d Y$ pairs to find the best fit.
At this step, the control system is ooking primarily at the aspect ratio of the drop placement and it is using
exact dY values instead of constrained ones. dY will be adjusted in the final calculation, but what the software examines first is the voxel aspect ratio.

$$
A R_{\text {voxel }}=\frac{d X}{d Y}
$$

A good BJT process will try to operate as close to 1 as possible. In the example shown in Table 1, the

Min DPI (Y)	$\mathbf{5 0 0}$	Max DPI (Y)	525
Max (Y) Spacing ($\mu \mathrm{m}$)	50.8	Min (Y) Spacing	48.381
Saturation	0.6941		0.7288
\% Accurate	0.00843		0.04114
Velocity (mm/s)	254		241.905

Table 2 Having chosen option 2 from Table 1, Binder Jetting could be carried out at with either 500 or 525 DPI. Since 504.25 is nearer to 500 , this is the ideal
sotware should pick option two. With two passes selected, the software will now rectify the $d Y$ value. In this case, the Binder Jetting could be done with either 500 DPI or 525 DPI, both of which are detailed in Table 2.
Obviously, 500 DPI is closer to 504 than 525, so the former would be chosen. And that is it. The real saturation would be 69.4% and the machine would configure itself to build with a speed of $254 \mathrm{~mm} / \mathrm{s}$ and a jetting frequency of 5 kHz . The fina process will have resolutions 400 DPI (X) $\times 500 \mathrm{DPI}(\mathrm{Y}) \times 338.7 \mathrm{DPI}(Z)$ That translates to a neatly stacked grid of voxels with size $63.5 \times 50.8 \times$ $5 \mu \mathrm{~m}$.
Though this is a contrived example with somewhat invented numbers, this is how a Binder Jetting machine works. While saturation is just a number, and the actual physics involved with Additive
Manufacturing are much more Manufacturing are much more complex than this suggests, strict
control of it has proven to be a relicontrol of it has proven to be a reli able method of achieving your best esults for over twenty years. One last this that should be accurately measuring and tracking the 'as-manufactured' packing rate is key. The ballistic impact of the binder on the powder causes it to rearrange in most cases if not all. A good starting point for

Fig. 6 Some examples of dithering to control build density in Binder Jetting
approximation is 90-95\% of the measured tap-density, but, once you are making samples, you have to check and adjust accordingly.

Bonus: Dithering

Dithering the build has long been an established method of controlling print density in 2 D applications. By dithering the drops, the machine seeks to minimise the chance of excess bleed of the ink, while till preserving the original image quality. In B
in Binder Jetting, dithering is done for the same reason, but, with BJT, you get an additional benefit: any chemical that is added to the binder has the potential to be added to the chemistry of the final part. If it cannot burn out cleanly in the furnace, or during the curing step, those residuals can affect the material properties of your part. The most affected chemical is carbon as almost all binders are based on polymers with a carbon backbone.

Most dithering strategies fall into one of two categories: using different sized drops for the interior and exterior or using all the same sized drops, but removing some. In both cases, an outer shell of some voxel thickness is additively manufactured with full saturation, as we calculated eartier. This guarantees he part can be handled post-cure res the case of drops of muttiple sizes, he mack he takes advantag of binder nozzle flexibitity. Most ew different sized drops from ingle type so a smaller-sized drop ight be setected to uiformly fill ight be selected to unifrrmy wen using standard drops, special lering algorithms areps, specia entime the infill Both method ohieve the same goal, in that less inder is used inder is used.
thering is that to note that sing binder nozzles with the right controls, and/or a software stack that supports dire rorking on voxels. Again, this is
value engineering at work. To have the feature, you have to pay for the eature.
I hope you found this article usefu and informative. If you still have ques ions about how to tune your machin and process, please reach out

Author

Dan Brunermer
B-jetting llc.
124 Grant Avenue Suite 110 , Vandergrift, Pennsylvania 15690, United States
danab-jetting.com
jamesab-jetting.com
www.b-jetting.com

