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The past few decades of military experience have brought major advances in the prehospital care of pa-
tients with trauma. A focus on early hemorrhage control with aggressive use of tourniquets and hemo-
static gauze is now generally accepted. This narrative literature review aims to discuss external
hemorrhage control and the applicability of military concepts in space exploration. In space, environ-
mental hazards, spacesuit removal, and limited crew training could cause significant time delays in
providing initial trauma care. Cardiovascular and hematological adaptations to the microgravity environ-
ment are likely to reduce the ability to compensate, and resources for advanced resuscitation are limited.
Any unscheduled emergency evacuation requires a patient to don a spacesuit, involves exposure to high
G-forces upon re-entry into Earth’s atmosphere, and costs a significant amount of time until a definitive
care facility is reached. As a result, early hemorrhage control in space is critical. Safe implementation of
hemostatic dressings and tourniquets seems feasible, but adequate training will be essential, and tourni-
quets are preferably converted to other methods of hemostasis in case of a prolonged medical evacua-
tion. Other emerging approaches such as early tranexamic acid administration and more advanced
techniques have shown promising results as well. For future exploration missions to the Moon and
Mars, when evacuation is not possible, we look into what training or assistance tools would be helpful
in managing the bleed at the point of injury.
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Introduction

Space is a remote and hazardous environment, and over
the years, space exploration has led to 21 fatalities from 5
events.1 Most mishaps that involved injuries have
occurred during liftoff or re-entry, including drowning
incidents, cabin decompression, and blunt trauma.
However, there have also been in-flight incidents that
could have required emergency management, such as
fires, vehicular collisions, and loss of environmental
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controls.1,2 While there have not been any evacuations
for major trauma injury to this day, the possibility of a
resuscitation scenario on future missions cannot be
eliminated.3-5 Recent modeling for a 923-d standard Mars
mission (560 d on the surface) has provided a risk
estimate of 5.209% for reaching medical evacuation
criteria secondary to traumatic injury, such as burns,
musculoskeletal injuries, and bleeding.5 Among these
conditions, traumatic hypovolemic shock accounted for
0.193% and ranked highest for reaching loss of crew
life, with an estimated risk of 0.107%.5 Considering the
high impact of these injuries on health and mission
success, resuscitation protocols informed by mission
attributes and targeted toward realistic interventions will
be critical.

Trauma resuscitation in space is limited because of a
variety of factors, including microgravity, logistical
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constraints, and vehicle mass and volume limitations. In
the case of life-threatening injuries, the International
Space Station (ISS) medical kit currently allows for basic
trauma and surgical procedures as well as Advanced
Cardiac Life Support,6,7 and astronauts are trained in
resuscitation scenarios by the “treat first what kills first”
principle: securing an adequate airway and managing
ventilation before hemorrhage control.8

In recent years, however, care standards in prehospital
and austere environments have seen a paradigm shift.
Based on observations that extremity hemorrhage was a
leading cause of preventable death in combat casualties,
revision of battlefield trauma care recommendations
resulted in the development of Tactical Combat Casualty
Care (TCCC) guidelines by US military services.9 By
emphasizing “good medicine with good tactics,” TCCC
has focused on treating major external bleeding caused by
penetrating injury and delaying the onset of hypovolemic
shock through the application of direct pressure and
aggressive use of tourniquets and hemostatic gauze—even
before attempts at managing the airway and
breathing.10-12 The successful implementation of TCCC
has made important contributions to the highest casualty
survival rates in the history of modern warfare and
reduced fatal casualties attributed to extremity
hemorrhage.13-16

Lessons learned from the military have been translated
into the civilian sector through initiatives such as the
Hartford Consensus,17,18 the White House Stop the Bleed
campaign, and the development of TCCC-based courses
by the National Association of Emergency Medical
Technicians.10 Evidence-based guidelines from the
American College of Surgeons Committee on Trauma
and the American Heart Association now encourage the
use of tourniquets and hemostatic agents in controlling
massive hemorrhage in prehospital trauma care.19,20 The
wilderness medicine community is adopting TCCC con-
cepts as well, as early intervention becomes more critical
with prolonged evacuation times and constrained re-
sources.21-24

Space travel represents the ultimate remote medicine
setting, with a lack of medical resources (equipment and
personnel), unprecedented autonomy, and limited evac-
uation possibilities.25 The extreme environmental condi-
tions and physiological changes associated with
microgravity26 may increase the risk of mortality and
morbidity in the case of massive external hemorrhage.
With ongoing plans to set foot on the Moon and Mars and
an increasing amount of flight opportunities for “space
tourists,” a careful re-evaluation of current emergency
resuscitation guidelines is necessary. To this end, our aim
was to examine massive external hemorrhage control and
the applicability of TCCC principles in space.
Methods

A literature review was conducted to identify articles
about the management of external bleeding and the use of
tourniquets and hemostatic agents in austere environ-
ments—in particular, the spaceflight setting. PubMed was
searched through June 2022 using Boolean combinations
of the following key words and their Medical Subject
Heading (MeSH) derivatives: “trauma,” “emergency,”
“bleeding,” “hemorrhage,” “advanced trauma life sup-
port,” “prehospital,” “tactical combat casualty care,”
“tourniquets,” “hemostatic dressing,” “spaceflight,”
“weightlessness,” “parabolic flight,” “extreme environ-
ments,” “wilderness,” “arctic,” “Antarctic,” “submarine,”
and “oil platform.” References obtained were cross-
checked, and gray literature was searched for additional
relevant publications. One hundred two articles were
reviewed, representing techniques, protocols, or chal-
lenges in the civilian setting as well as extreme and
austere environments, outcomes of TCCC concepts in
civilian and military settings, or physiological changes in
spaceflight that are relevant to initial resuscitation and
external hemorrhage control.
Mechanisms of Injury

For long-duration spaceflight, risk estimates have previ-
ously been derived by studying analog populations, such
as military pilots, submarine crews, and Antarctic winter-
over research teams.27-29 However, spaceflight poses
unique operational and occupational risks that are
different from those on Earth. Significant medical
events during spaceflight have generally not been
related to orthopedic or surgical trauma, which, in
contrast, accounts for more than half of the evacuation
events from McMurdo Station in Antarctica.27,28

Morbidity from gravity-based events on Earth and other
accidental injuries, such as falls and motor vehicle
accidents, are not represented in weightlessness.

Nevertheless, minor trauma already occurs in space. A
database of in-flight musculoskeletal injuries and minor
trauma in the US space program has documented an
incidence of 0.021 and 0.015 per flight day for men and
women, respectively, with abrasions and contusions be-
ing most prevalent, followed by strains and lacerations.30

Most of these injuries occurred from impacting structures
while stowing or translating equipment, exercise, and
extravehicular activity (EVA), with a rate of 0.26 injuries
per EVA in microgravity alone.

People and objects still possess mass, which can
generate significant force when accelerated. In low Earth
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orbit (LEO), risk of major blunt and penetrating injuries
that could involve life-threatening external hemorrhage
would therefore be primarily related to the dynamic
stages of flight—launch, landing, and docking—or
EVA.31 Potential mechanisms include impact from mi-
crometeorites or crush-type injuries from movement of
high-mass structures during space station construction,
vehicle docking, and payload deliveries. Vehicular col-
lisions and near-miss accidents have occurred in flight
multiple times.2 In addition, upcoming exploration-class
missions will include surface operations in partial gravity,
with increasing amount of EVA and heavy work in a
highly dynamic environment.32 For instance, astronauts
may be involved in habitat construction, heavy equip-
ment transfer, human-machine interactions, and rover
vehicle operations. Increased fracture risk from osteopo-
rosis in space may further add to risk of blood loss from
blunt or penetrating injury,33,34 and above all, with the
current intensification of activity in the human spaceflight
industry, one must take into account that different and
unforeseen emergencies could always arise.
Environmental Challenges

In space, trauma management is not as straightforward as
in the emergency department. Especially when an astro-
naut is exposed outside the spacecraft or space habitat,
many of the previously mentioned scenarios would be
challenged by prolonged time to reach initial trauma care
on board. With concurrent spacesuit or spacecraft dam-
age, for instance, protecting the crew from ongoing
environmental hazards would be a priority before starting
any resuscitation procedures. In case the injured astronaut
reaches his crewmates, prolonged times for suit removal
and deployment of stowed equipment could cause further
delays, and restraining patients and supplies is compli-
cated without gravity.3,35 Although the performance of
most Advanced Trauma Life Support procedures appears
to be feasible in microgravity,7 limited shelf lives during
long-duration missions and vehicle constraints of avail-
able storage space and electrical power may compromise
the availability of adequate equipment, medical supplies,
and resuscitation fluids such as blood products.25 In
addition, a crew’s medical expertise is generally limited.
For current ISS operations, crew members receive
approximately 9 h of medical training preflight that in-
cludes basic first aid procedures and cardiopulmonary
resuscitation. Further hands-on training is provided to 1
or 2 specially designated crew medical officers, who are
not required to be physicians, and in total receive
approximately 14 to 40 h of medical training that is
mostly oriented toward basic skills that enable them to
interface more effectively with a flight surgeon on the
ground.6 With real-time communication interruptions and
delays of up to 22 min on missions to Mars, ground-
based assistance via telemedicine may not be readily
available, further compromising the possibilities for
adequate damage control.36

In case of a medical emergency evacuation from LEO,
a spacecraft such as the Soyuz or Crew Dragon could
technically undock and land within 3 to 4 h. Yet, even
with a preferred, nonballistic landing at one of the pri-
mary landing sites, it could take anywhere between 5 and
48 h until the patient reaches a definitive healthcare fa-
cility on Earth. This may include up to several hours in
the spacecraft in which patient access and the provision
of any medical care is severely constrained due to the
need for pressure suits and cramped conditions.28,36 Also,
crew members would be exposed to approximately
4 +Gx during the landing profile. A hemorrhagic shock
model in primates undergoing centrifugation has shown
that exposure to re-entry acceleration forces significantly
increases shock parameters compared with a normovo-
lemic control condition, with more adverse events when
the hemorrhage is severe (class III or IV, or >30% loss of
blood volume).8,37 Importantly, because uninjured crew
members typically display hypovolemic signs of a class I
hemorrhage (15% loss of blood volume) due to micro-
gravity-induced fluid shifts and cardiovascular decondi-
tioning in space, a true class I hemorrhage in space may
respond much like a class II hemorrhage (15–30% loss of
blood volume) upon return to Earth.38 In case of massive
hemorrhage this could seriously compromise a casualty.
The alternative of a ballistic re-entry would cause even
higher (8 or 9) G stresses, and unpredictable landing sites
would further delay appropriate medical monitoring and
intervention.36 Future deep space exploration missions
will be even more challenging. Reaching definitive care
may take anywhere from multiple days (eg, 4–5 d from
the Moon) to multiple months, or, more realistically, may
not even be feasible at all.
Cardiovascular Deconditioning and Hematological
Changes

Various circulatory physiological changes occur in space
that are likely to reduce the ability to withstand the
consequences of massive hemorrhage. In the absence of
gravity, fluid is redistributed toward the upper body, and
the relative hypervolemia at heart level results in
compensatory loss of water and electrolytes and a net
decrease in plasma volume.26,39 Astronauts have been
found to lose 10 to 23% of circulating blood volume
within 24 to 48 h in space to reach a new equilibrium of
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central blood volume that is similar to that in the upright
position on Earth.39-41 The low variance in gravitational
stimuli resets the autonomic nervous system, resulting
in overall blunting of the cardiac chronotropic and
baroreflex responses to hypotension.42-44 Reductions in
systemic vascular resistance do not require large
contractility of the heart,45 and cardiac atrophy of 12%
has been observed after 10 d of spaceflight.46 These
adaptations may be appropriate for regular microgravity
conditions but will significantly increase the impact of
any blood loss and reduce the ability to compensate for
hypovolemic stress (Figure 1).47,48

A decrease in erythrocyte volume of 10% has been
found after 1 wk in space, specifically reducing oxygen-
carrying capacity in blood circulation.49 Similar results
have been obtained for long-duration missions, with 11%
decreases of red blood cell mass after 28, 59, and 84
d compared to preflight,50,51 and nearly half the astro-
nauts showed anemic hemoglobin concentrations after
missions longer than 21 d.52 The severity of this
“spaceflight anemia” is likely to increase on longer
exploration-class missions,52 during which this effect
may be further amplified by exposure to space
radiation.53

Platelet number and activity have also been shown to
be decreased in microgravity conditions.34 Findings of
reduced platelet aggregation and adhesion as well as
other altered coagulation systems suggest that hemostasis
may be more difficult to achieve in space,54 despite recent
findings of a potentially increased risk for thrombus
formation.55 Systemic vasodilation from high levels of
atmospheric carbon dioxide—typically fluctuating be-
tween 2.3 and 5.3 mm Hg in spacecraft—may further
increase risk of blood loss,56,57 and venous bleeding has
also been shown to increase in parabolic flights, possibly
because of the lack of venous wall compression.33

Thus, a massive bleeding—especially as it leads to
hypovolemia and coagulopathy in the case of shock—is
likely to have a relatively profound impact on the overall
outcome of a trauma injury compared with that in the
terrestrial setting. The “golden hour”—the period imme-
diately after significant trauma in which intervention has
the greatest effect on outcome—may be shorter,38 and
with reduced fluid resuscitation possibilities on board,
early hemorrhage control becomes even more
critical.25,58
External Hemorrhage Control in Space

TOURNIQUETS

An important factor in the life-saving potential of the
TCCC guidelines has been the renewed focus on
tourniquet use. While a casualty could administer self-aid
by applying direct pressure at the site of bleeding as an
effective initial technique, it would preclude a care-
providing crew member with limited time and resources
from performing other procedures.11,18 With the imme-
diate and correct application of a tourniquet, the crew
would have time for conversion to other methods of he-
mostasis such as hemostatic or pressure dressings.

Well-designed tourniquets can reliably achieve hem-
orrhage control and have been demonstrated to save lives
when applied before the onset of shock,59,60 also in
civilian and wilderness settings.61-63 Nevertheless,
conclusive evidence remains weak.24,64 In terms of
safety, tourniquets have remained a controversial topic
because of their complications, which are primarily
related to ischemia and compression.65,66 Reviews of
recent combat and civilian experiences have shown
minimal morbidity, but the total tourniquet time in
these studies was less than 2 h in most of the
casualties.67-69 Beyond the 2-h “safe time” limit, slow
release of a tourniquet is ideally done in a medical
treatment facility with advanced resuscitative capability
because prolonged tourniquet time can be associated
with life-threatening systemic hyperkalemia and
reperfusion injury.11,70,71 If a tourniquet has been in
place for more than 6 h, it should not be removed
unless close monitoring and laboratory capability are
available.11

No evidence exists of the effectiveness and safety of
tourniquet use in space, and risk of complications re-
mains unclear. Although every effort should be made to
reassess and convert tourniquets in less than 2 h, pro-
longed time and impaired medical access in spacecraft
during medical evacuation could lead to serious compli-
cations. In one military study on 297 limbs, 100%
morbidity (amputation or fasciotomy) was recorded after
a tourniquet duration of 3 h or more (n=8), even though
the contribution of tourniquet time could not be differ-
entiated from other factors such as injury severity or
treatment indication.67 In another study of 14 limb in-
juries with a tourniquet duration of 3 h or more, signifi-
cant morbidity was related to compartment syndrome,
and rhabdomyolysis was present in all cases.71

Building upon TCCC, the US military has recently
published additional guidelines to prepare personnel for
“what to consider next” after all TCCC interventions
have been effectively performed, specifically focusing on
situations in which evacuation or mission requirements
call for prolonged (hours to days) care in austere settings
or during long-distance movements.72 These “prolonged
casualty care” (PCC) guidelines state that on-site tour-
niquet conversion beyond the 2-h mark (but before 6 h)
should still be considered by a trained combat medic if



Figure 1. Cardiovascular deconditioning in space. Upon entering the microgravity environment, fluid shifts toward the upper body. After several
days in flight, central blood volume is restored to preflight levels through reductions in plasma and red blood cells, and the cardiovascular system
adapts to the lower systemic vascular resistance and absence of gravitational stimuli. Upon return to Earth, the normal redistribution of blood volume
results in low central blood volume, reduced hematocrit, and an overall reduced cardiovascular capacity to deal with normogravity conditions.
Adapted from Charles et al47 and Gunga et al.48 Created with BioRender.com.
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needed. Eventually however, the risks from prolonged
tourniquet application may need to be deemed an
acceptable tradeoff in a spaceflight emergency scenario,
in which the consequences of a major bleeding may well
necessitate a judgment call favoring “life over limb.”

Another important factor that has been shown to in-
fluence outcomes is correct tourniquet application.73-75 It
is important that any tourniquet selected for use in the
space environment can be used in the right place, at the
right time, and with adequate training. Ten different
commercial limb tourniquets have met the criteria for
approval by the Committee on TCCC (CoTCCC)
(Figure 2).76 They should be placed 2 to 3 inches
above the wound and tightened until the distal pulse is
absent to prevent compartment syndrome. Depending
on the width of the tourniquet used, more than one
tourniquet may be needed in bigger limbs.21 Recently,
2 Combat Application Tourniquets (Gen 7) have been
added to the ISS medical kit, and a brief familiarization
training on their application has been implemented in
the 2-y preflight training period for all crew members.
In case a tourniquet is used in-flight, the crew is
currently required to contact the ground for further
support.

Different from bleedings at the extremities, those that
are located at junctional regions where the extremities
join the torso, such as the groin or the axilla, may be too
proximal for limb tourniquet application.21 Several
junctional tourniquets have been developed, and TCCC
guidelines suggest the use of such devices if the bleeding
site is amenable.11 However, there is still limited evi-
dence available on their effectiveness and safety,19,77,78

and none is specifically recommended by the
CoTCCC.76 Moreover, they add bulk and weight that
limit their use in space.
HEMOSTATIC AGENTS

When external hemorrhage occurs at sites that are not
amenable to tourniquet use, hemostatic dressings are
currently recommended in combination with direct pres-
sure.11,19 The current TCCC hemostatic dressing of
choice is Combat Gauze (QuickClot). Celox Gauze,
ChitoGauze, or XStat can be used as alternatives
(Figure 3).76 Apart from the preference for gauze-type
dressings because these are more easily packed into the
depths of narrow-tract wounds and do not present ocular
hazards in windy environments,23 powders or granular
agents cannot be poured into the wound in microgravity.

While many gaps still remain in high-level evidence
on the effectiveness of hemostatic gauzes,19,79 a retro-
spective review of 3792 military cases showed that the



Figure 2. Limb tourniquets recommended by the Committee on Tactical Combat Casualty Care (CoTCCC).76 *RMT Civilian models are not
recommended by the CoTCCC for military use; **Pneumatic tourniquets are considered primarily for tourniquet replacement, conversion, or
prolonged application.
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use of Combat Gauze, Celox, or ChitoGauze (n=317)
improved survival by an average of 7%.80 Combat
Gauze—which was recently added to the medical pack on
the ISS—has been shown to achieve hemostasis in 79 to
89% of penetrating injuries in military studies81-83 and 73
to 95% in civilian trauma.59,84,85 However, the function
of Combat Gauze depends primarily on blood-clotting
activity.86 Even though successful hemostasis has been
reported in coagulopathic models of hypothermia and
hemodilution,87,88 this dressing may be less effective in
space.54,55 Celox and ChitoGauze are chitosan-based
hemostatic dressings that form a mucoadhesive barrier
and work independently of the coagulation system.86

Both have been found to be safe and more effective
than Combat Gauze in preclinical studies, with a 10%
failure rate to stop or minimize bleeding using
ChitoGauze in a civilian setting.22,89 To determine the
effectiveness of different hemostatic dressings in space,
comparative studies in microgravity conditions are
required. If results are similar, the lightest, safest, and
most compact choice would be favored.90

For deep limb or junctional wounds, XStat is
preferred. It involves a syringe-like applicator that injects
rapidly expanding cellulose-based sponges coated with
chitosan, and the first clinical evidence from a civilian
setting has shown that in 9 out of 10 penetrating trauma
injuries, bleeding completely stopped on initial deploy-
ment.91 Finally, for external hemorrhage of the head and
neck, the iTClamp has been recommended as an additive
or alternative. This self-locking mechanical clip applies
pressure and promotes the generation of a hematoma that
can tamponade bleeding and may be useful if wound
edges are easily reapproximated.11 Both XStat and
iTClamp may be particularly useful in space as they are
small and require minimal training to us, but for
both devices, efficacy and safety in prehospital and
austere environments—including space—remain to be
determined.64
TRANEXAMIC ACID

Another advancement that has led to increased survival
rates on the battlefield is the early administration of tra-
nexamic acid (TXA) for casualties in or at high risk of
hemorrhagic shock.11,92 TXA is a lysine derivative that
slows down the conversion of plasminogen to plasmin,
thereby preventing clot breakdown without inducing clot
formation. The US military has included TXA in TCCC
and clinical practical guidelines since publication of the
CRASH-2 and MATTERs studies about a decade ago,
which demonstrated reduced mortality in more than
20,000 civilian and 896 patients with military trauma
when TXA was given within 3 h of injury.93,94 In the
latter study, TXA was also associated with less coagul-
opathy.94 For the greatest survival benefit, TXA should
be given as soon as possible after injury95 but not later
than 3 h, as this has actually shown to increase
mortality.11,93



Figure 3. Hemostatic agents recommended by the Committee on Tactical Combat Casualty Care.76 Xstat is best suited for deep, narrow-tract
junctional wounds. iTClamp may be used alone or in conjunction with hemostatic dressing or XStat.
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So far, no data exist on the use of TXA in space, and
despite promising initial results recent evidence suggests
that TXA may increase the risk of venous thromboem-
bolism by approximately 3-fold.96,97 As a result, potential
overuse in lower-risk trauma patients remains a concern.
These observations are particularly relevant for space-
flight, when altered coagulability, higher levels of
fibrinogen, endothelial dysfunction, and stagnant blood
flow in the upper body already seem to increase the risk
of thrombosis in otherwise healthy astronauts.55 Further
investigation into the safety and mechanisms of action of
TXA will be necessary to better understand its usability
for future space missions, including its application when
resuscitation fluids are not available. Storage re-
quirements, the potential impact of radiation on shelf-life
stability, and a lack of resources for resupply will also
have to be considered.92,98
Advanced Techniques and Future Perspectives

Besides the current TCCC and PCC concepts for ex-
tremity and junctional hemorrhage control, more
advanced techniques may provide additional solutions for
the major resuscitation challenges in space exploration, in
particular for injuries of the chest and abdomen that are
not amenable to compression. Examples of recent de-
velopments include the Abdominal Aortic Junctional
Tourniquet (AAJT) for external pressure to the abdomen,
injection of self-expanding foam (ResQFoam) or hemo-
static hydrogel, resuscitative endovascular balloon oc-
clusion of the aorta (REBOA), wound-closure through
nanobridging, and portable blood salvage and autotrans-
fusion technology to recycle spilled blood.99-101

Although these techniques require further improvement,
their life-saving potential and relative ease of
administration in austere environments deserve careful
consideration.

With regard to fluid resuscitation, early administration
of whole blood has recently been recommended for
implementation in TCCC guidelines, and the use of
freeze-dried plasma is currently under investigation in
special operations forces as well.101,102 These products
are particularly suited for use in austere environments,
and their role in space exploration has recently been
discussed in detail by Nowak and colleagues.25

Finally, Moon and Mars missions may require even
more specialized care and definitive surgical repair when
medical evacuation is not possible.90 To this end,
battlefield trauma care in the US military and other North
Atlantic Treaty Organization countries has involved for-
ward positioned (Role 2) surgical teams that can provide
early damage control resuscitation and surgery as close as
possible to the point of injury and without the need for
transportation to a more advanced care facility.103,104 In
space, such a staged or minimalist surgical approach may
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allow for temporizing measures if more advanced pro-
cedures are beyond the capabilities of the crew medical
officer, so that definitive surgical reconstruction can be
undertaken with better logistic planning, minimal time
pressure, and additional specialty training and consulta-
tion from Earth.90 Although a detailed discussion of
advanced resuscitation and surgery procedures is beyond
the scope of this review, it is worth mentioning that
renewed attention to the optimal utilization and compo-
sition of such forward teams by the Committee on Sur-
gical Combat Casualty Care (CoSCCC) could provide
valuable lessons for future space missions as well.105
TRAINING AND MEDICAL SUPPORT

The capability of any spaceflight medical care system to
handle trauma scenarios will ultimately be limited by the
capability and training of the crew. Correct tourniquet
application, the use of hemostatic agents, pressure
dressings, and other basic hemorrhage control techni-
ques—including practice under simulated emergency
stress—are essential medical training components for
maximizing trauma resuscitation outcomes.73,74 The
current training curriculum for providing emergency care
in LEO, however, does not cover training in hemorrhage
control techniques other than preflight tourniquet famil-
iarization and is designed primarily to prepare a crew
medical officer to interact with ground support in a
meaningful fashion.6 On a Mars mission, loss of real-time
support means that this training paradigm will be
inadequate.4

Guided by exploration-class mission parameters,
additional hands-on training in trauma resuscita-
tion—including early hemorrhage control—will be
needed. Similar to TCCC training principles in the mili-
tary,10,102 this would likely also require all crew members
to be involved so that each is independently capable of
providing life-saving emergency care.6 More complex
procedures, however, will require more specialized
training, and having a broadly trained paramedic or
physician on board may greatly enhance mission
safety.106 In a study comparing air medical evacuation
outcomes in 671 combat casualties, a higher level of
flight medic training was shown to be associated with
better survivability and physiological outcomes.107

Current operations in LEO require all training to be
conducted during a 2-y preflight period,6 and time and
opportunities for medical training are usually limited. In
combination with prolonged mission durations and
constantly evolving scenarios, this means that exploration
crews may have to rely on onboard refresher and just-in-
time training programs to maintain and expand their
skillset.108 To this end, trauma and surgical manikins
have previously been studied in microgravity condi-
tions,38,106 and the European Space Agency (ESA) and
National Aeronautics and Space Administration (NASA)
are currently investigating onboard training systems
based on virtual reality. Such platforms may soon allow
for virtual trauma simulations to practice resuscitation
principles109 and could potentially also be used for just-
in-time rehearsals of more complex, staged procedures.

Still, it will be unlikely that a crew medical officer will
possess the skills to cover all medical conditions and
emergency scenarios that may occur. The Autonomous
Medical Operations group at NASA and the Space
Medicine Team at ESA are putting significant work into
the development of an onboard support system, including
software and hardware that can assist in medical opera-
tions when greater independence from Earth is
required.110 By using systems engineering practices, such
a system can integrate complex data and functions from
various spacecraft systems into autonomous operations to
support crew health and performance.111 For trauma care,
this could include diagnostics and monitoring using ma-
chine learning models based on physiological data from
advanced monitoring technology. For instance, contin-
uous arterial waveform analysis has shown promising
results for early hemorrhage detection.112 Other examples
include medical database management to support clinical
decision making and the incorporation of augmented re-
ality for step-by-step procedural guidance.110
Conclusion

The spaceflight environment poses unique challenges to
prehospital trauma care. The limited resources and
training, physiological changes due to microgravity
exposure, and complicated nature of an emergency
evacuation are all changing parameters as missions move
farther from Earth. The potential benefits of medical care
capabilities focused on the point of injury—versus a re-
turn to definitive care—should be carefully weighed for
different mission types. Effective early hemorrhage con-
trol will be a crucial component of such an approach to
preserve cardiovascular reserve, even more so in up-
coming exploration-class missions during which an
emergency return to Earth is simply not possible. The
implementation of basic techniques such as hemostatic
dressings and tourniquets will require additional training
but could play an important role in delaying the onset of
hypovolemic shock. Future research focusing on their
efficacy in space is desired. Other techniques—including
early TXA administration and devices for junctional or
noncompressible wounds—show promise too but will
need further characterization first. Looking forward, the
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ongoing advancement and approaches emerging from the
battlefield suggest that tactical and surgical combat ca-
sualty care will continue to provide valuable lessons in
the years to come and can help to further improve hem-
orrhage control and trauma care for future space
exploration.
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