Motors & VFDs: How They Work and When They Don't

Presentation at

58th Annual Water Workshop Operator Training Committee of Ohio Doubletree by Hilton, Columbus OH

Wednesday, March 11, 2020

Electric Certificate – Ohio PUCO 15-960E

Natural Gas Certificate – Ohio PUCO 15-427G

A Certified Woman-Owned Business

Sustainable Energy Services Company Overview

Sustainable Energy Services was founded as one of the first energy consulting firms to combine energy purchasing and energy efficiency services. A woman-owned company, SES acts as an owner's advocate in all energy matters for customers in diverse industries, from manufacturing and retail to healthcare and education, as well as cities and public entities.

The energy specialists at SES are experts in executing customizable solutions to complex energy problems, drawing on 40+ years of energy consulting and engineering experience. The managing partners have shared their expertise as the exclusive energy advisors to the Ohio Association of Independent Schools, on the Energy Policy Board at Advanced Energy Economy Ohio, and as frequent speakers at national and regional conferences including OTCO. SES is a registered Trade Ally to all major utilities in Ohio.

The SES managing partners are certified by the PUCO for Electric and Natural Gas, by the Association of Energy Engineers and the Compressed Air & Gas Institute:

- C.E.M. (Certified Energy Manager)
- C.E.A. (Certified Energy Auditor)
- C.E.P. (Certified Energy Procurement Professional)
- C.D.S.M. (Certified Demand Side Manager)
- C.C.A.S.S. (Certified Compressed Air System Specialist)

An older but reliable motor...

Gets hooked up to a new VFD

And fails unexpectedly

At least 14 reasons why motors fail unexpectedly!

Unexpected Motor Failure

- 1. Transient voltages
- 2. Voltage imbalance
- 3. Harmonic distortion
- 4. VFD reflected waves
- 5. Sigma currents
- 6. Overloading
- 7. Misalignment

- 8. Shaft imbalance
- 9. Shaft looseness
- **10**. Bearing wear
- 11. Soft footing
- 12. Pipe strain
- 13. Shaft voltage
- 14. Loose connections

Motor Basics

Rotational space and time

$\nabla X E = - \mu \partial H / \partial t$

```
Faraday - Lenz' Law
```


Demonstration

A Few Motor Facts

- Standard Efficiency
 - Most motors today where installed before 1997
 - Typical efficiency is 83% to 90%
- EPAct Motors
 - Energy Policy Act of 1992
 - Effective October 1997
 - Typical efficiency is 87% to 92%
- >NEMA Premium Motors
 - Energy Independence and Security Act 2007
 - Effective December 2010
 - Typical efficiency is 91% to 95%

>DOE Extending Range for Premium Efficiency Motors with Effectivity June 2016

- New rule adds NEMA A, B, C and IEC N, H plus specials in 1HP to 500HP
- Applies to 5 million units vs 1.6 2 million units currently
- Current rule affects 18 million connected HP; new rule affects 50 million HP

Evolution of Motor Efficiency

Differences in Motor Construction 10 HP, 1200 RPM

There are Many Motor Types

	Induction motor	Synchronous motor	PM motor	SyncRel motor	SR motor
Rotor and stator	cage rotor or wound rotor	Would-field rotor, round or salient rotor, damper winding	Magnet, surface PM or IPM, damper winding	Laminated rotor, normal winding for stator	Laminated rotor, concentrate winding for stator
Speed	Must run less than synchronous speed; varies with load	Synchronous speed, need damper winding for line start	Synchronous speed, need induction cage for line start	Synchronous speed	Half speed of synchronous speed
Efficiency	Degraded efficiency at low load operation	Higher efficiency than induction motor	High efficiency than induction motor and synchronous motor	Similar efficiency with induction; better at partial load	Similar efficiency with induction or synchronous motors
Reliability	More heat degrade insulation and life time, many years of proven performance	Brushes or slip ring are issues for long life operating, regular maintenance in fewer years	Lower temperature reduce maintenance, trouble-free operation for years.	Good reliability due to simple rotor	Higher reliability than others due to very simple rotor
Power density	Induction field & rotor iron limits power density	Higher power density than induction motor	Higher than induction and synchronous motors	Power density similar to induction motor and lower than PM motor	Higher power density than induction motor and lower than PM motor
Cost	Simple design and high manufacture quantities lower price, but high operating cost	Higher price than induction, but above 10kW, high efficiency brings low operating cost	Higher cost, but higher efficiency gives low operating cost	Lower material cost , but low quantities. Mfr assembly difficult. Need a VFD controller	Lower material cost , but low quantities. Needs a special controller
Application	Many areas, any power, general drive	Many areas, high power, synchronous speed	Many areas, small to high power, high efficiency	Newly available; target is Induction motor applications	Some good examples, mostly for home application; noisy

Inverter Grade Motors

NEMA Premium Efficiency features plus

Beginning and ending of windings are separated

Extra insulation to protect against voltage spikes

Wound with inverter grade magnet wire (for voltage spikes)

Designed to handle higher frequency components

Either rated for higher temperatures or constant speed cooling fan on auxiliary power for low speeds

Will provide full-rated torque at zero speed and well past base speed

Motor Efficiency vs. Load

Load

True Load - Slip

Speed (RPM) = (60 Hz X 60 sec/min) / Number of pole pairs

```
RPM = 3600, 1800, 1200, 900, 720..... no other choices
```

```
NLRPM = No Load RPM = 3600, 1800, 1200, 900, 720....
```

FLRPM = Full Load RPM (this is on nameplate)

Measured RPM (use tach or meas. current and use motor curve)

Design Slip = NLRPM – FLRPM

True Slip = NLRPM – Measured RPM

% Load = True Slip / Design Slip

True Load = % Load X nameplate HP

Switched Reluctance Motor Requires VFD to Operate

True Load Example - Slip

Nameplate > FLRPM = 3555 > HP = 75

NLRPM = 3600 (obviously!)

Measured RPM = 3576

Design Slip = 3600 – 3555 = 45

True Slip = 3600 - 3576 = 24

% Load = 24 / 45 = 53.3%

True Load = 53.3% X 75 = 40 HP

Power Factor

 $PF = \cos \Theta$ Motors = 0.85@ Full Load

Power Factor vs. Load With VFD, PF = 1.0

Load

Power Factor Quick Calc from Electric Bill

$PF = cos [tan^{-1} (kVar / kW)]$

What it Costs to Operate a Motor

If owning a car was like owning a motor?

Purchase price = \$30,000 Annual fuel cost = \$500,000

What would You be willing to do to make your car run more efficiently?

Purchasing agents still buy on price because they probably don't know ?

What it costs to run a motor

Annual Energy Costs = \$36,998 + \$7,333 = \$44,331 Purchase Price = \$7,000

Is it worth switching to a NEMA premium efficient motor?

Using same 100HP motor in previous slide

Annual operating costs = \$44,331

Compared to older 87% efficient motor,

which has a cost = \$65,030

A difference of \$20,699!

A New 100HP NEMA Premium Motor Costs \$6,000 to \$9,000.

Inverter Grade Motors

NEMA Premium Efficiency features plus

Beginning and ending of windings are separated

Extra insulation to protect against voltage spikes

Wound with inverter grade magnet wire (for voltage spikes)

Designed to handle higher frequency components

Either rated for higher temperatures or constant speed cooling fan on auxiliary power for low speeds

Will provide full-rated torque at zero RPM and well past base nameplate RPM

VFD Basics

VFD Advantage – Affinity Laws

$$HP_{2} = HP_{1} / [RPM_{1} / RPM_{2}]^{3}$$

A 50% Drop in RPM = 90% Less HP

Variable Frequency Drives

Ideal for variable load/variable speed application

Less ideal for constant load/speed applications

Inherent soft start (extends motor life)

Unity Power Factor at all loads

Same variable speed & fast torque of DC motors, but less expensive and much more reliable

Drive adds heat and stress to motor so inverter grade motors are best

Drive makes motor less efficient at or near full load when compared to running motor without VFD

Motor/VFD – Envision as 3 Segments

This helps to clarify what measurements and troubleshooting steps need to be taken

VFD Output Voltage – PWM

VFD & Motor Together

VFD Output Voltage – Reflected Wave

Rapid dV/dT !!!

Resulting Voltage at Motor Terminals

VFD Output Voltage – Corona Inception Voltage (CIV)

Figure 2 — The peak voltage can exceed the CIV value more than once during a single pulse. For example, any voltage over 1,600 V in a 480-V system will trigger a series of waves over the CIV level.

VFD Output Voltage – Insulation Failure

Unexpected Failures

Unexpected Motor Failure

- 1. Transient voltages
- 2. Voltage imbalance
- 3. Harmonic distortion
- 4. VFD reflected waves
- 5. Sigma currents
- 6. Overloading
- 7. Misalignment

- 8. Shaft imbalance
- 9. Shaft looseness
- 10. Bearing wear
- 11. Soft footing
- 12. Pipe strain
- 13. Shaft voltage
- 14. Loose connections

More than one at a time is common

Unexpected Motor Failure

- 1. Transient voltages
- 2. Voltage imbalance
- 3. Harmonic distortion
- 4. VFD reflected waves
- 5. Sigma currents
- 6. Overloading
- 7. Misalignment

- 8. Shaft imbalance
- 9. Shaft looseness
- **10**. Bearing wear
- **11**. Soft footing
- 12. Pipe strain
- 13. Shaft voltage
- 14. Loose connections

More than one at a time is common

Transient Voltages

- Insulation breakdown
- Caused by abrupt shutoff of reactive loads
- Solution: Transient Voltage
 Surge Suppression (TVSS)

Voltage Imbalance

Usually caused by poor planning of single phase loads

Increases current in one or more windings

Can cause overheating

10% is upper limit

Solution: Redistribute loads

Harmonic Distortion

Caused by non-linear loads

Decreases motor efficiency

Can cause overheating

5th, 11th, 17th cause a negative torque on motor

Solution: Series trap

Above thermal and daylight images show a three phase motor which has overheated. Power quality analysis proved condition was caused by negative sequence harmonics.

Harmonic Distortion

Caused by non-linear loads

Decreases motor efficiency

Can cause overheating

5th, 11th, 17th cause a negative torque on motor

Solution: Series trap; mitigating source

Above thermal and daylight images show a three phase motor which has overheated. Power quality analysis proved condition was caused by negative sequence harmonics.

VFD Reflected Waves

VFD PWM output produces reflections in cable due to mis-matched impedances

Rapid dV/dT at IGBT trigger

Resonance in cable can amplify wave

Can punch through insulation

Cables over 50ft then measure

Solution: Shorten distance; use trim capacitors; use VFD cables

Overloading

30% of all failures

Shaft Voltage VFD Caused Bearing Wear

- Capacitive coupled leakage current
- Static electricity from load
- Solution: Many! Shaft grounding ring, grounded shaft, insulated bearings, etc.

Marathon: AEGIS Shaft Grounding

Baldor: Shaft Grounding Ring

Shaft Voltage Fluting

Loose Connections

Contact Information

Tom Sherman, C.E.M., C.E.A., C.D.S.M., C.C.A.S.S. President 440-773-5044 Tom@Sustainable-Energy-Services.com

Laura Sherman, C.E.P CEO 440-665-9491 Laura@Sustainable-Energy-Services.com

Sustainable Energy Services, Inc.

24700 Center Ridge Road, Suite 390 Westlake, Ohio 44145 www.sustainable-energy-services.com

CONFIDENTIAL AND PROPRIETARY