

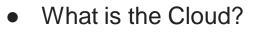
Cloud-Based Solutions for Water Analytics

fontusblue

Fontus Blue is focused on reducing uncertainty about the treatment processes, and improving outcomes for treated water quality and cost of treatment

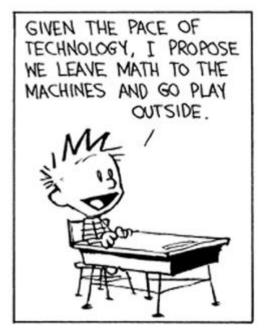
Caleb Sprague

- The University of Akron
- 3 Years with Fontus
- ~40 WTP's: Modeling & optimization of treatment processes, DBP assessments, HAB general plans, + more...


Data-Command®

Data-Command provides cloud-based solutions to municipalities and industry to improve the compliance, security, and efficiency of their operations

Glenn King


- The University of Akron
- 25+ Years in Water Industry
- 35+ Years of Automation
- 40+ Years of Software Development Experience

Overview of Presentation

- The WTP Cloud
 - What should the WTP Cloud do
 - Understanding Your Data Sources
- How to Build a WTP Cloud
 - Ingredients of a Cloud Solution (Secret Sauce)
 - Sending Data to the Cloud
 - Cloud Security, Availability and Reliability
 - User Experience
 - Putting it all together (The Recipe)
- Water Treatment Analysis on the Cloud
 - Why is this better in the cloud?
 - How do you get it there?
 - What does it look like?
- Conclusions
- Q&A

Data-Command

I am not a Caveman

Entertainment

Online Banking

Search engines

YAHOO!

Data-Command

CHASE CHASE

fontusblue

The Cloud! MILLIONS OF OTHERS

Bing Google

Social Media

Travel



Cloud Concerns

"Is my information safe, will it get lost or stolen?"

"Is my information floating around for anyone to take?"

"Once my data is in the cloud will it stay private."

We ARE part of the cloud and we like IT!

Watching Movies

NETFLIX

IMDb

Rating Restaurants yelp

Directions

Event Hours facebook

A.I. & Algorithms

Helps with Decisions

Household Product reviews

amazon

fontusblue

Vacation

ळ Tripadvisor Flight Reservations

To Infinity and Beyond

Have Information

Personal Life!!!!

Work Life????

The Cloud and You

Collaboration

Utility Operations

Compliance

fontusblue

Live Support

Chemical Dosing

Softening

looms ow Rate

Corrosio

Harmfu

Alga

ABS/ Residuals

Microorganisms Inor orrosio Deposition Denositio

lion/

Where do we find Insight?

Corrosion & Deposition

Treatment Data
 pH, alkalinity,

hardness...

- Specialized Testing
 Marble Test
- Data Analysis
 - LSI

tontush

CCPP

- Treatment Data
 - pH, chlorine, temperature...
- Specialized Testing
 - ELIZA
 - qPCR
- Data Analysis
 - Oxidation Kinetics

Datat8Anabse

Corrosion & Deposition

- Alkalinity
- Unsaturated Alkalinity
- Saturated Alkalinity
- Hardness
- pH
- Temperature
- Chloride
- Sulfate
- Phosphate Chemicals
 Search "AWWA WSO

- Microcystin
- Saxitoxin
- Anatoxin
- qPCR
- Phycocyanin
- Chlorophyll-a
- Geosmin & MIB
- Temperature
- pH
- Hydraulics (Flow rates, time)
- Pre-Oxidants (Ex. KMnO4)
- Chlorine
- Activated Carbon

Data Sources: Internal Lab / Chemical Inventory

Corrosion & Deposition

- Alkalinity
- Unsaturated Alkalinity
- Saturated Alkalinity
- Hardness
- *pH*
- Temperature
- Chloride
- Sulfate
- Phosphate Chemicals

- Microcystin
- Saxitoxin
- Anatoxin
- qPCR
- Phycocyanin
- Chlorophyll-a
- Geosmin & MIB
- Temperature
- *pH*
- Hydraulics (Flow rates, time)
- Pre-Oxidants (Ex. KMnO4)
- Chlorine
- Activated Carbon

Data Sources: *External Lab*

Corrosion & Deposition

• Alkalinity

- Unsaturated Alkalinity
- Saturated Alkalinity
- Hardness
- pH
- Temperature
- Chloride
- Sulfate
- Phosphate Chemicals

- Microcystin
- Saxitoxin
- Anatoxin
- qPCR
- Phycocyanin
- Chlorophyll-a
- Geosmin & MIB
- Temperature
- pH
- Hydraulics (Flow rates, time)
- Pre-Oxidants (Ex. KMnO4)
- Chlorine
- Activated Carbon

Data Sources: Automation System

Corrosion & Deposition

- Alkalinity
- Unsaturated Alkalinity
- Saturated Alkalinity
- Hardness
- *pH*
- Temperature
- Chloride
- Sulfate
- Phosphate Chemicals

- Microcystin
- Saxitoxin
- Anatoxin
- qPCR
- Phycocyanin
- Chlorophyll-a
- Geosmin & MIB
- Temperature
- *pH*
- Hydraulics (Flow rates, time)
- Pre-Oxidants (Ex. KMnO4)
- Chlorine
- Activated Carbon

Data Sources: External Party Data (GLOS)

Corrosion & Deposition

- Alkalinity
- Unsaturated Alkalinity
- Saturated Alkalinity
- Hardness
- pH
- Temperature
- Chloride
- Sulfate
- Phosphate Chemicals

- Microcystin
- Saxitoxin
- Anatoxin
- qPCR
- Phycocyanin
- Chlorophyll-a
- Geosmin & MIB
- Temperature
- *pH*
- Hydraulics (Flow rates, time)
- Pre-Oxidants (Ex. KMnO4)
- Chlorine
- Activated Carbon

Now Buddhage The Whole Picture

Lots of Data from lots of different sources, stored in a lot of different locations

The Cloud!

fontusblue

• Plant Automation and SCADA

- Water Tanks for other communities
- External Data Sources (NOAA, GLOS)
- External Lab Data (Alloway)
- Internal Lab / Chemical Inventory
- Contacts/Employee Info
- Lift Station Information
- Multiple plants feeding the same system
- Distribution Samples, MORs And more...

The Secret Sauce

Ingredients need to create a cloud base solution

- 1. A lot of Data!
- 2. A world class cloud service providers
- 3. Delivering an awesome user experience
- 4. Deep knowledge of security
- 5. Enhance the solution with partners

3 biggest Cloud service provider:

- 1. Microsoft Azure
- 2. Amazon Web Services (AWS)
- 3. Google Cloud Platform

Developer Requirements:

- 1. Passion
- 2. Skills
- 3. Multitude of languages to include: HTML5, XML, asp.net, java, angular, postgres, SQL, APIs, C++, Visual basic

Some Acronyms and Terms to Know

PLC-Programmable Logic Controller

Brains of the process controls

SCADA-Supervisory Control And Data Acquisition

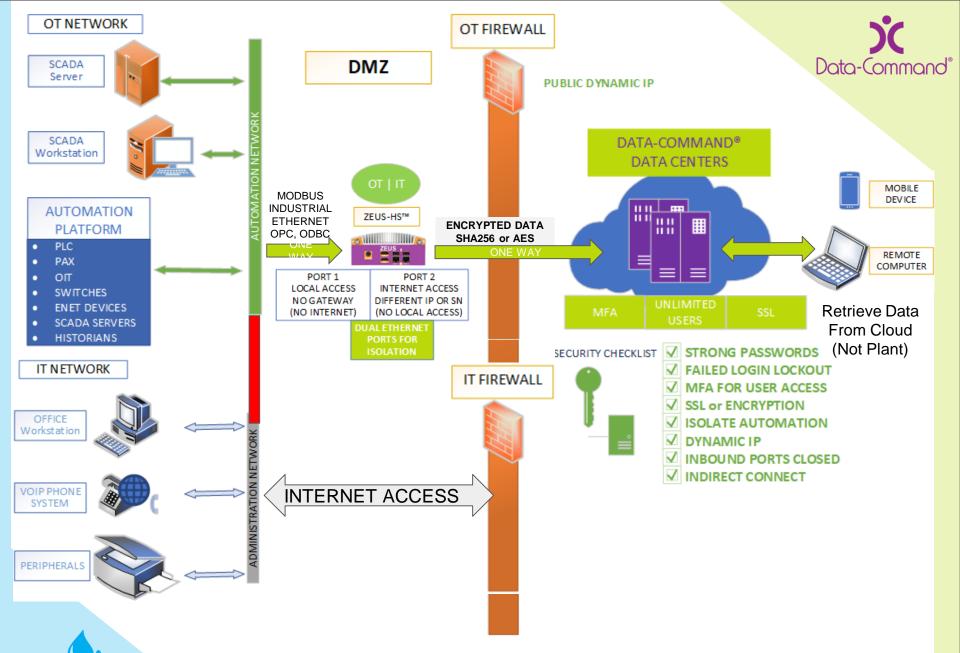
Communications with PLC network for Visualization, Setpoint changes and Data Storage

Plant Automation platform

The network of PLCs, SCADA, Historians, Dedicated Network Switches...

OT-Operation Technology

Plant Automation platform network

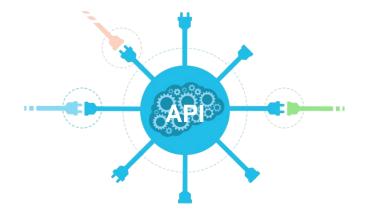

IT-Information Technology

Administrative Network (Office computers, email, printers, phones, cameras...)

DMZ-DeMilitarized Zone

Internal network meets an untrusted network such as the Internet

fontusblue


Information from Plant Automation

Many Other Data Sources

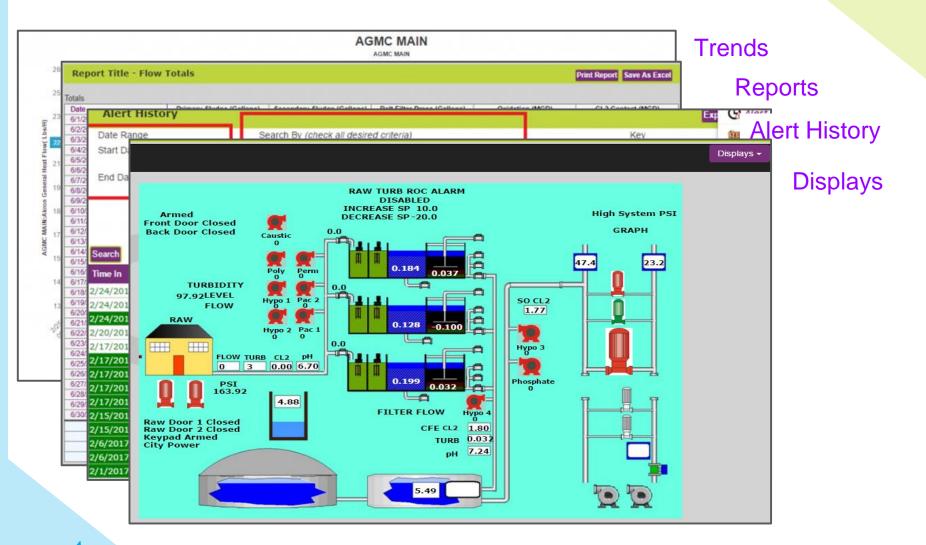
• Manual Data entry for Ancillary information not collect by the SCADA

- Chemical Inventory sheets
- Lab Bench sheets entered into an electronic solution must include chain of Custody
 - User tracking
 - Change management
 - Auditing
- Connecting to external websites and sources
 - RESTful API (Application Program Interface) (GLOS, NOAA)
 - SOAP (Simple Object Access Protocol) (obsolete)

Security/Reliability/Availability

- Data Packet Encryption through a Secure Hash Algorithm like SHA256, AES or better
- Browser Encryption through SSL (Secure Socket Layer) The lock in the address bar of favorite web browser
- Individual User login and strong passwords
- Multi-Factor Authentication for each user device
- Geo Replication for Data backup and integrity
- High Availability-through the combination of highly redundant hardware with clustered software.

THE 9's


Availability %	Downtime per year ^[note 1]	Downtime per month	Downtime per week	Downtime per day
55.5555555% ("nine fives")	162.33 days	13.53 days	74.92 hours	10.67 hours
90% ("one nine")	36.53 days	73.05 hours	16.80 hours	2.40 hours
95% ("one and a half nines")	18.26 days	36.53 hours	8.40 hours	1.20 hours
97%	10.96 days	21.92 hours	5.04 hours	43.20 minutes
98%	7.31 days	14.61 hours	3.36 hours	28.80 minutes
99% ("two nines")	3.65 days	7.31 hours	1.68 hours	14.40 minutes
99.5% ("two and a half nines")	1.83 days	3.65 hours	50.40 minutes	7.20 minutes
99.8%	17.53 hours	87.66 minutes	20.16 minutes	2.88 minutes
99.9% ("three nines")	8.77 hours	43.83 minutes	10.08 minutes	1.44 minutes
99.95% ("three and a half nines")	4.38 hours	21.92 minutes	5.04 minutes	43.20 seconds
99.99% ("four nines")	52.60 minutes	4.38 minutes	1.01 minutes	8.64 seconds
99.995% ("four and a half nines")	26.30 minutes	2.19 minutes	30.24 seconds	4.32 seconds
99.999% ("five nines")	5.26 minutes	26.30 seconds	6.05 seconds	864.00 milliseconds
99.9999% ("six nines")	31.56 seconds	2.63 seconds	604.80 milliseconds	86.40 milliseconds

Water is always flowing. Is your data?

User Friendly Information Presentation

Data-Command[®]

The Recipe

- Constantly update the user experience
- Allow municipalities to collaborate, intact and benefit from other municipality's Information
- Establish great Partnerships for products and services like analytics

Overall Understanding

Why

- Complex & complicated issues
 - Variable water / chemistry
- Issues are often too Labor and Time intensive

How

- Leverage aggregated cloud data
- Single Measure or Calculated from Multiple
 - Visual and Intuitive User Interface

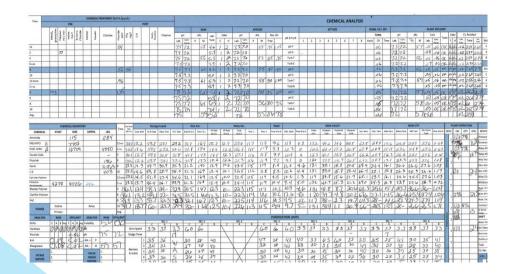
What

• Specific Insights that Reduce Uncertainty around a Focus Issue

Corrosion & Deposition KPI's

Why

- Health impact for children & adults
- Pipe Failure and Performance Economics
 - Complicated chemistry
 - Insight into a variable process
 - Problems on both ends...



Corrosion & Deposition KPI's

The Difference

- Leverage aggregated cloud data
- Single Measure or Calculated from Multiple
 - Visual and Intuitive User Interface

Corrosion & Deposition KPI's

The Difference Marble Test

CCPP = Unsat.Alk - Sat.Alk

• Low frequency lab tests

• <u>Qualifying metric (negative, zero, positive)</u>

Simulated CCPP

$$CCPP = 50045 \ * \ \frac{t_{eq}}{p_{eq}} \left[\left(\left(\frac{TALK_i + \ s_i}{t_i} \right) p_i + \ s_i \right) - \ s_{eq} \right] + \ s_{eq}$$

- Daily lab bench inputs
- <u>Quantifying</u> metric (*how* negative, zero, *how* positive)

sblue

Corrosion & Deposition KPI's

The Difference

→ 5-Day Avg. Simulated CCPP → Simulated CCPP O Measured CCPP

fontusblue

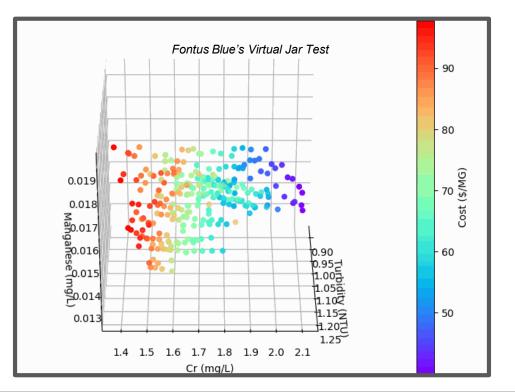
Cloud Workflows

Aggregating Data Sources

GIVEN THE PACE OF TECHNOLOGY, I PROPOSE WE LEAVE MATH TO THE MACHINES AND GO PLAY OUTSIDE.

Alerts & Notifications

Track Operator Logs


Auditing and Reporting

Building a Bright Future in the Cloud

Water Quality Forecasting Artificial Intelligence Stress Test Simulations Cost & Quality Optimal Chemical Dosing

tontusblue

Summary/Conclusion

Advantages of Cloud-based

- Access from any location/Remote access to information
- Aggregation of data from many different data sources
- User experience updates and upgrades are part of solutions
- Costs of system aggregate amongst many municipalities
- Many things are virtually impossible to achieve through an on premise solution

Cloud-Based Solutions for Water Analytics

Caleb Sprague caleb@fontusblue.com 330-962-3957

Glenn King gking@data-command.com 330-294-4477

Questions?

