STRAND **ASSOCIATES**[®]

Excellence in EngineeringSM

OTCO Class III & IV Workshop and 60th Anniversary

July 25, 2024

Nutrient Removal Operations – A Compilation of Lessons Learned Over 30 Years of Practice

Jamie Mills, P.E., Strand Associates, Inc.®

OTCO's Class III & IV Workshop and 60th Anniversary

The content of this presentation is not to be downloaded, copied, used, or otherwise transmitted without the prior consent of Strand Associates, Inc.®

Presentation Agenda Summarizes Nutrient Removal Experience

- Summary of nutrient removal
- Nutrient removal fundamentals and drivers for success
- Conventional nutrient removal processes
- New and emerging technologies for nutrient removal
- Lessons learned
- Final thoughts

Phosphorus (P) is a Limiting Nutrient for Algae Growth and Therefore is Limited by NPDES Programs

- "Nutrient pollution is one of America's most widespread, costly and challenging environmental problems" – USEPA
- Research in Canada in the1960s and 1970s revealed P to be the limiting nutrient in freshwater
- Limits vary from state to state but principles discussed today apply broadly to phosphorus removal facilities

Source: IISD Experimental Lakes Area

Experience Includes More Than 30 Years of Nutrient Removal

Great Lakes Dischargers

• Phosphorus (limit 1 mg/L since 1970s)

Wisconsin

- 1992 Implemented phosphorus limits ~ 1 mg/L
- 1994 1st BPR design (Strand)
- 2010 State significantly lowered P limits to <0.1 to 0.2 mg/L

Illinois, Indiana, Kentucky, Ohio

Currently implementing P limits ~ 0.5 to 1 mg/L

Iowa

2012 nutrient strategy ~ 10 mg/L TN and 1 mg/L P

Understanding Nutrient Removal Fundamentals are Key Drivers for Successful Treatment Performance

• Fundamental 1: Convert dissolved phosphorus into particulate phosphorus

Fundamental 2: Remove Phosphorus-laden Solids from the Effluent Stream

Fundamental 3: Understand Composition of Your Phosphorus

Fundamental 4: PAOs Require a Simple Food Source

- Volatile fatty acid (VFA) sources might include:
 - Sewer fermentation
 - Fermenter
 - In-line fermentation
 - S2EBPR solids fermentation
 - Purchased substrate

What is Fermentation?

A metabolic process by which an organism converts BOD into an acid.

Fundamental 5: Operational Choices Impact BPR Success

- BPR systems require a strategically located anaerobic zone and anaerobic conditions need to be maintained – that means:
 - \circ No dissolved Oxygen (O₂)
 - No Nitrate (NO₃)
 - No Nitrite (NO₂)
- Oxygen introduction to the Anaerobic Zone needs to be monitored and controlled!

Fundamental 5, Continued: Nitrate Control Impacts Anaerobic Zones and Soluble Substrate Quantities

Nitrate Control Options

- Limiting nitrification
 - Not an option if facility also has ammonia limit
- Controlling quantity of nitrate returned
 - RAS and Internal Recycle Control
- Denitrification
 - Process configurations limit options
 - Avoid use of best substrate

Fundamental 5, Continued: Managing Conditions to Favor Phosphorus Accumulating Organisms is Key to Successful BPR

• DNA analysis can help determine conditions that select for productive PAOs

Conventional Nutrient Removal Processes

• Phosphorus removal:

- Chemical removal (chemical sludge)
- Biological removal (incorporated into the bugs)
- P is removed with the sludge

• Nitrogen removal:

- Biological process Nitrification and denitrification $(NH_3 \rightarrow NO_2 \rightarrow NO_3 \rightarrow N_2)$
- Simultaneous nitrification/denitrification
- Shortcut nitrogen removal
- \circ N₂ gas is discharged to the atmosphere

Typical Chemical P Removal Schematic

- In use in the US since the 1970s or longer
- Provides reliable P removal

Conventional BNR Activated Sludge: Status in Industry

- Developed in the ~1970s and used throughout the world
- Provides reliable P removal, nitrification, and denitrification in dedicated zones

Conventional Biological Nutrient Removal Schematic

Conventional BNR Activated Sludge

- Dedicated Anaerobic Zone to enhance BPR (BOD/VFA uptake and P release)
- Dedicated Anoxic Zone for denitrification
- Aerated Zone for BOD removal, P uptake, and nitrification
- Numerous configurations

Production of PAOs is First Objective in Effective BPR

• Facilitate growth of PAOs

Source: Strand Associates, Inc.®

Source: Wastewater Engineering – Treatment and Resource Recovery - Metcalf and Eddy/AECOM

Two-Stage BOD Removal is the Essence of Traditional BPR

• Phosphorus cycle involves release in anaerobic zone, "luxury" uptake in aerobic zone

Fermentation Began to be Used for VFA Production About 10 Years Ago (Our Experience)

- Volatile Fatty Acids (VFAs) are needed to drive bio-P removal
- VFA sources:
 - Sludge fermenter (typically primary sludge)
 - Carry higher primary sludge blankets
 - Recycle primary sludge (activate your primaries)

Source: Westech

Recent Innovation in BNR Activated Sludge: S2EBPR (RAS Fermentation)

Uses fermentation to produce VFAs from RAS

When to Use: Influent carbon used Low influent BOD or low rbCOD / VFAs for denitrification Anoxic P uptake • High peak flows (sidestream fermentation) NO₃ Recycle Clarifier Influent Anoxic **Aerobic** Effluent Deeply 10-25% **Return Sludge** Anaerobic (SRT 1-2d) Deep Anaerobic Conditions (ORP <- Aerobic P uptake 300mV) **BOD** removal/nitrification Fermentation of RAS P Release/PHA Formation Death of GAOs

Biological Nutrient Removal Requires Additional Monitoring and Controls Depending on Limits

ORP Probe use with PAO Control and Monitoring in Anaerobic Zone

Controls and Monitoring of PAOs

Oxidation reduction potential values and corresponding biochemical reactions

New and Emerging Technologies for Nutrient Removal Within the Past 5 years (+/-)

- Low D.O. BNR to drive simultaneous nitrification-denitrification (SNDN)
- Sludge densification processes (to improve settling)
- Aerobic granular sludge processes

Others:

- Chemical polishing with filtration (for very low effluent P limits)
- Membrane aerated biofilm reactors (MABR)
- Sidestream and mainstream Anammox processes
- Sidestream phosphorus recovery or sequestration

BPR + Simultaneous Nitrification and Denitrification Activated Sludge

- Dedicated anaerobic zone for enhancing bio P
- Aerated zone operated at Low DO (0.2 to 0.7 mg/L)
- Nitrification and denitrification occurs in one reactor simultaneously
- Requires more monitoring/instrumentation
- Control aeration using ammonia or DO, or both

BPR + SNDN Activated Sludge: Status in Industry

- Many plants perform SNDN to some extent (e.g., oxidation ditches)
- Very few conventional plants operate entire system at low DO (<0.7 mg/L)
- Area of significant ongoing research and application
- Design for conventional but provide ability to operate at low DO

Source: City of Chico, California

Sludge Densification Often Coupled with SNDN Activated Sludge

- Low DO operations can lead to poorer settling sludge
- Hydrocyclones have been used to improve SVI
- Metabolic selectors can also drive densification

Source: World Water Works, Inc.

Source: World Water Works, Inc.

BPR + SNDN Activated Sludge Process: Pros/Cons

Pros

- Lower energy requirements than conventional BNR (~25-35%)
- Less equipment than conventional BNR (recycle pumps, mixers)

Cons

- Emerging process
- Greater potential for poor settling sludge
- Might not be viable with very low ammonia limits (< 1 mg/L?)

Aerobic Granular Sludge: Background

• AquaNereda[®] Upflow SBR by Aqua-Aerobic Systems

Source: Aqua-Aerobic Systems, Inc.

Source: Aqua-Aerobic Systems, Inc.

Aerobic Granular Sludge

Sludge volume index (SVI) comparison with conventional activated sludge
5-minute SVI is similar to 30-minute SVI at higher MLSS concentration

Source: Aqua-Aerobic Systems, Inc.

Source: Aqua-Aerobic Systems, Inc.

Source: Aqua-Aerobic Systems

Aerobic Granular Sludge (AGS): Status in Industry

- Research and development in the Netherlands in 1990s through 2000s
- In 2016, Aqua-Aerobics became the exclusive licensee in the US
- 55 full-scale operating Nereda plants in the world (approximately within the last 10 years)
- 6 operating plants in US, approx. 20+ plants in construction or design

AGS: Pros/Cons

Pros

- Process guarantee provided by equipment manufacturer
- Case studies demonstrate nutrient removal and nitrification
- Less energy than conventional BNR
- Fewer processes (no clarifiers, RAS pumping)

Cons

- Emerging technology in US with only a few operating facilities
- More instrumentation
- Possibly more complex to operate, especially at smaller plants and during wet weather events

Lessons Learned – The Right Kind of Food is Critical

- If adequate food is not available, consider:
 - In-line fermentation
 - Sludge fermentation
 - S2EBPR
 - Adding carbon (methanol, industrial wastes)

Cycling Mixers Stimulate Anaerobic Activities (In-Line Fermentation)

Lessons Learned – Design Flexibility is Important

Unintended Consequences of Sludge Fermentation to Drive BNR

Final Thoughts

- Influent characterization is critical to determine how well a BNR system might operate
- Nutrient removal systems require more operator attention
- Real-time monitoring is essential for very low limits and for many innovative approaches
- Give yourself as much flexibility as possible
- BNR systems continue to evolve

Thank you! Jamie Mills, P.E., Strand Associates, Inc.® Jamie.Mills@strand.com 614-863-0460

STRAND **ASSOCIATES**[®]

Excellence in EngineeringSM