Consistent Compliance Using PCMP

Marvin Gnagy, P.E., Owner

pmg PMG Consulting, Inc.

OTCO Compliance Workshop for Water and Wastewater Treatment

October 10, 2024

Agenda

- What is PCMP
- PCMP Responsibilities
- PCMP Procedures
- Key Control Parameters
- Key Performance Indicators
- PCMP Tracking and Limits
- PCMP Reports and Forms
- Unit Process Strategies
- Summary

Consistent Compliance Using PCMP

PCMP

What is PCMP?

What is PCMP?

- Process Control Management
 Plan for Water or Wastewater
 Operations
- Documented procedures to control process operations and performance
 - Meet regulatory compliance
 - Improve reliability, resiliency, performance
 - Based on best practice metrics
 - Control operating costs

- Comprehensive approach to manage treatment plant operations
- Assessment of process control using established target parameters and best practice metrics
- Better means to track performance and meet regulatory compliance
 - Much more than just checking effluent quality for MOR's
- Verify data input from multiple sources
 - (lab data, operations data, online sensors, consultant projects, special studies)

- Track process performance for compliance requirements
- Track performance to control operating costs
- Report performance exceptions that signal abnormal operations
- Identify corrective actions before non-compliance arises
- Provide operator guidance on expected performance and operating adjustments

- Scientific approach to operational control of unit processes
 - Evaluations and study data suggest performance improvements
 - Benchmark metrics used to track performance against best practices
 - Trending and forecasting from historical data
 - Means to establish <u>flags</u> for parameters monitored
 - <u>Alert system</u> to maintain regulatory compliance

- Plan development is a very detailed process and procedures
 - Outlines responsibilities and tasks
 - Defines data collection and key control parameters
 - Requires tracking and reporting
 - Uses key operational targets based on science and benchmarking metrics
 - Establishes written <u>Unit Process</u>
 <u>Strategies</u> to follow when tracking suggests abnormal operations
 - Encourages comprehensive review of operations performance and steps for corrective actions

- Management
- Process control directors
- Process control specialists
- Plant operators
- Lab analysts
- Maintenance personnel
- Consultants
- Contracted staff

Management Responsibilities

- Establish PCMP documentation and procedures
- Review key control parameters (KCPs) and key performance indicators (KPIs)
- Review overview/compliance reports
- Review UPRs/exceptions reports
- Review operating trends/graphical data
- Review other custom reports
- Define assistance where needed
- Define investigations and special studies where necessary
 - In-house or contracted

Process Control Director

- Establishes PCMP targets, limits, and parameters
- Establishes process control database and data collection procedures
- Implements PCMP
- Manages Process Control meetings
- Assigns tasks from meeting minutes
- Ensures PCMP procedures are followed
- Prepares/submits PCMP reports
- Assigns follow-up investigations or studies
- Suggests changes to PCMP or targets

- Process Control Specialists
 - Participate in Process Control meetings
 - Conduct investigations or special assignments
 - Work with lab analysts and operators to control process performance
 - Help define corrective actions and adjustments
 - Ensure data collection is accurate and accountable
 - Review and analyze process performance
 - Target values, trend charts, compliance, abnormal operations, special studies

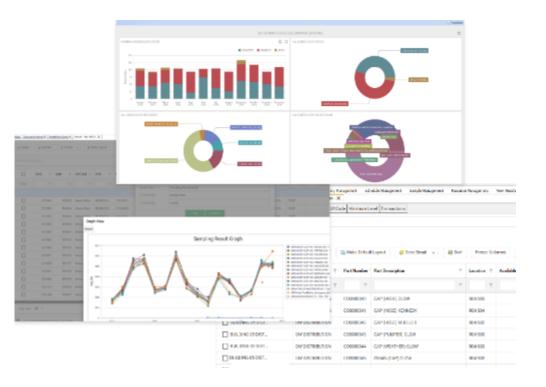
Plant Operators

- Follow established PCMP guidance
- Control process performance within established target parameters and limits
- Input data to selected database system
- Verify data collection and input values
- Participate in Process Control meetings
- Conduct assigned PCMP tasks
- Follow SOPs and suggested adjustment procedures
- Make necessary operating adjustments
 - Suggest changes to process targets based on data trends

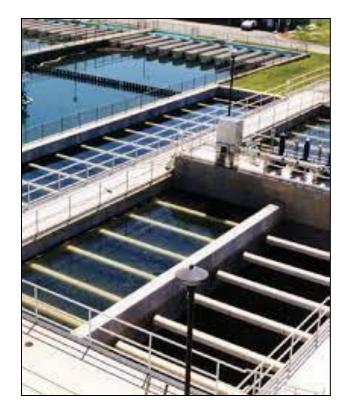
Lab Analysts

- Follow established PCMP guidance
- Manage sample collection and sample analyses
 - Includes contract lab services
- Input data to selected database system
- Verify data collection and input values
- Participate in Process Control meetings
- Maintain lab QA/QC
- Maintain chain-of-custody
- Maintain process control records
- Maintain database

- Maintenance Personnel
 - Participate in Process Control meetings
 - Maintain process equipment to meet performance expectations
 - Understand role in PCMP procedures
 - Conduct investigations and special studies as assigned
 - Maintain energy consumption records
 - Electric utility or generated power
 - Water/sewer
 - Natural gas or biogas
 - Petroleum or diesel


Consultants/Contract Staff

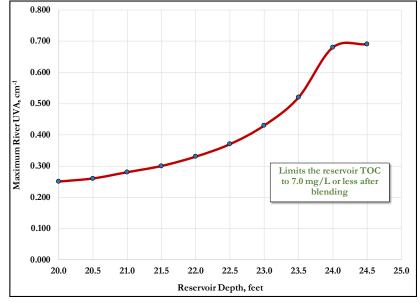
- Participate in Process Control meetings if requested
- Review process performance when assigned
- Conduct special studies and investigations
 - Develop targets from studies and reports
- Report on process performance capabilities from studies and investigations
- Suggest process control parameters, targets, limits from special studies and investigations

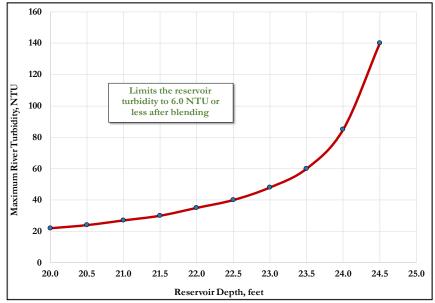


Select a database software

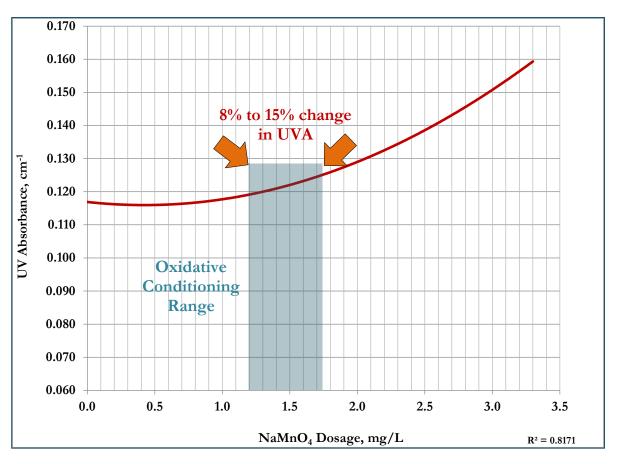
- Microsoft Access
- Hach Wims
- Operator 10
- WaterTrax
- Locus Technologies
- Lablite (LIMS)
- Versa
- fluenceTM
- Brightly
- Cartegraph
- Samswater
- Customized Microsoft Excel sheets

- Develop written plan and documentation, forms and reports
- Establish tracking parameters and sample frequencies
 - Regulatory limits, guidance limits, process control data, benchmark metrics
- Set parameter targets and limits
- Develop data collection activities
 Include validation and QA/QC
- Hold regular Process Control meetings and prepare minutes


- Develop reports and documentation
 - Exceptions, Process control
 - Compliance review
 - Unit process, change authorization
 - Consumables (if needed)
- Develop Unit Process Strategies (UPS)
 - Process design data
 - Typical performance data
 - Suggested corrective actions for abnormal operations
- Develop trending parameters and protocols


- Select <u>Key Control Parameters</u> (KCPs) for plant operations
 - Track the most important data
 - What could produce non-compliance?
 - What could create plant upsets?
 - What could increase operating costs?
- Define <u>Key</u> Performance Indicators (KPIs) that suggest compliance with establish metrics
 - Industry standards
 - Best practices
 - Published data metrics

Suggested Maximum UV Absorbance Values for River Pumping


Suggested Maximum Turbidity Values for River Pumping

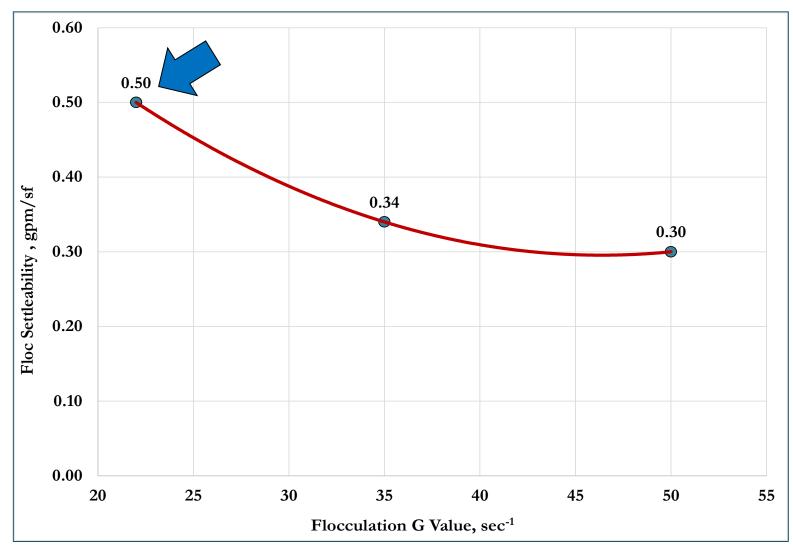
- Key Control Parameters (KCPs) for may have required calculations
 - Document the calculations to be used
 - Define the parameters needed for calculations
- Key Performance Indicators (KPIs) may have required calculations
 - Document the calculations to be used
 - Define the parameters needed for calculations

$$\frac{In-out}{In}*100 = \%$$

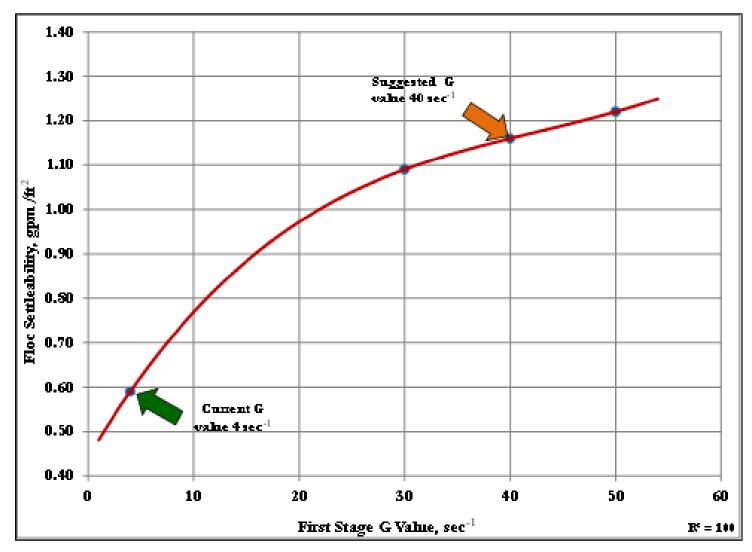
- Permanganate oxidative conditioning to enhance TOC removals
- Control range for dosing
 - 1.2 mg/L to 1.7 mg/L
 - UVA measurements verify proper dosing and <u>avoid</u> overdosing

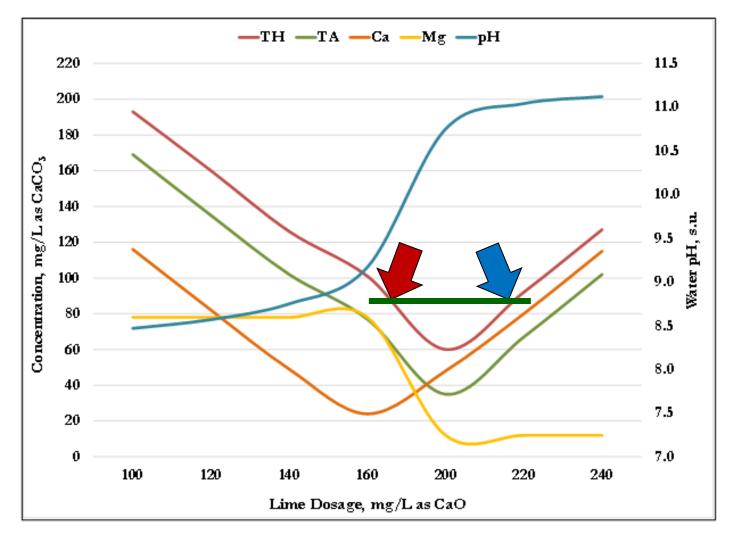
- Every treatment plant will have 25 to 40 key parameters that evidence process performance
 - <u>Critical components that make the biggest impact</u>
 - May include several process variables (PVs)
 - Directly influence process performance
 - Meet compliance or permit limits
 - Track targeted process control
 - Performance driven management of unit processes
 - Cost control
 - Data for calculated tracking and trending

- Selected to provide a snapshot of process performance
 - Control of unit processes
 - Control of contaminant removal (special studies or compliance monitoring)
 - Enhancement of unit processes
 - Specific data indicating how overall treatment is performing
 - Some KCPs are used to track Key Performance Indicators (KPIs)



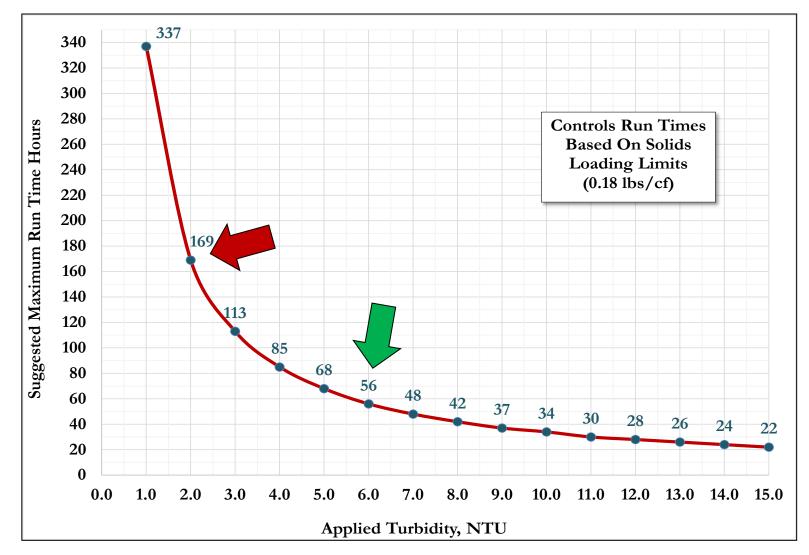
Water Treatment Examples


Pre-oxidant residual	CFE NTU	Free NH ₃ residual
CO ₂ efficiency	Log Giardia	Solids capture
LACR	Log Crypto	Cake solids
Settled NTU	Permeate ratio	Recycle ratio
Sand dose (Actiflo)	Membrane integrity	Lime per dry ton
CO_3/OH ratio	Membrane TMP	Overflow solids
CO_3/HCO_3 ratio	GAC breakthrough	Overflow pH
Salt dose (regen)	Finished pH	Overflow Cl ₂ residual
Filtration rate	PO4 residual	Sludge generated
GWP	CT ratio	
Filtration efficiency	kwh/#O3 generated	
Washwater usage	Cl ₂ :N ratio	


Wastewater Treatment Examples

Pre grit VS	ST blanket depth	ST Anox pH	D-Cl ₂ Eff residual
Pre recycle BOD	ST RAS flow	ST Anox NH ₃ -N	UV dose
Pre recycle TSS	ST WAS TSS	TF organic loading	DW solids loading
Pre recycle NH ₃ -N	ST WAS lbs	TF NH ₃ -N	DW capture
Pre recycle P	ST Anox ORP	TF hydraulic load	DW cake solids
PT SOR	ST Anox NO ₃	TF recycle ratio	DW centrate TSS
PT blanket depth	ST NO ₃	TER Filter loading	DG loading
PT sludge generated	ST pH	TER NTU	DG VA:Alk ratio
ST SOUR	ST RAS %influent	TER run time	DG VS reduction
ST DO	ST F/M ratio	Cl_2 contact time	
ST MLSS	ST Aeration HDT	Cl ₂ residual	
ST MCRT	ST MLVSS invent.	D-Cl ₂ bisulf $\#/MG$	

28



- Published best practice indicators for process performance
 - Established by trade organizations
 - Established by optimized treatment systems
 - Data from plant studies
 - Research projects data
 - Manufacturer's performance data
 - Best practice efforts to control key processes
 - Gauge performance against known metrics
 - Indicate progress toward expected process goals
 - Control operating costs

- Provide evidence towards treatment goals
- Measure performance to assist in decision-making
- Compare actual metrics against other best practices
- Track effectiveness and compliance
- Balance between process behaviors and expectations
- Example
 - All filters should operate for more than 72 hours run time
 - May only be true if applied water is properly pre-conditioned and the filter media meet specific standards
 - May be tied to solids loadings applied to filtration

Water Treatment Examples

Production versus Raw pumpage ratio	Fin MG/Raw MG
Production versus plant capacity ratio	Fin MG/Design MG
Electric consumption versus raw water ratio	kwh/MG pumped (raw)
Electric consumption versus plant production	kwh/MG produced (fin)
Coagulant to turbidity ratio	mg/L/MG/NTU
Coagulant to TOC ratio	mg/L/MG/TOC
Polymer consumption (dewatering)	lbs polymer /dry ton solids

Wastewater Treatment Examples

Pump efficiency, Influent	kwh/MG
Pump efficiency, RAS	kwh/MG
Electric consumption Aeration	kwh/lb BOD (COD) removed
Blower efficiency	kwh/scfm/ft depth
Carbon source versus nitrogen removed	lbs COD/lb N removed
Chlorine consumed for disinfection	lbs chlorine/MG
UV power required	kWH/MG
Biogas production	cf gas versus dry lbs VS fed
Dewatered sludge solids	% solids

Wastewater Treatment Examples

Polymer usage (dewatering)	lbs active polymer /dry ton solids	
Fuel consumption incineration	kwh (net caloric value) /dry ton	
Electric self-sufficiency from digestion	% total power used	
Electric consumption versus volume treated	kWH/MG	
Electric consumption versus treated loading	kWH/lbs BOD (COD) treated	
Coagulant versus phosphorus removed	lbs metal ion per lb P removed	
Production versus design capacity	%	
BOD removal versus Design BOD capacity	%	

- Selected parameters for PCMP are agreed upon by the PCMP team and management
 - Guidance exists from technical staff, PCMP experts, benchmarking metrics, etc.
 - Each process should have a dedicated process control scheme that suggests monitoring parameters
 - Monitoring frequencies should be made at least daily
 - Some parameters may need to be monitored multiple times per day or by automated equipment and sensors
 - Calculated values should be defined by equations and labels
 - Actual PVs and details how to calculate the value along with the proper units
 GWP, gal/sf/run = run time hours * 60 * filtration rate, gpm/sf

Targets Values

- Target values should be established using average historical performance parameters
 - Settled turbidity averaged 0.84 NTU from the clarifier for the period evaluated
 - Total chlorine residuals from disinfection averaged 1.81 mg/L for the period evaluated

Limits or flags

- Each target value should have limits or flags established that trigger process control actions
 - Upper Alarm Limit (UAL) critical action needed to avoid non-compliance
 - Upper Warning Limit (UWL) action needed to regain process control
 - Lower Warning Limit (LWL) action needed to regain process control
 - Lower Alarm Limit (LAL) critical action needed to avoid non-compliance

- Different methods of setting limits
 - Average based limits
 - Standard deviation (1 for warnings, 2 for alarms)
 - Historical data and percentile occurrence
- Method selection is not important, be consistent
 - Avoid setting limits too close to regulatory levels
 - Avoid setting limits that constantly result in warnings or alarms
 - Avoid changing limits setting just to stop warnings or alarms
 - PCMP team and management must approve each parameter and limits established
 - Use <u>Change Authorization Form</u> if limits need to be re-established due to a change in regulations or a significant change in process

Average based limits example

Daily chlorine resid	duals, mg/L	Average and limit settings
2.35	1.57	Average value of the data is 1.81 mg/L
2.14	2.08	Setting the UAL
1.47	1.72	1.81 mg/L * 1.25 = 2.26 mg/L
1.31	1.83	Setting the UWL
1.78	1.46	1.81 mg/L * 1.15 = 2.08 mg/L
2.51	1.69	Setting the LWL
2.08	2.21	1.81 mg/L * 0.85 = 1.54 mg/L
1.50	1.58	Setting the LAL
1.65	1.73	1.81 mg/L * 0.75 = 1.36 mg/L

Standard Deviation limits example

Daily chlorine resid	duals, mg/L	Average and limit settings
2.35	1.57	1 STDEV of the data is 0.34 mg/L
2.14	2.08	Setting the UAL
1.47	1.72	1.81 mg/L + (2 *0.34) = 2.49 mg/L
1.31	1.83	Setting the UWL
1.78	1.46	1.81 mg/L + 0.34 mg/L = 2.15 mg/L
2.51	1.69	Setting the LWL
2.08	2.21	1.81 mg/L - 0.34 mg/L= 1.47 mg/L
1.50	1.58	Setting the LAL
1.65	1.73	1.81 mg/L - (2 * 0.34) = 1.13 mg/L

Historical Data percentile limits example

Daily residua	ls, mg/L	Percentiles	Average and limit settings
2.35	1.57	95% - 2.37	Average value of the data is 1.81 mg/L
2.14	2.08	85% – 2.17	Setting the UAL
1.47	1.72	75% - 2.08	95 th percentile = 2.37 mg/L
1.31	1.83	65% – 1.84	Setting the UWL
1.78	1.46	55% – 1.75	75 th percentile = 2.08 mg/L
2.51	1.69	45% – 1.71	Setting the LWL
2.08	2.21	35% - 1.65	35^{th} percentile = 1.65 mg/L
1.50	1.58	25% - 1.57	Setting the LAL
1.65	1.73	15% - 1.49	15^{th} percentile = 1.49 mg/L

PCMP Report Forms

- Reports generated each week for management review and approval
 - Process Overview Reports overall plant performance
 - Treatment Stream influent, effluent, key unit processes
 - Consumables chemical and utility usage
 - Production water quality overview
 - Compliance Reports monitoring and sampling record
 - Unit Process Reports key unit process performance
 - Report by Exception exceedance of flag limits
 - Change Authorization Form change in target values or flag values

PCMP Report Forms - Overview

DATE ATE PARAMETER VATER FLOW (RWF) URBIDITY (RAWTURB) ULATION pH (TREATEDpH) FIER TURBIDITY (CLARTURB) 5 IN SERVICE (# BASIN IN) 5 EREMOVAL (FM-5) FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	8/25/13 8/31/13 UNITS MGD NTU SU SU NTU NUMBER GAL/DAY FEET (MSL) FEET (MSL) MGD SU SU SU	AVERAGE 68.703 34.06 6.67 0.98 4.0 513,596 766.60 723.36 58.817 8.50	MINIMUM 46.195 6.20 6.55 0.76 4.0 496,420 766.35 722.40 47.162	MAXIMUM 80.818 99.91 6.73 1.53 4.0 527,275 766.85 724.59	TREND	FLAG UWL LAL, LWL, UAL	FORECAST	DATE TARGET 65.000 5.00 - 10.00 6.70 1.50 4.0 500,000	LAL 30.000 NA 6.30 0.55 3.0 350,000	9/4/13 LWL 43.000 NA 6.50 0.70 3.5 425,000	UWL 85.000 20.00 6.90 1.75 NA	UAL 95.000 40.00 7.20 2.25 NA	No. OF SAMPLES 7 7 7 7 7 7
VATER FLOW (RWF) URBIDITY (RAWTURB) ULATION pH (TREATEDpH) FIER TURBIDITY (CLARTURB) S IN SERVICE (# BASIN IN) GE REMOVAL (FM-5) FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) ELEVATION (ALGH ELEV) ED WATER FLOW (FWF) ED pH (FILTpH) HED pH (FINpH)	MGD NTU SU NTU NUMBER GAL/DAY FEET (MSL) FEET (MSL) MGD SU	68.703 34.06 6.67 0.98 4.0 513,596 766.60 723.36 58.817	46.195 6.20 6.55 0.76 4.0 496,420 766.35 722.40	80.818 99.91 6.73 1.53 4.0 527,275 766.85	TREND	UWL LAL, LWL,	FORECAST	65.000 5.00 - 10.00 6.70 1.50 4.0 500,000	30.000 NA 6.30 0.55 3.0	43.000 NA 6.50 0.70 3.5	85.000 20.00 6.90 1.75 NA	95.000 40.00 7.20 2.25	SAMPLES 7 7 7 7 7 7
ULATION pH (TREATEDpH) ULATION pH (TREATEDpH) FIER TURBIDITY (CLARTURB) S IN SERVICE (# BASIN IN) GE REMOVAL (FM-5) FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	NTU SU NUMBER GAL/DAY FEET (MSL) FEET (MSL) MGD SU	34.06 6.67 0.98 4.0 513,596 766.60 723.36 58.817	6.20 6.55 0.76 4.0 496,420 766.35 722.40	99.91 6.73 1.53 4.0 527,275 766.85		LAL, LWL,		5.00 - 10.00 6.70 1.50 4.0 500,000	NA 6.30 0.55 3.0	NA 6.50 0.70 3.5	20.00 6.90 1.75 NA	40.00 7.20 2.25	7 7 7 7
ULATION pH (TREATEDpH) ULATION pH (TREATEDpH) FIER TURBIDITY (CLARTURB) S IN SERVICE (# BASIN IN) GE REMOVAL (FM-5) FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	NTU SU NUMBER GAL/DAY FEET (MSL) FEET (MSL) MGD SU	34.06 6.67 0.98 4.0 513,596 766.60 723.36 58.817	6.20 6.55 0.76 4.0 496,420 766.35 722.40	99.91 6.73 1.53 4.0 527,275 766.85		LAL, LWL,		5.00 - 10.00 6.70 1.50 4.0 500,000	NA 6.30 0.55 3.0	NA 6.50 0.70 3.5	20.00 6.90 1.75 NA	40.00 7.20 2.25	7
ULATION pH (TREATEDpH) FIER TURBIDITY (CLARTURB) S IN SERVICE (# BASIN IN) SE REMOVAL (FM-5) FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	NTU NUMBER GAL/DAY FEET (MSL) FEET (MSL) MGD SU	0.98 4.0 513,596 766.60 723.36 58.817	0.76 4.0 496,420 766.35 722.40	1.53 4.0 527,275 766.85		LWL,		1.50 4.0 500,000	0.55 3.0	0.70 3.5	1.75 NA	2.25	7
FIER TURBIDITY (CLARTURB) 5 IN SERVICE (# BASIN IN) 5E REMOVAL (FM-5) FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	NTU NUMBER GAL/DAY FEET (MSL) FEET (MSL) MGD SU	0.98 4.0 513,596 766.60 723.36 58.817	0.76 4.0 496,420 766.35 722.40	1.53 4.0 527,275 766.85		LWL,		1.50 4.0 500,000	3.0	0.70 3.5	NA		
S IN SERVICE (# BASIN IN) GE REMOVAL (FM-5) FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	NUMBER GAL/DAY FEET (MSL) FEET (MSL) MGD SU	4.0 513,596 766.60 723.36 58.817	4.0 496,420 766.35 722.40	4.0 527,275 766.85		UAL		4.0 500,000	3.0	3.5	NA		
SE REMOVAL (FM-5) FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	GAL/DAY FEET (MSL) FEET (MSL) MGD SU	513,596 766.60 723.36 58.817	496,420 766.35 722.40	527,275 766.85				500,000				NA	7
FIER ELEVATION (CF ELEV) ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	FEET (MSL) FEET (MSL) MGD SU	766.60 723.36 58.817	766.35 722.40	766.85				· · · ·	350,000	1 425 000			1
ELEVATION (ALGH ELEV) RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	FEET (MSL) MGD SU	723.36 58.817	722.40	-							650,000	800,000	7
RED WATER FLOW (FWF) RED pH (FILTpH) HED pH (FINpH)	MGD SU	58.817		724.59				766.8	766.3	766.5	767.0	767.2	7
RED pH (FILTpH) НЕ D pH (FINpH)	SU		47.162					NA	722.0	723.0	728.0	730.0	7
HED pH (FINpH)		8.50		68.533				65.000	30.000	43.000	85.000	95.000	7
	SU		8.36	8.59				8.50	8.10	8.30	8.65	8.80	7
		8.43	8.28	8.55				8.50	8.10	8.30	8.65	8.80	7
RED CHLORINE RES. [FREE] (FIL	(mg/L	1.11	1.07	1.14				1.10	0.80	0.90	1.30	1.40	7
HED CHLORINE RES. [FREE] (I	F mg/L	0.63	0.56	0.86		UWL		0.50	0.30	0.35	0.60	0.75	7
RED TURBIDITY (FILTTURB)	NTU	0.092	0.059	0.153		UWL		0.030	NA	NA	0.070	0.100	7
ALLERY TURBIDITY (NGTURB)	NTU	0.085	0.051	0.155		UAL		0.030	NA	NA	0.050	0.070	7
LLERY TURBIDITY (SGTURB)	NTU	0.098	0.068	0.152		UAL		0.030	NA	NA	0.050	0.070	7
WASH FLOW (BWFLOW)	GAL/DAY	922,075	534,565	1,192,903		UWL		600,000	300,000	450,000	800,000	1,000,000	7
RED FLUME LEVEL (FF ELEV)	FEET (MSL)	763.5	763.3	763.9				763.4	763.0	763.2	763.7	763.9	7
HED WATER FLOW (FIN PUMP	MGD	56.336	44.593	66.550				65.000	30.000	43.000	85.000	95.000	7
	/		-	-							-		7
	TEET (MDE)	111.15	710.55	710.00				11110	711.0	715.5	710.5	712.0	,
	•												
d water turbidity LWL of 0.70 NTU sh	ould trigger close	er monitoring	of turbidity level	s and a reduction	in primary	polymer (Clarifloc) dosage.						
arified water turbidity falls to 0.55 NTU	U (LAL) it should	d alarm a low t	turbidity value a	nd the primary po	olymer (Cla	rifloc) shou	uld be turned off.						
d water turbidity UAL of 2.25 NTU she	ould trigger close	er monitoring of	of turbidity level	s and an increase	in primary	polymer (O	Clarifloc) dosage.						
	Date		Process Contro	ol Director		Date							
.W 1 v ar	/ELL LEVEL (CW ELEV) water turbidity LWL of 0.70 NTU sh ified water turbidity falls to 0.55 NT	FELL LEVEL (CW ELEV) FEET (MSL) water turbidity LWL of 0.70 NTU should trigger close ified water turbidity falls to 0.55 NTU (LAL) it should water turbidity UAL of 2.25 NTU should trigger close	FELL LEVEL (CW ELEV) FEET (MSL) 747.15 vater turbidity LWL of 0.70 NTU should trigger closer monitoring ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low water turbidity UAL of 2.25 NTU should trigger closer monitoring	FELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 vater turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity level ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value ar vater turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity level	FELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value and the primary per water turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase	YELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction in primary ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value and the primary polymer (Clar water turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase in primary	YELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction in primary polymer (ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value and the primary polymer (Clarifloc) shou water turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase in primary polymer (Clarifloc)	YELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction in primary polymer (Clarifloc) dosage. ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value and the primary polymer (Clarifloc) should be turned off. water turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase in primary polymer (Clarifloc) dosage.	YELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 747.0 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction in primary polymer (Clarifloc) dosage. ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value and the primary polymer (Clarifloc) should be turned off. water turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase in primary polymer (Clarifloc) dosage.	YELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 747.0 744.8 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction in primary polymer (Clarifloc) dosage. ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value and the primary polymer (Clarifloc) should be turned off. water turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase in primary polymer (Clarifloc) dosage.	YELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 747.0 744.8 745.3 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction in primary polymer (Clarifloc) dosage. ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value and the primary polymer (Clarifloc) should be turned off. water turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase in primary polymer (Clarifloc) dosage.	YELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 747.0 744.8 745.3 748.5 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction in primary polymer (Clarifloc) dosage. ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity value and the primary polymer (Clarifloc) should be turned off. water turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase in primary polymer (Clarifloc) dosage.	YELL LEVEL (CW ELEV) FEET (MSL) 747.15 746.53 748.08 747.0 744.8 745.3 748.5 749.0 water turbidity LWL of 0.70 NTU should trigger closer monitoring of turbidity levels and a reduction in primary polymer (Clarifloc) dosage. ified water turbidity falls to 0.55 NTU (LAL) it should alarm a low turbidity levels and an increase in primary polymer (Clarifloc) dosage. vater turbidity UAL of 2.25 NTU should trigger closer monitoring of turbidity levels and an increase in primary polymer (Clarifloc) dosage.

PCMP Report Forms - Overview

	START DATE END DATE	8/25/13 8/31/13	-	WATER TH CONSUM	IABLES RE				REPORT DATE		9/4/13	-	1	
ARIABLE NUMBER	PARAMETER	UNITS	AVERAGE	MINIMUM	MAXIMUM	TREND	FLAG	FORECAST	TARGET	LAL	LWL	UWL	UAL	# OF SAMPLES
28	CLARIFLOC (CATFLOC)	GAL/DAY	22.4	0.0	110.0		LAL		65.0	50.0	55.0	80.0	100.0	7
29	FERRIC CHLORIDE DOSAGE (FeCl3 DOSE)	mg/L	26.1	23.6	29.5				25.00	20.00	22.50	27.50	30.00	7
30	FERRIC CHLORIDE (FeCl3 TOT)	LBS/DAY	14759.2	11376.1	18009.0		UAL		1391.3	1113.1	1252.2	1530.4	1669.6	7
31	KMnO4 DOSAGE (KMnO4 DOSE)	mg/L	0.51	0.46	0.56				0.40 - 0.60	0.20	0.30	0.70	0.80	7
32	KMnO4 TOTAL (KMnO4 TOT)	LBS/DAY	291.6	178.0	354.4				200-300	125.0	150.0	350.0	375.0	7
34	LIME TOTAL (LIME TOT)	LBS/DAY	3880.0	0.0	4560.0				2600 - 3800	1800.0	2400.0	5000.0	6000.0	7
35	CARBON TOTAL (CARB TOT)	LBS/DAY	1482.1	1329.0	1606.0				500 - 1500	300.0	400.0	2500.0	>2500	7
37	FLUORIDE TOTAL (F TOT)	LBS/DAY	321.5	312.7	331.7		UAL		56.7	42.5	49.6	63.8	70.9	7
	FLUORIDE DOSAGE (F DOSE)	mg/L	0.67	0.56	0.82		LWL		0.80	0.60	0.70	0.90	1.00	7
	SODA ASH TOTAL (SA TOT)	LBS/DAY	17763.0	13651.5	23699.7		LWL		23000.0	14000.0	18000.0	28000.0	320000.0	7
	PHOSPHATE (POLYP)	LBS/DAY	1.0	1.0	1.0				1.00	0.33	0.67	1.33	1.67	7
	CAUSTIC SODA TOTAL (CAUS TOT)	LBS/DAY	185.6	0.0	1299.2				0.0	N/A	N/A	3000.0	4500.0	7
45	PRE CHLORINE (PREHYP)	GAL/DAY	0.0	0.0	0.0				0.0	N/A	N/A	1250.0	1500.0	7
46	PRE-FILTER CHLORINE (PREFHYP)	GAL/DAY	381.4	270.0	650.0				120-600	60	90	400	480	7
47	POST-FILTER CHLORINE (POSTFHYP)	GAL/DAY	638.6	300.0	900.0				240-720	180	210	840	900	7
200	ELECTRICAL CONSUMPTION (ELEC TOTAL)	KW								N/A	N/A			7
	NATURAL GAS CONSUMPTION (GAS TOTAL)	CU FT								N/A	N/A			7
MMENTS:														
	Plant Manager	Date		Process Con	trol Director		Date							

PCMP Report Forms - Overview

				WATER TREA	ATMENT PL	ANT								
				PRODUCT	ION REPOR	Г								
									REPORT					
	START DATE	8/25/13							DATE		9/4/13			
	END DATE	8/31/13												
	1	1		1			1	1	1					
VARIABLE	PARAMETER	UNITS	AVERAGE	MINIMUM	MAXIMUM	TREND	FLAG	FORECAST	TARGET	LAL	LWL	UWL	UAL	No. OF
NUMBER					_								-	SAMPLES
4		MOD	6.746	6 522	0.000		T A T	1	< <u>-</u> 000	20.000	42 000	07 000	07 000	
1	RAW WATER FLOW (RWF)	MGD	6.546	6.733	0.000		LAL		65.000	30.000	43.000	85.000	95.000	7
13	FILTERED WATER FLOW (FWF)	MGD	8.358	8.590	0.000		LAL		65.000	30.000	43.000	85.000	95.000	
51	FINISH WATER FLOW (FINPUMP)	MGD	746.525	748.079	0.000		UAL LAL		65.000	30.000	43.000	85.000 800000	95.000 1000000	7
1//	BACKWASH FLOW (BWFLOW)	GAL/DAY	763	764	0		LAL		600000	300000	450000	800000	1000000	1
-	INFLUENT CONCENTRATION													
10	RAW ALKALINITY [CaCO3] (RAWALK)	mg/L	45.90	42.00	49.00				35.00	15.00	20.00	55.00	60.00	7
5	RAW HARDNESS (RAW (CaCO3))	mg/L	111.81	88.00	128.00				100.00	N/A	N/A	130.00	150.00	7
2	RAW TURBIDITY (RAWTURB)	NTU	0.76	1.53	0.00				5.00 - 10.00	N/A	N/A	20.00	40.00	7
6	RAW IRON [TOTAL] (RAW Fe TOT)	mg/L	0.13	0.03	0.24		·		VARIABLE	N/A	N/A	150.0	170.0	7
8	RAW MANGANESE [TOTAL] (RAW Mn TOT)	mg/L	0.03	0.00	0.05				0.05 - 0.20	N/A	N/A	0.20	0.25	7
3	RAW pH (RAWpH)	SU	7.30	7.20	7.44				7.80	7.00	7.20	8.40	8.60	7
	EFFFLUENT CONCENTRATION													
25	FINISHED ALKALINITY [CaCO3] (FINALK)	mg/L	60.00	55.00	70.00				55.00	25.00	30.00	70.00	75.00	7
17	FINISHED HARDNESS [CaCO3] (FINHARD)	mg/L	116.00	100.00	138.00				100.00	N/A	N/A	130.00	150.00	7
174	SETTLED TURBIDITY (SETT TURB)	NTU	0.440	0.158	1.671				0.600	N/A	N/A	0.900	1.200	7
20	FINISHED IRON [TOTAL] (FIN Fe)	mg/L	0.008	0.00	0.03				< 0.02	N/A	N/A	0.05	0.07	7
21	FINISHED MANGANESE [TOTAL] (FIN Mn)	mg/L	0.012	0.00	0.03				< 0.02	N/A	N/A	0.03	0.04	7
16	FINISHED pH (FINpH)	SU	1.07	1.14	0.00		LAL		8.50	8.10	8.30	8.65	8.80	7
44	FINISHED CHLORINE RES. [TOTAL] (FIN CI)	mg/L	0.06	0.15			LAL		0.50	0.30	0.35	0.60	0.75	7
COMMENTS:														
										•				
	Plant Manager	Date		Process Contro	ol Director		Date							

PCMP Report Forms - Compliance

						Complian	ce Report Fo	rm					
Treatm	ent Plant												
Month	1												
Year													
	Sample Des	cription	Assigned to	Date Scheduled	Parameter	Sample Type	Number of samples	Visual Inspection of Sample		Person Collecting & Transferring Sample	Pickup Date	Chain of Custody review (initials)	QA/QC Review (initials)
Comme	ents												
			(*) <u></u> NPDI	ES, DWR, Sto	rm water, Dri	inking water, G1	ound water, S	olids, Special	studies, Proce	ss control, other	r		
Signati	ures												
								Date					
Regula	tory Review	QA/QC						Date					
Labora	tory Supervis	or						Date					
		-	<u> </u>					Date	1				
Plant N	Aanager												

PCMP Report Forms - UPR

				TMENT PLAN T - Clarification							
	START DATE	8/25/13	_			REPORT DATE		9/4/13	_		
	END DATE	8/31/13	- -						_		
ARIABLE	PARAMETER	UNITS	MINIMUM	MAXIMUM	AVERAGE	TARGET	LAL	LWL	UWL	UAL	No. OF SAMPLES
1	RAW WATER FLOW (RWF)	MGD	46.195	80.818	68.703	65.000	45.000	55.000	80.000	90.000	7
29	FERRIC CHLORIDE DOSAGE (FeCl3 DOSE)	mg/L	23.63	29.53	26.14	25.000	20.00	22.50	27.50	30.00	7
	CLARIFLOC [POLYMER] DOSAGE	mg/L	0.00	1.65	0.38	0.00	n/a	n/a	n/a	n/a	7
	ACTIVATED CARBON DOSAGE	mg/L	2.23	3.75	2.67	1.00 - 3.00	0.60	0.80	3.50	5.00	7
33	LIME DOSAGE (LIME DOSE)	mg/L	0.00	11.52	7.16	6.0-10.0	4.00	5.00	11.00	12.00	7
	FeCl3 FEED PUMP SETTING; MOTOR/TRANS	%									7
63	CLARIFLOC FEED PUMP SETTING; (CAT SET)	%	0	10	3	0	n/a	n/a	n/a	n/a	7
64	PRE-FILTER CLARIFLOC PUMP SETTING; (PF CAT SET)	%	100	190	113	100	25	50	>100	>115	7
30	FERRIC CHLORIDE TOTAL	LBS/DAY	11376.1	18009.0	14759.2	14324.7	11459.7	12892.2	15757.1	17189.6	7
28	CLARIFLOC [POLYMER] (CATFLOC)	GAL/DAY	0.0	110.0	22.4	0.0	n/a	n/a	n/a	n/a	7
34	LIME TOTAL (LIME TOT)	LBS/DAY	0.0	4560.0	3880.0	2600 - 3800	1800.0	2400.0	5000.0	6000.0	7
41	CAUSTIC SODA DOSAGE RWF (CAUS DOSE RWF)	mg/L	0.00	2.10	0.30	6.00 -10.00	3.00	4.00	12.00	13.00	7
42	CAUSTIC SODA TOTAL RWF (CAUS TOT RWF)	GAL/DAY	0.0	203.0	29.0	450-800	350.0	450.0	800.0	900.0	7
27	PRE FILTER CLARIFLOC (FILT CAT)	GAL/DAY	20.0	31.0	26.1	30	10	15	35	40	7
35	CARBON TOTAL (CARB TOT)	LBS/DAY	1329.0	1606.0	1482.1	400.0 - 1000.0	300.0	375.0	1000.0	1750.0	7
12	COAGULATION pH (TREATEDpH)	SU	6.55	6.73	6.67	6.70	6.30	6.50	6.90	7.20	7
14	CLARIFIER TURBIDITY (CLARTURB)	NTU	0.76	1.53	0.98	1.50	0.55	0.70	1.75	2.25	7
49	BASINS IN SERVICE (#BASIN IN)	NUMBER	4	4	4	4	2	3	NA	NA	7
13	FILTERED WATER FLOW (FWF)	MGD	47.162	68.533	58.817	65.00	30.00	45.00	80.00	90.00	7
175	FILTERS IN SERVICE	NUMBER	16	17	16.4	18	14	16	NA	NA	7
176	FILTERS BACKWASHED AVERAGE/DAY	NUM/DAY		5	3.9	4 - 5	<3	3	6	>6	7
177	BACKWASH FLOW (BW FLOW)	GAL/DAY	534565	1192903	922075	600000	300000	450000	800000	1000000	7
26	FILTERED TURBIDITY (FILTTURB)	NTU	0.059	0.153	0.092	0.030	NA	NA	0.070	0.100	7
172	NORTH GALLERY TURBIDITY (NGTURB)	NTU	0.051	0.155	0.085	0.030	NA	NA	0.070	0.070	7
172	SOUTH GALLERY TURBIDITY (SGTURB)	NTU	0.068	0.155	0.098	0.030	NA	NA	0.050	0.070	7
173	SETTLED TURBIDITY (SETT TURB)	NTU	0.158	1.671	0.440	0.5 - 0.7	NA	NA	0.750	>1.0	7
50		GAL/DAY	496420	527275	513596	500000	350000	425000	650000	800000	7
50	SLUDGE REMOVAL; FM-5 (SLUDGE TOTAL)	GAL/DAY	496420	527275	513596	500000	350000	425000	650000	800000	7
OMMENTS											
	Plant Manager	Date		Process Contro	al Director			Date			
		Date		Tiocess Conuc	J Director			Date			

PCMP Report Forms - Exceptions

	Report by Exception Memo				
Treatment Plant Date					
Parameter Exception	Flag Exception (LAL, LWL, UWL, UAL)	Actual	Value	Target	Value
2. Description of event(s) (e.	or other Excursions a possibility in the next 7 days? g., equipment failure, shock load, operator error, mi	ssed			
samples, QA/QC issues, missee	analysis, missed reports, etc.)				
3. What steps are being taken or report(s)?	n to alleviate the Control Limit Exceedance, missed	sample(s)			
4. Is on -site assistance need					
5. Are new contingency plan					
(Attach addit	ional sheets as necessary for each line item)				1
Process Control Director		Date			
Project Manager		Date			

PCMP Report Forms - Change Auth.

Process Cont	rol - Alarm/Flag - Change Authorization Form
reatment Plant	
Index/Variable	Number
ameter Description/Name:	
ort Description:	
te of Change:	
a Review Period:	from to
Review Average:	
Review Maximum:	
Review Minimum:	
Review Std. Deviation:	
ting Upper Alarm Limit	
sting Upper Warning Limit	New Upper Warning Limit
ting Lower Warning Limit	New Lower Warning Limit
sting Upper Warning Limit	New Upper Warning Limit
nge Requested By:	
	Process Control Manager Signature
nge Approved By:	Plant Manager Signature

Unit Process Strategies

- Unit Process Strategies are written description of unit process and design characteristics (SOP) along with expected operating criteria
 - Scientific basis for process and control
 - Current target values and flags (LAL, LWL, UWL, UAL)
 - Compliance requirements
 - Troubleshooting guides
 - SOPs available for process control
 - Operator tool kit for process control adjustments
 - Expected water quality ranges
 - Adjustments necessary due to abnormal operation
 - Process operations to achieve water quality targets and compliance

Summary

- Proper deployment of PCMP provides a consistent means of regulatory compliance
 - Team approach to process control
 - Documented procedures and tasks
 - Verification and QA/QC
 - Tracking of KCPs and KPIs
 - Meetings and Reporting
 - Keyed in on regulatory limits and benchmarking metrics
 - Proven success obtaining more consistent compliance efforts

Consistent Compliance Using PCMP

Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931