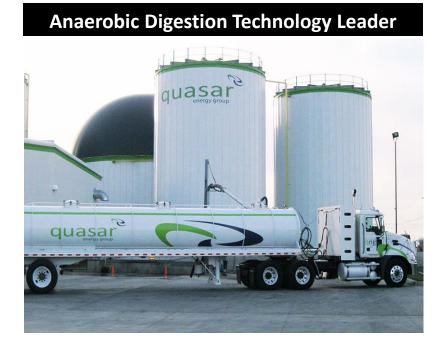


The City of Wooster, Ohio


Water Resource Recovery Facility

Through Public Private Partnership

quasar at a Glance

- HQ: Cleveland, OH
- Over \$150M in Executed Projects
- 13 Operational Digesters (OH, NY, MA)
- Capacity to annually manage 700,000 tons of organic waste
- Municipal, Industrial & Agricultural ADs
- Mature US Supply Chain

Full Suite of Services

Sustainable Solutions

Nutrients

Natural fertilizer and animal bedding

Renewable Energy

Compressed
Natural Gas

Water Resource Recovery Facility

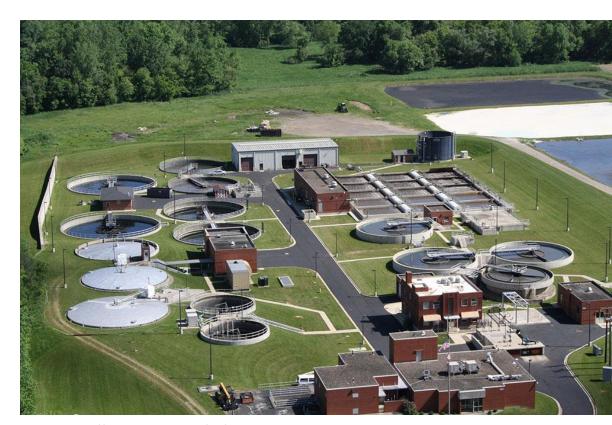
- Treatment plants are facing capital, technical, and regulatory challenges.
- Federal funding to address these challenges has decreased 90% since the 1980's.¹
- Wastewater is rich in natural resources water, nutrients and energy
- Treatment plants consume 3% of the total US energy demand.
- Biosolids have the potential to produce 12% of the US electric demand!¹

quasar partnered with the City of Wooster (Ohio) to turn their Water Pollution Control Plant into a Water Resource Recovery Facility.

1. Source: NACWA, WERF, and WEF The Water Resources Utility of the Future pages 25 and 14

The Challenges

Regulatory Issues:


EPA Compliance
Discharge Limits
Sewer Capacity Restrictions

Process Issues:

Solids Handling
Antiquated Digesters
Insufficient Biogas Production

Disposal Issues:

Land Application Restrictions
Nutrient Value Verification
Value Proposition for Farmers

Water Pollution Control Plant Prior to quasar Project

Evaluation of Municipal Opportunity quasal

Projects can involve a Feasibility Study which at a minimum includes:

- Identify additional regional organics
- Evaluate energy potential
- Effluent management
- Location/Logistics
- Engineering package

quasar Construction

Challenges:

- Old Facility
- Existing Footprint
- Plant Operations Maintained

Scope of Work:

- Retrofit three 1960s Digesters
- Construct Biomass Tank
- Building for Belt Thickener
- Solids Receiving Station
- Install 1100 kW Generator

Public-Private Partnership

Public-Private Partnership can be the new direction for municipal projects. But what does it really mean once the bid process is over?

In Wooster PARTNERSHIP means collaboration;

- Treatment plant continued operating during construction,
- Detailed daily communication between entities
- Integration of operations
- Retrofit completed; no change order invoices to City
- Relationship continues long after the initial project was completed.

Project Results

Address OEPA Findings & Orders

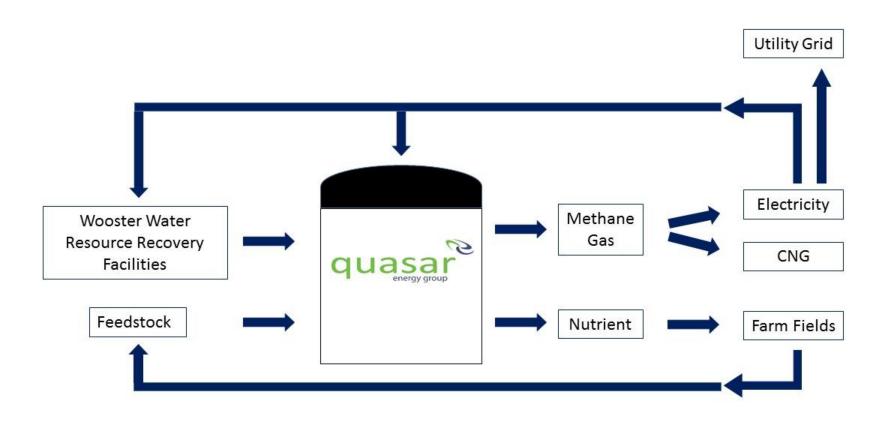
Run the WPCP on renewable energy

√

Manage the City's biosolids at a reduced rate

Reduce overall operating expenses

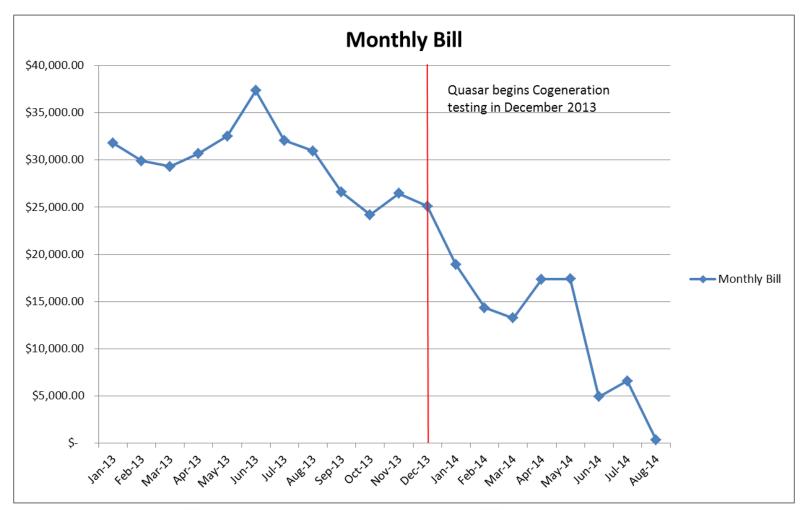
Increase WPCP capacity



Contribute to local economic development

Process Flow Chart

Facility of the future



How Quickly did the City benefit? quasa

Monthly Electric Bill

City of Wooster (Ohio)

Next Steps

- Interconnection between WRRF and Water Treatment Plant to take advantage of excess power generation and utilize 2.2 MW backup generator
- Future CNG Fueling Station
- Conversion of Utility vehicle fleet and eventually City vehicles

The Future is Now

- Exceptional Quality Class A effluent
- Water Cleaning
- Nutrient Recovery

EQuate - Class A Effluent

Exceptional Quality (EQ) Class A effluent

- Created from the blending of organic waste during anaerobic digestion (food waste, FOG, & municipal biosolids.
- Additional treatment process allows EQuate to meet Exceptional Quality classification by USEPA (United States Environmental Protection Agency) standards.
- EQuate is ideal for a wide range of agricultural uses including:

Agricultural application

Soil reclamation

Soil remediation

Soil amendment

Clean Water Potential

- quasar has developed a proprietary back-end technology to cost effectively clean digester effluent to "cleaner water".
- Cleaner water is very affordable if the goal is to discharge to the sewer,
- Further processing can produce "clean water" that can be discharged to a stream affordably.

Recycling Nutrients

- Anaerobic digester effluent is a valuable nutrient rich soil amendment that can significantly reduce farmers' costs.
- NPK Value: 10-6-1
- Land application is a safe and beneficial use of digested material

Land Application Challenges

- High-volume/low-solids
- Weather conditions
- Crop cycles/seasonal
- Storage
- Local Opposition to Land Application of Biosolids
- Back-end technologies that present an alternative to land application have traditionally been too expensive or are unproven.

So what is the solution?

Dewatering

- Dewatering is the first step in a nutrient recovery/cleaner water solution.
- Liquid is discharged to WWTP
- Solids can be land applied or blended with compost for beneficial use
- Reduction in solids minimizes transportation usage and overhead cost

To achieve and transport the same amount of solids -

- 4 truckloads of material before dewatering.
- 1 truckload of material after the dewatering process.

Nutrient Recovery/Clean Water

• It may be necessary, or financially prudent, to further process liquids in order to achieve discharge levels for sewer.

Target Levels in Sewer Quality Discharge Liquid	
Phosphorus	< 5 ppm
Ammonia	< 250 ppm
TSS	< 250 ppm
BOD	< 300 ppm

 Concentrated nutrients are captured and sold or can be infused back into the solids

Proof of Concept

- Columbus, Ohio.
- Cleveland, Ohio.
- Wooster, Ohio.
- Broad implementation over the next year.

Summary

Private/Public partnership;

- reduced costs by over \$300,000 per year,
- attracted new businesses to the region,
- achieved Ohio EPA compliance,
- made EQ Class effluent possible,
- established clean water,
- enabled nutrient recovery,
- * and expanded the facility's capacity.

Public/Private partnership is a real solution for municipal treatment plants.

Questions & Contact Information

Contact: Renato Contipelli

Manager, Municipal Dev. quasar energy group 5755 Granger Road Independence, Ohio 44131

