

Activated Sludge - 3 Things You Need to Know to Improve Process Control

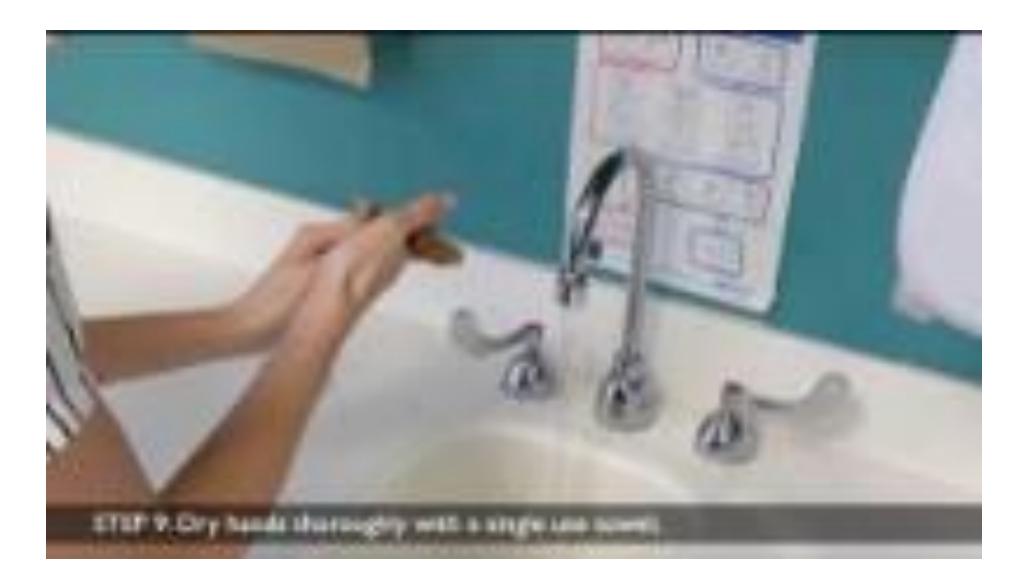
Rob Smith

Senior Process Engineer

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

Safety Moment The 4 Principles of Hand Awareness

- Wash your hands when they are dirty and before eating.
- DO NOT cough into your hands.
- DO NOT sneeze into your hands.
- Above all, DO NOT put your fingers into your eyes, nose, or mouth.



Plan.

When we continue to **Think • Plan • Act**

we will achieve Zero Injuries Today

Reduce transmission of flu, RSV, COVID, colds

- Wastewater
- Activated Sludge Process
- Sludge Recirculation (RAS and Final Clarifiers Process Control)
- Sludge Wasting (SRT/MCRT Process Control)
- Aeration (Blowers/Aerators Process Control)

Wastewater

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

Wastewater Chemistry

- Carbon
 - 2 Types Organic carbon, Inorganic carbon (CO₂)
 - Organic C measured as carbonaceous Biochemical Oxygen Demand (cBOD) or Chemical Oxygen Demand (COD) or Total Organic Carbon (TOC)
- Nitrogen measured as TKN = Organic N + Ammonia-N
- Phosphorus measured as TP = Dissolved P (ortho-P) + Particulate P
- Minerals Ca, Mg, etc.
- Temperature
- pH
- Alkalinity
- Toxicity

Wastewater Biology

Bacteria – The stuff that you need to stain to see

- Heterotrophs BOD bugs
- Autotrophs Nitrifiers

Protozoa – The stuff that is easy to see in microscope

- Ciliates
- Amoeba
- Rotifers

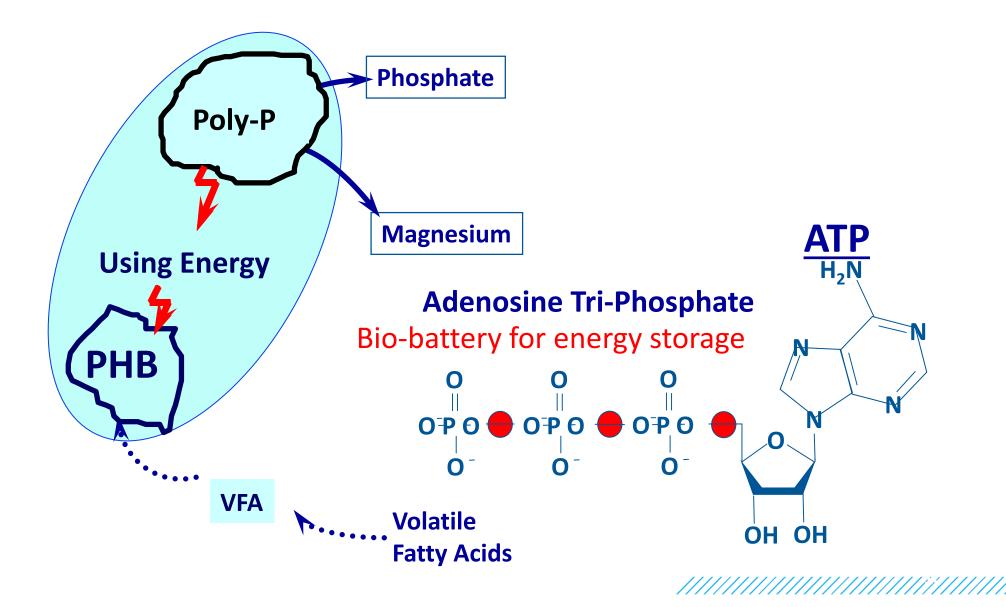
BOD bugs

Require organic C for energy and cell synthesis

Respires dissolved oxygen (DO) or combined oxygen (NO $_3$), or fermentation

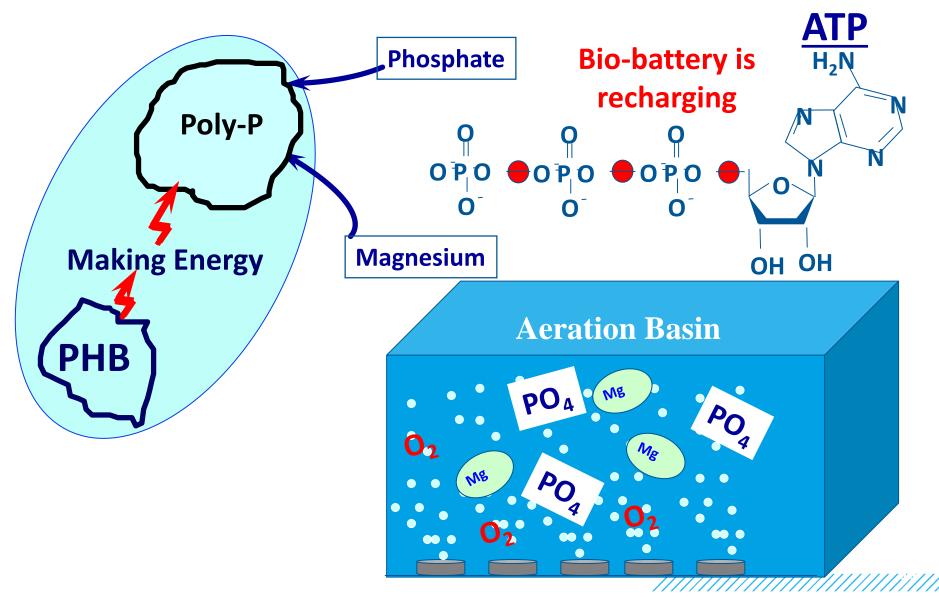
Very diverse, many types – phosphate accumulating organisms (PAO), denitrifiers, etc.

Filamentous bacteria are a special type


Wastewater Biology

In biology, nothing is clear, everything is too complicated, everything is a mess, and just when you think you understand something, you peel off a layer and find deeper complications. Nature is anything but simple.

Richard Preston


Author of The Hot Zone and The Demon in the Freezer

Phosphate Accumulating Organisms – Low/No DO Conditions

R,

Phosphate Accumulating Organisms – with DO / Nitrate?

Nitrifiers

Require ammonia, nitrite for energy

Require DO for respiration

Use inorganic C for cell synthesis – this is a slow process

Low diversity, very few types -*Nitrosomonas, Nitrobacter, Nitrospira*

The Activated Sludge Process (ASP)

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

Mixed Liquor Suspended Solids (MLSS)

Groups of bacteria aggregated together is called a floc A group of flocs suspended in a wastewater aeration tank is called Mixed Liquor Suspended Solids (MLSS)

MLSS

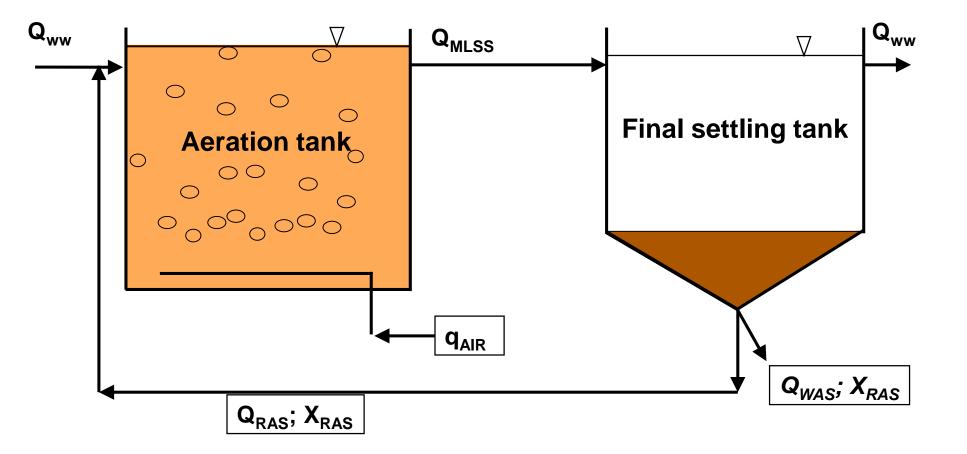
X = Suspended Solids

$X_{MLSS} = MLSS (mg/L)$

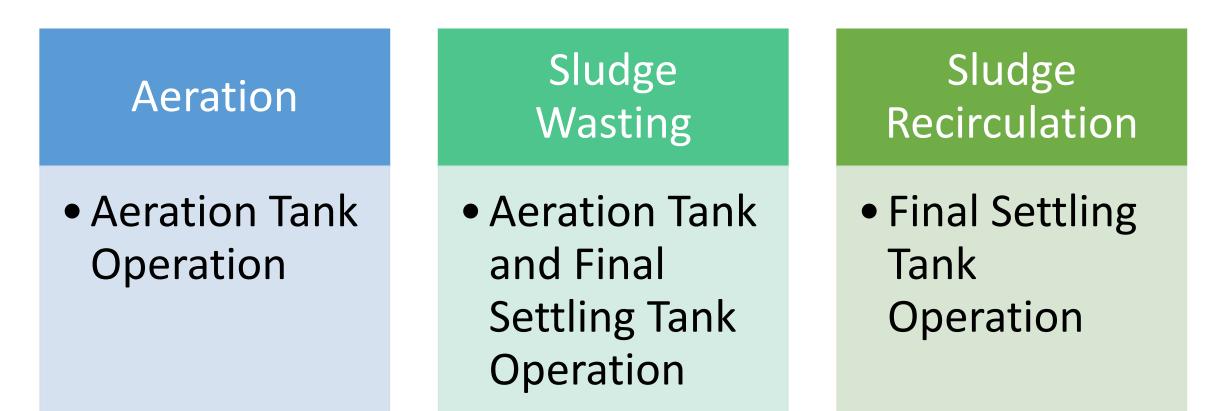
 $X_{RAS} = RAS SS (mg/L)$

Flow

Q = Flow


Q_{ww} = Wastewater Flow

 $Q_{RAS} = RAS Flow$


 $QMLSS = Q_{WW} + Q_{RAS}$

 $Q_{WAS} = WAS Flow$

Activated Sludge Process

3 Handles for Activated Sludge Process Control

Sludge Recirculation

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

The 2 Required Functions of a Settling Tank

Clarification – Solids Separation

Thickening – Transport & compaction

Key Performance Indicators – Setting Tank

Effluent TSS

Sludge Volume Index (SVI)

Surface Overflow Rate (SOR)

Solids Loading Rate (SLR)

RAS Ratio Q_{RAS} / Q_{ww}

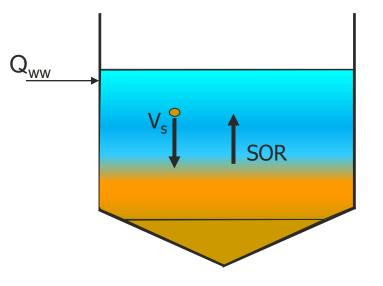
SVI

SVI is a measure of sludge settleability

SVI is the volume occupied by a unit mass of sludge

SVI = 30-min. settleometer volume (mL/L) / MLSS Concentration (mg/L) x 1,000

Good < 125; Fair 125 to 175; Poor >175


Surface Overflow Rate (SOR)

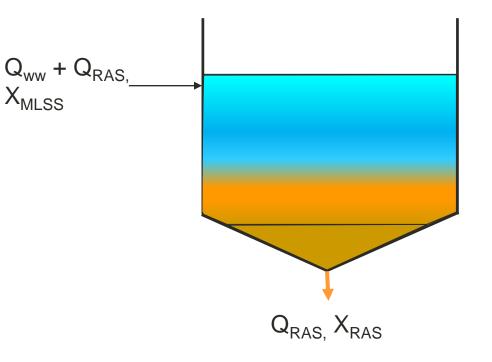
SOR = WW Flow (Q_{ww}) / Clarifier Surface Area (SA) = gal / day / ft² or m³/m²/day

But, looking at it a different way -> $(ft^3 / day) / ft^2 = ft / day -> velocity$

So, SOR is the upward velocity of the water entering the clarifier

The allowable SOR depends on MLSS settling velocity – design standards typically 800 to 1,200 gpdsf (33 to 50 m³/m²/day) based on peak hourly flow

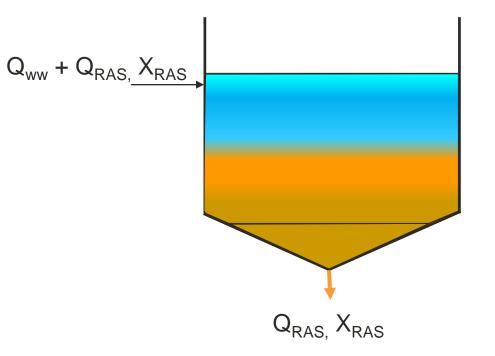
Load


- Flow (or Volume) x Concentration = Load (mass)
- Mgal x mg/L * 8.34 = lbs.
- MGD x mg/L * 8.34 = lbs./day
- m³ x mg/L / 1,000 = kg
- m³/day x mg/L / 1,000 = kg / d

SLR = MLSS Flow $(Q_{ww +} Q_{RAS})^*$ MLSS Concentration (X_{MLSS}) / Clarifier Surface Area (SA)

SLR is reported as lbs./day/ft² or kg/d/m²

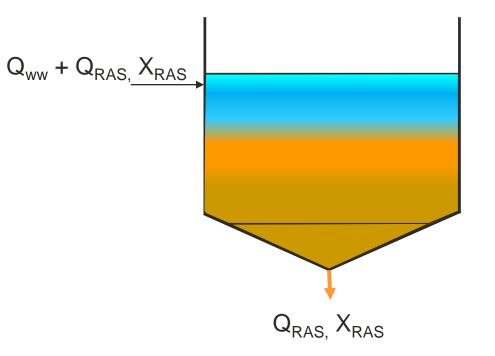
SLR is the solids load applied to the clarifier


The allowable SLR depends on the compaction of the MLSS -> SVI – Design standards 35 to 50 ppdsf (170 to 240 kg/d/m²)

SLR = MLSS Flow $(Q_{ww +} Q_{RAS})^*$ MLSS Concentration (X_{MLSS}) / Clarifier Surface Area (SA)

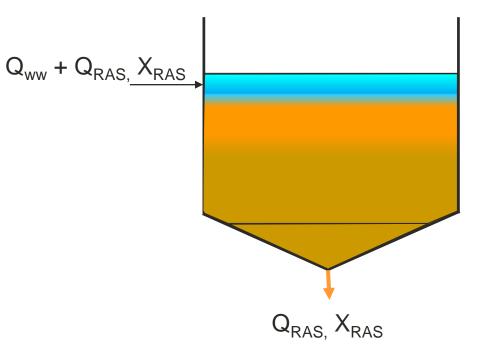
SLR is reported as lbs./day/ft² or kg/d/m²

SLR is the solids load applied to the clarifier



SLR = MLSS Flow $(Q_{ww +} Q_{RAS})^*$ MLSS Concentration (X_{MLSS}) / Clarifier Surface Area (SA)

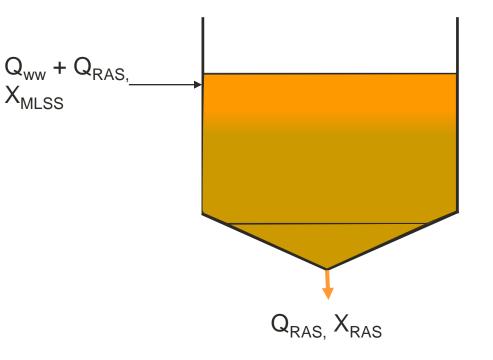
SLR is reported as lbs./day/ft² or kg/d/m²


SLR is the solids load applied to the clarifier

SLR = MLSS Flow $(Q_{ww +} Q_{RAS})^*$ MLSS Concentration (X_{MLSS}) / Clarifier Surface Area (SA)

SLR is reported as lbs./day/ft² or kg/d/m²

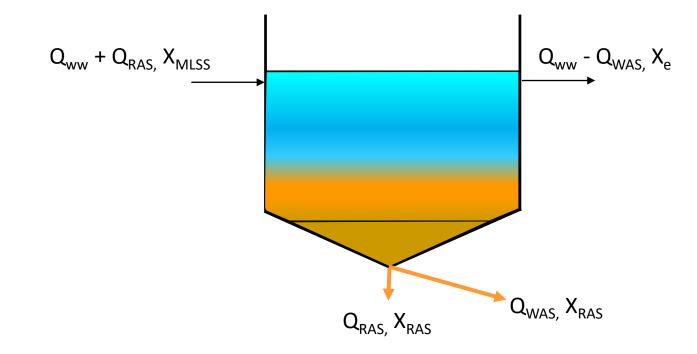
SLR is the solids load applied to the clarifier



SLR = MLSS Flow $(Q_{ww +} Q_{RAS})^*$ MLSS Concentration (X_{MLSS}) / Clarifier Surface Area (SA)

SLR is reported as lbs./day/ft² or kg/d/m²

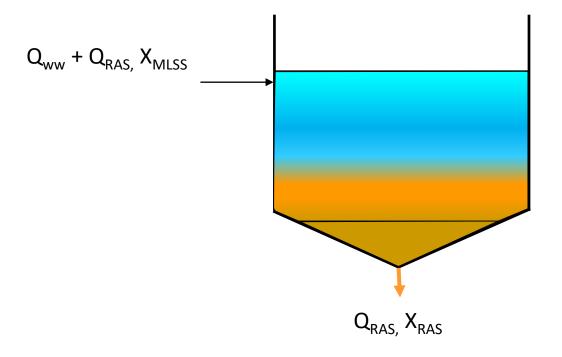
SLR is the solids load applied



Sludge Blanket Variability is Normal

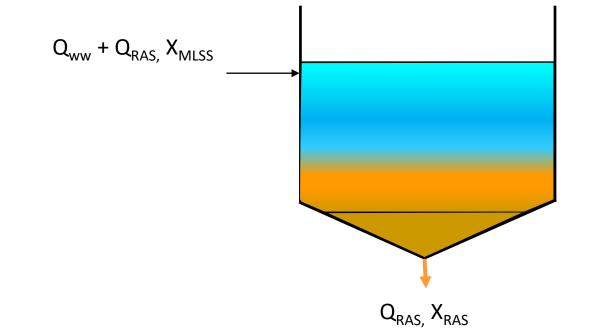
- Deep clarifiers (design) and maintaining shallow sludge blankets (operation), maximizes the available depth for the sludge blanket and increases clarifier reliability.
- Benefits of a shallow blanket:
- Keeps MLSS in the aeration tank
- Minimizes floating sludge due to denitrification
- Minimizes effluent phosphorus

$(Q_{WW} + Q_{RAS}) \times X_{MLSS} = Q_{RAS} \times X_{RAS}$



Degree of Thickening Achieved

$$\frac{X_{RAS}}{X_{MLSS}} = \left(\frac{Q_{ww} + Q_{RAS}}{Q_{RAS}}\right)$$


 $\frac{Q_{RAS}}{Q_{ww}} = Return \ Ratio \ (RR)$

$$\frac{X_{RAS}}{X_{MLSS}} = \left(\frac{1+RR}{RR}\right)$$

Degree of Thickening Achieved

$RR = Q_{RAS} / Q_{WW}$	Thickening Factor, F
0.25	$X_{RAS} = 5 \times X_{MLSS}$
0.33	$X_{RAS} = 4 \times X_{MLSS}$
0.50	$X_{RAS} = 3 \times X_{MLSS}$
1.0	$X_{RAS} = 2 \times X_{MLSS}$
1.5	$X_{RAS} = 1.7 \times X_{MLSS}$

RAS Flow

$$Q_{RAS} = \frac{Q_{WW} \times X_{MLSS}}{(X_{RAS} - X_{MLSS})}$$

$$Q_{WW} + Q_{RAS}, X_{MLSS}$$
The RAS flow rate required for a particular ww flow and MLSS concentration at a RAS SS concentration it is believed can be achieved.

Capacity

$$Q_{WW} = \frac{Q_{RAS} \times (X_{RAS} - X_{MLSS})}{X_{MLSS}} \qquad Q_{ww} + Q_{RAS} X_{MLSS}$$

 $Q_{RAS,} X_{RAS}$

The capacity of a clarifier for values of RAS flow rate and MLSS for a RAS SS concentration it is believed can be achieved.

Allowable Solids Loading Rate

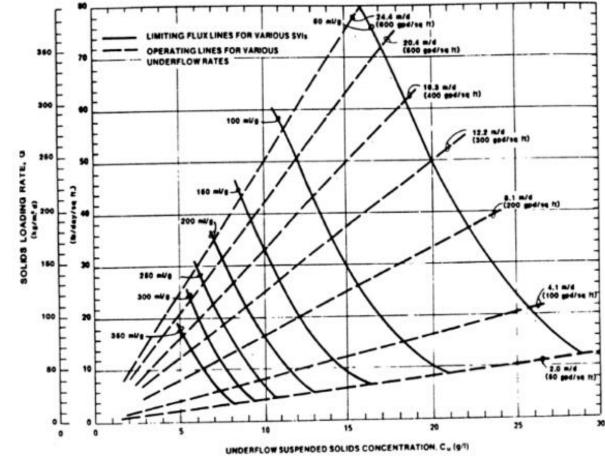
$$G_{a} = \frac{Q_{RAS} \times (Q_{WW} + Q_{RAS})}{A}$$

How to Determine G_a

Direct Measurement

Experimentally

Correlations


Experimental – State Point Analysis

Correlations with SVI

Clarifier operating conditions are determined with 2 of the following information:

- 1. SS loading rate (G)
- 2. Underflow rate (Q_{RAS}/A)
- 3. RAS SS, X_{RAS}

From Daigger and Roper, (1985), "The Relationship Between SVI and Activated Sludge Settling Characteristics", JWPCF, 57, p.859.

Sludge Wasting

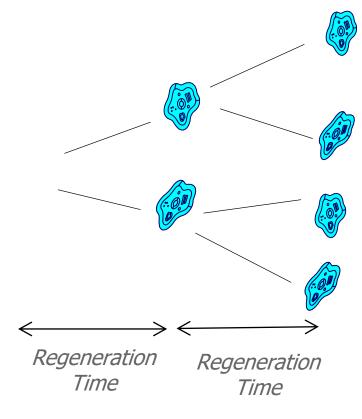
© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

Sludge Wasting Purpose

Meet target operating parameters

Achieve treatment goals

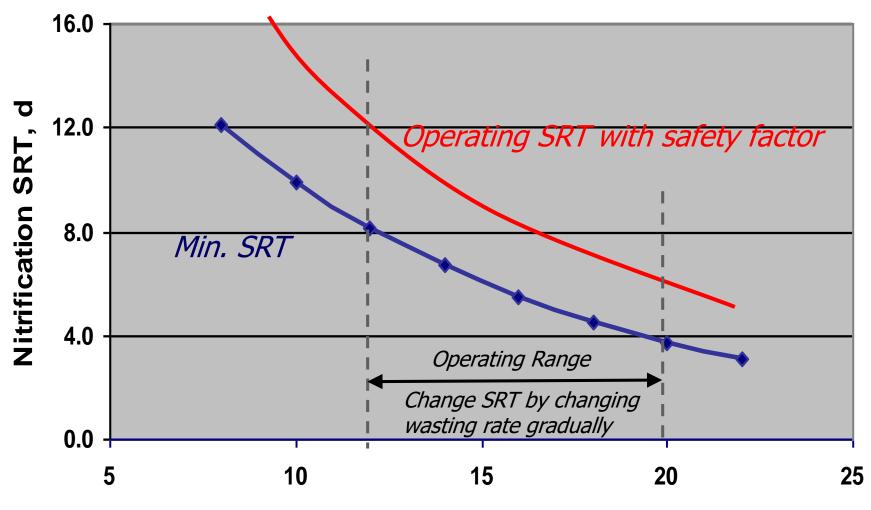
Key Performance Indicators – Sludge Wasting


Solids Retention Time (SRT)

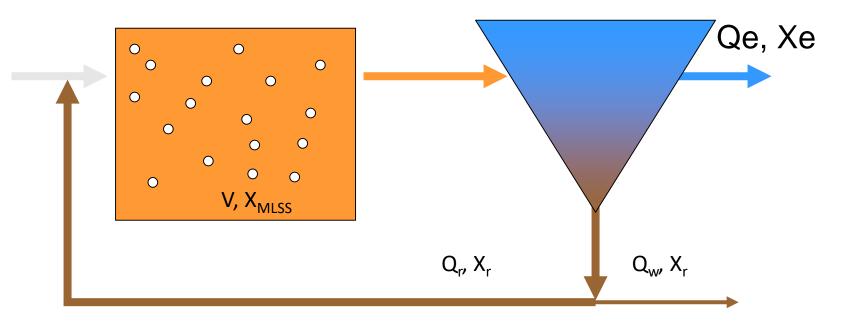
Ammonia / Phosphorus Concentration

Settleability / Sludge Quality

Sludge Production


What is SRT?

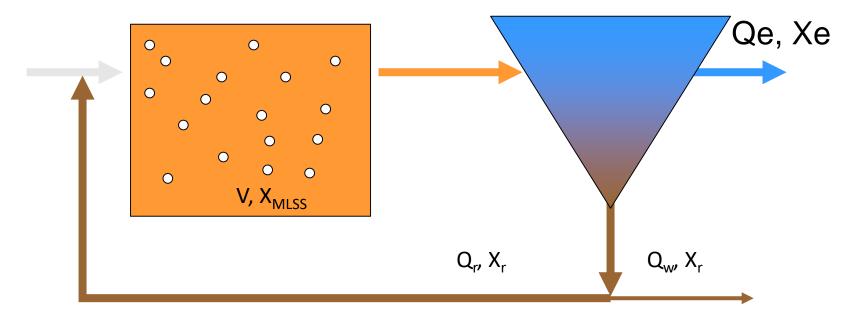
- Every organism has a regeneration time
- For organism to proliferate SRT>Regen Time
- Washout is when SRT< Regen Time


- The length of time the bugs are held in the system
- SRT is 5 to 30 x hydraulic retention time (HRT)
- Related to the regeneration time of the organism of interest
- Target SRT depends on the type of bacterium that needs to be retained (and Temperature)

SRT required for nitrification

Temperature, °C

What is SRT?


• SRT = Mass of MLSS / Mass of Sludge Wasted

•
$$SRT_{TOT} = \frac{X_{MLSS} \times V_{aeration tank}}{(Q_{WAS} \times X_{WAS} + Q_{ww} \times TSS_{eff})}$$

•
$$SRT_{OX} = \frac{X_{MLSS} \times V_{oxic tank}}{(Q_{WAS} \times X_{WAS} + Q_{ww} \times TSS_{eff})}$$

•
$$SRT_{AX} = \frac{X_{MLSS} \times V_{anoxic tank}}{(Q_{WAS} \times X_{WAS} + Q_{ww} \times TSS_{eff})}$$

• SRT = MCRT = CRT

• SRT = Mass of MLSS / Mass of Sludge Wasted

•
$$SRT_{TOT} = \frac{X_{MLSS} \times V_{aeration tank}}{(Q_{WAS} \times X_{WAS})}$$

• $SRT_{OX} = \frac{X_{MLSS} \times V_{oxic tank}}{(Q_{WAS} \times X_{WAS})}$
• $SRT_{AX} = \frac{X_{MLSS} \times V_{anoxic tank}}{(Q_{WAS} \times X_{WAS})}$

• SRT = MCRT = CRT

SRT Cause & Effect

Function	SRT is low / too low	SRT is high / too high	
MLSS	MLSS is lower	MLSS is higher	
MLVSS (%)	MLVSS is higher	MLVSS is lower	
Nitrification	Incomplete nitrification	-	
Settleability	Fair to poor	Fair to poor	
Sludge production	More sludge is produced	Less sludge is produced	
Phosphorus removal	Lower in effluent	Higher in effluent	
Energy Usage	Less energy is required	More energy is required	
Clarifier SLR	Lower SLR	Higher SLR	

Target SRT

- Conventional Plug Flow, Step Feed, Complete Mix 3 to 15 days
- Extended Aeration 20 to 40 days
- Oxidation Ditch 15 to 30 days
- Sequencing Batch Reactor 10 to 30 days

SRT Control

- Operate at minimum SRT required to achieve treatment goals
- Waste as frequently as practical; continuous, 1/hr, 1/shift, 1/day
- Adjust seasonally with temperature and treatment requirements
- Adjust gradually no more than 10% at a time spread out over several days or weeks

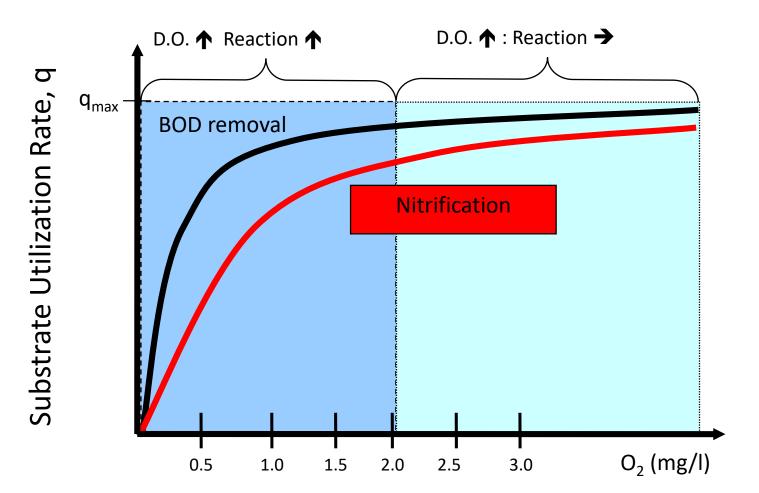
Aeration

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

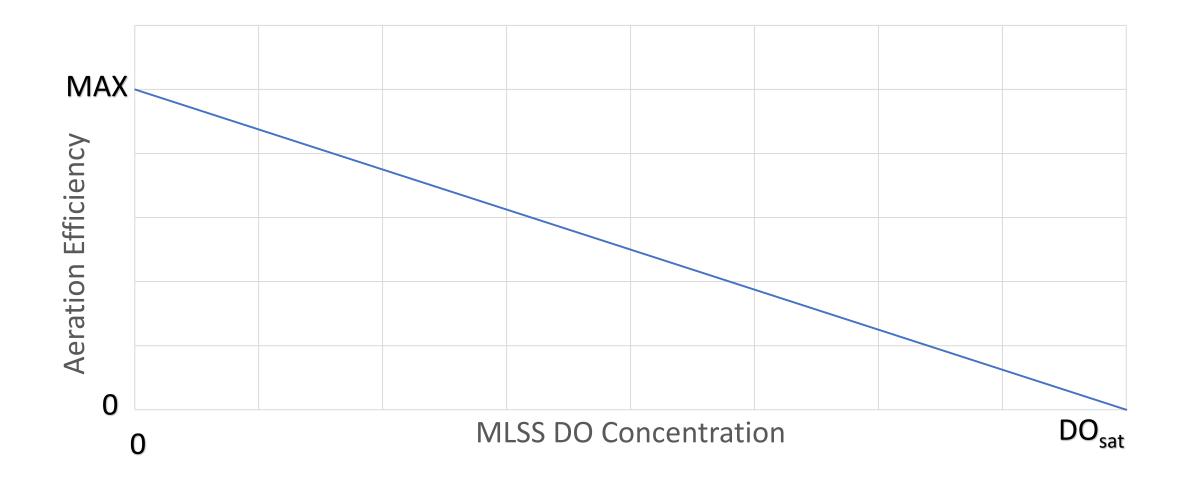
Aeration Purpose

Creates the proper environment for growth of bacteria Maintains bacteria in contact with the wastewater (food)

Key Performance Indicators - Aeration


DO concentration

Ammonia, Nitrate, Phosphate concentration


Air Flow / Aerator hp

Energy usage

DO and Reaction Rate

DO and Aeration Efficiency

Aeration Calculation

Standard Oxygen Requirement (SOR)

Air Flow / Aerator Horsepower

Actual Oxygen Requirement (AOR)

BOD: + 1.0 to 1.5 lbs. O₂/lbs. BOD_{rem} depending on T and SRT

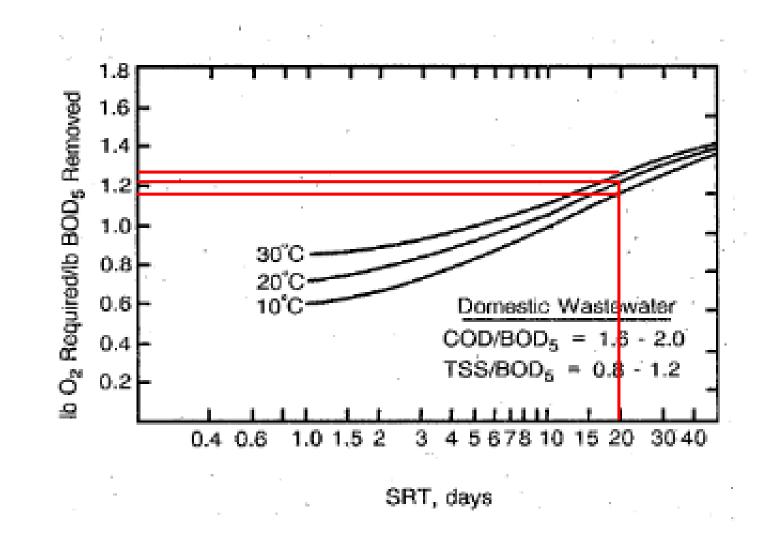
Nitrification: + 4.6 lbs. O_2 / lbs. ammonia-N nitrified

Denitrification - 2.3 lbs. O₂ / lbs. nitrate-N denitrified (credit)

Standard Oxygen Requirement (SOR)

Correction Factor for Environmental and Wastewater Characteristics = 0.3 to 0.6

SOR = AOR / Corr. Factor


Oxygen Transfer Efficiency

Mechanical Aerators – 1 to 3 lbs. O₂/hp-hr

Diffused Air – 0.5% to 2.5% / ft. water depth

Example

- Q = 1 MGD
- WW cBOD₅ = 150 mg/L
- Eff = $cBOD_5 = 10 mg/L$
- WW NH₃-N = 40 mg/L
- Eff = $NH_3 N = 1 mg/L$
- SRT = 20 days
- Depth = 15 ft.
- No denitrification

 $1 \text{ MGD x} (150 - 10) \text{ mg cBOD}_{5}/\text{L x} 8.34 \text{ x} 1.2 \text{ lbs. } 02/\text{lbs. cBOD}_{5} = 1,501 \text{ lbs. } 0_{2}/\text{day}$

 $1 MGD \times (40 - 1) mg NH3 - N/L \times 8.34 \times 4.6 = 1,535 lbs. O_2 / day$

AOR = (1,501 + 1,535) lbs. $O_2/day = 3,036$ lbs. $O_2/day = 127$ lbs O_2/hr

Mechanical Aerators

SOR = 127 lbs. AOR /hr \div 0.55 = 231 lbs. O_2 /hr

231 lbs. $O_2/hr \div 3$ lbs. $O_2/hp - hr = 77 hp$

T / DO	1.0	1.5	2.0	2.5
10	63	67	71	75
15	66	70	75	80
20	67	72	77	84
25	67	73	79	87

(77 hp - 67 hp) x 0.75 kW/hp x 24 x 365 = 65,700 kWh/yr potential savings

Diffused Air – Oxygen Demand

SOR = 127 lbs. AOR /hr \div 0.4 = 318 lbs. O_2 /hr

SOR = 318 lbs. O_2 /hr x 24hr./day = 7,632 lbs. O_2 /day

SOTE = 15 x 2% = 30%

Qair = 0.04 scfm/lbs. $O_2/day \times SOR / SOTE = 0.04 \times 7,632 \div 0.3 = 1,018$ scfm

 $WP = 1,018 \text{ scfm} \div 25 \text{ scfm/hp} = 40 \text{ hp}$

Diffused Air – Mixing

15 scfm / 1,000 ft³ for fine bubble

For a 750,000 gal. tank (100,000 ft^3) -> 1,500 scfm

 $WP = 1,500 \text{ scfm} \div 25 \text{ scfm/hp} = 60 \text{ hp}$

Summary

Final Clarifier Operation – RAS

Sludge Wasting – SRT/MCRT

Aeration

Rob Smith +1 614 428 0767 smithr@bv.com

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.