

Kevin Waugh, Manufacturer Representative Utility Solutions, Inc.

Leaking water mains are a fact of life?

What do you think are normal amounts of Non-Revenue Water?

- 10 30% loss
- 30 50% loss
- 50 75% loss

Would you be shocked if there are current systems in Indiana and Ohio that have upwards of 65% water loss?

If you can control water line leaks by mitigating issues through the 4 pillars of leak management, do you think it would positively affect your system?

What are the tools to improve water network performance?

The 4 pillars of leakage management

Pillar 1 – Leak Detection

- Ground Penetrating Radar (GPR) May only show anomalies or voids that could be caused by water leaks
- Thermal Imagining ground water may be same temp as ground
- Light Detection and Ranging LiDAR Topographical images may only show damaged areas due to water flow
- Drone Imaging like LiDAR only able to look for variations in topography that could be from water leaks
- Gas Analyzer Leak needs to be on top of line and carrier pipe may need to be void of water
- Sound Analyzer Some pipe types do not make normal leak sounds
- Video Pipe Inspection Better for Sewer applications (maybe some pressure pipe applications)
- Dosing Rods false positives and when trying to replicate in blind tests was no better than any other attempt

Active Leak Detection (cont.)

Gas Analyzer

- 95/5
- Non-Flammable
- Non-Toxic

+ Active Leak Detection (cont.)

Sound Analyzer

+ Active Leak Detection (cont.)

Jobsite Deliverable

Fully Portable

- CCTV View Only
- End to End Inspection
- Down Loadable Video Footage
- Both PACP and MACP Coded
 Inspections
- Ability to run 3K'-4K' single day

Pipe Dream Value Proposition

- Maintenance free leasing model: \$2000/mo 1 year lease Data package includes 5K' of PACP coded footage or 20K' of video footage (6 on 6 off 6 on option)
- Smallest deployable footprint in the industry.
 - Robot weighs 12 lbs and 500' Tether weighs 25 lbs
- Ability to inspect: 6", 8", 10", 12" up to 24" mainline sewer pipe
- Completely Green: Robot and Tether are battery operated.
 - NO Power needed or RUNNING VAN/TRUCKS
 - Robot has 7 hours of "continuous runtime"
- Dual front and rear 4K cameras with no moving parts, full 360 degree view, digital PTZ features.
- Multiple use cases: View only inspections, Full PACP/MACP coding, cloud based secure client portals and report generation.

• Pillar 2 – Spot Repairs

Once you find a leak you can determine best method of permanent repair at that location: Couple, Clamp or Encapsulate.

Pillar 2 – Spot Repairs (cont.)

Typical Spot repair is between \$5000 – 9000 in cost

- Labor and Equipment
- Roadway materials
- Repair product (Coupling, Clamp or Encapsulation) ~ 2% of cost but most important aspect
- \$3.5 Billion Annual Cost in North America
 - 850 breaks a day
 - 310,000 / year

What about the leaks that relate to our Non-Revenue Water

- 264 gal/hr for 3 months = 578,160 gal
- 1 single drip per minute equates to 104 gal per year

Types of leakage

264 gal/hr for 3 months = 578,160 gal

1,320 gal/hr for 3 years = 34,713,360 gal

Types of leakage

5,283 gal/hr for 3 hours = 15,849 gal 10,566 gal/hr for 6 hours = 63,396 gal 52,834 gal/hr for 3 hours = 158,502 gal

+ Pillar 3 – Network Update

Current Estimates

1 Mile of Water Main Replacement

\$2.0 Million

Water Treatment Plant

\$40 - 60 Million

This may be long term goal – In the meantime Pillars 2 and 4 may be best option to mitigate Water loss

Pillar 4 – Pressure Management

CONCEPT:

Control your losses by reducing and/or regulating your pressure during off peak hours

Water network during the day

+GF+

Water network during the night

The unique benefits of pressure management

Water conservation	Cost re	duction	Optimised renewal
Reduce existing leakage flow	Reduce OPEX	Reduce maintenance and repair costs	Extend water network lifetime

Existing technology limitation

Membrane technology requires regular heavy maintenance tasks

The innovative Pressure management

Precision: more accurate and stable, even with low flow and challenging pressure differential

Simplicity: No diaphragm. Corrosion and incrustation resistant materials minimize failure and maintenance requirements

Easy integration: weight reduced by up to 90% and length by 60%. Possible 30% savings on installation costs.

Simplified maintenance 10x less components

Easy to comission Less waste of water and time

Safer operation, better teamwork

242 lb

International standard Lifting weight permissible limit

Male

24 lb

Safer operation, better teamwork

Not exceeding recommended weights of International standard (up to 8")

More stability and reliability

- Symmetrical velocity profile around the piston
- Install a flowmeter directly upstream
- Less impact of cavitation phenomenon

Optimized installation

Optimized installation Italy

Programmable valves and automation

From 2" to 12" / PS 232

Reference cases

Italy – July 2020 As by-pass of oversized valve

Italy – June 2020 Benchmark transient events

Italy – June 2020 Benchmark transient events

Italy – June 2020 Benchmark transient events

reference

Italy – April 2020

Installation with in-house controller

Installation in vertical position

Germany – November 2020

159 psi to 20 psi

Germany – November 2020

Previous Installation 02:00 14:00 06.00 03.00 100 14:00 22:00 01.00 61.1.0 M.b. fit.br 10 Ja 01.ter 01.10 With NeoFlow Installation 16:00 1610

19.Ju

09. Jun

09.lin

09 Jun

(0.Ju

09.lin

09.Jun

(6.Jun

08.Jun

(6.Ju

103 Ju

(R.) in

Reference video Cochem

Pressure regulation - July 2021 – 4''

Italy

Stable pressure- September 2021 – 6''

Χρώμα	ΥΨ. Περτγραφή	Min	Max
	GP 123_M2	0,22	67,80

Manufacturing setup

Manufacturing site: Seewis - Switzerland

Assembling steps

Pressure testing

Thank you for you participation

