Hazen

Aeration Systems & Efficiency

55th Annual Wastewater Workshop – OTCO, Inc.

Agenda

- Energy Management
- Evolution of the Biggest "Sink"
- Aeration System Efficiency
 Defined
- "I have a deal for you!!!"
- Case Study

Energy Management

"The Perfect Storm"

- Energy costs are rising
- More stringent treatment regulations
- Economy influence
- Social and environmental influences
 - CO₂ Emissions
 - Air Quality

- Federal and local government energy policies
 - Renewable energy portfolio standards
 - Grants and funding for "green" projects

Energy

Reduce (as much as possible)

Energy Consumption in W/WW Industry

W/WW 3% of the nation's energy use (Source-EPA)

W/WW loads typically largest energy user for municipal utilities

Operating budgets stagnant or declining

More automation (lower personnel \$)

Reduce energy

Wastewater Treatment

Different Thinking about "Energy"

Yesterday's Thinking

Energy = Electrical Power

Tomorrow's Thinking		
Potential Energy	Soluble COD	
Energy Sinks	Aeration & Pumping Systems	
Energy Extraction	Digester Gas	

Tomorrow's Thinking Energy Management

Available Influent Energy Potential Energy – "It's Free"

Energy "Sinks" Minimize Energy to Reduce Operating Costs

Energy "Harvesting" Energy Produced > Energy Required

Tomorrow's Thinking "Energy ≠ Electrical Power"

Potential Energy

- Denitrification
- Primary clarifier enhancement
- Primary sludge fermentation

Energy Sinks

- Aeration improvements
- High efficiency motors
- Pump VFD
- Reduce chemical use

Energy Harvesting

- Anaerobic digestion
- Gas recovery
- Nutrient recovery
- Co-gen
- Heat recovery

Aeration Systems Wastewater Treatment Biggest Energy "Sink"

- •Typically, 45 75% of total electrical costs
- •Why necessary?
 - Conversion of particulate to soluble material
 - Oxidation of soluble organic material
 - Nitrification
- Aeration system components
 - Oxygen control strategy
 - Oxygen transfer system (i.e. diffusers)
 - Air production (i.e. blowers, aerators, etc.)

What is an Aeration System?

Aeration System Evaluations Three Areas of Consideration

Aeration System Evolution

1970s

Major infrastructure investments

"Quick and Cheap" solutions

Technology was limited

1980s

Construction & operation of WWTP

Medium/Fine bubble diffusers

Manual controls (some auto)

1990s

Fine bubble diffusers widely adopted

Auto DO controls implemented

Blower equipment advancement

Present

Equipment reaching end of useful life

Big advancement in technologies

Suppliers are in "sell, sell, sell..."

Air Production Evolution

Multi-Stage Centrifugal Positive Displacement

Oil Bearing Single-Stage Centrifugal

Air/Mag Bearing Single-Stage Centrifugal

7-10 mpg

16-18 mpg

20-25 mpg

>100 mpge

Oxygen Transfer Evolution

Coarse Bubble Diffusion

Medium Bubble Diffusers

Fine Bubble Diffusers

Ultra Fine Bubble Diffusers

Control Strategy Evolution

Complete Manual Operation

In-Field Monitoring Only

Single-Parameter Control

Multi-Parameter Control

Typical WWTP Aeration System Upgrades

Original Construction

1990s Upgrade

2000s Upgrade

So, what type of system do you have?

30-year old blowers with ultra-fine bubble diffusers with in-field monitoring only?

Are state of the art blowers with coarse bubble diffusers that is manually operated?

Aeration System Most Energy Efficient Operation

Three systems must work together

Improvements to one +/impacts other two "circles"

Environmental & operational conditions control frequency in M.E.E triangle

Aeration System PerformanceBaseline Operational Efficiency Criteria

NPDES Permit Requirements

Electrical "Sink" Requirements

Influent Characteristics

Low variability throughout the day, month, and year

Diurnal:

Daily variability with additional seasonal variability

Dynamic:

Dramatic changes hour to hour, and throughout the year

Aeration System PerformanceBaseline Operational Efficiency Criteria

Aeration System Performance

"Mostly Defined" Efficiency

Control Strategy Characteristics

Where your \$\$\$\$ are spent for energy efficiency

Oxygen Transfer Characteristics

Improves Electrical Efficiency

Clean Water

New Membranes

Deeper Submergence

Lower Air Flows

Decreases Electrical Efficiency

Wastewater

Older Membranes

Shallower Submergence

Higher Air Flows

Diffuser Performance over Time

Represented by alpha-fouling factor (αF)

Diffuser Flux

More is better...for transfer efficiency

More Diffusers

Less air flow per diffuser

Smaller bubbles

Higher transfer efficiency

Less Diffusers

More air flow per diffuser

Larger bubbles

Lower transfer efficiency

Bubble Size

Small....but mighty efficient!!!!!

1 cubic foot of air...

~60 times more area

Criteria	Large Bubble	Fine Bubble
Diameter of Bubble	14.9-inches	0.25-inches
Surface Area per Bubble	4.9 sq ft	0.0014 sq ft
Number of Bubbles	1	212,200
Total Surface Area	4.9 sq ft	288 sq ft

Aeration System Performance

"Mostly Defined" Efficiency

Aeration System Performance

Environmental Characteristics

Decreases Electrical Efficiency

Higher Elevation
Higher Ambient Temperatures
Higher Relative Humidity
Higher Wastewater Temperature

Improves Electrical Efficiency

Lower Elevation

Lower Ambient Temperatures

Lower Relative Humidity

Lower Wastewater Temperature

Variability of Efficiency

Have you heard this before?

our product will save you (enter a number)% on your electrical consumption.

Don't look at the capital cost...it will be a 2 year payback.

Seems like a really good deal...

What they don't tell you is what was evaluated?

New Diffuser Stable Loadings

Blower Sized for Highest Efficiency Point

Perfect Weather Conditions 68°F and 36% Relative Humidity

Control System has 100% Accurate and Repeatable

So, what does a thorough evaluation look like?

Case Study from Down South

Existing System

1,500 hp oil bearing single-stage blowers

Coarse bubble diffusers

Manual controls

Evaluate the Entire System

Project Background

Historical Electrical Costs

Environmental Conditions

Historic Flow Analysis

Flow (mgd)	% Time
> 100	<0.3%
90 – 100	0.7%
80 – 90	1.2%
70 – 80	1.2%
60 – 70	3.1%
50 – 60	4.3%
< 50	>89%

Design Flow and Loading Criteria

First Screenings of Alternatives

- 72 combinations of "components"
- Aeration evaluations
 - 216 configurations
 - 7 flow/loading conditions
 - 3 seasonal (environmental) conditions
 - 2 vs. 4-pass operation
 - >9,000 electrical demands generated

7.5 & 8.0 psig
Disc, Panel & Tube
1.0 & 2.0 mg/l DO
0.40, 0.45 & 0.55 α F
2 & 4 Passes
Mag, Air & Oil Bearings

Projected Average Electrical Demands

Alternative First Screening Results

Short-List Alternatives Electrical Consumption

Legend A = Air Bearing M = Mag Bearing P = Panel Diffusers

Conclusion:

T = Tube Diffusers

7.5 psig & 1.0 mg/l DO most energy efficient

Short-Listed Alternatives Life-Cycle Cost Evaluation

Legend

A = Air Bearing

M = Mag Bearing

P = Panel Diffusers

T = Tube Diffusers

Conclusion:

8.0 psig &

2.0 mg/l DO

lowest Life-Cycle Cost

Final Screening of Alternatives

Lowest Total Project Worth Cost Alternatives

Criteria	Value
Blower	Air
Diffuser	Tube
Pressure	8.0 psig
DO	2.0 mg/l
Capital \$	\$8.21 M
Electrical \$	\$3.59 M
O&M \$	\$2.13 M
TPV Cost	\$13.93 M

Conclusion

Evaluate the System

Most energy efficient is not always the most cost effective!

