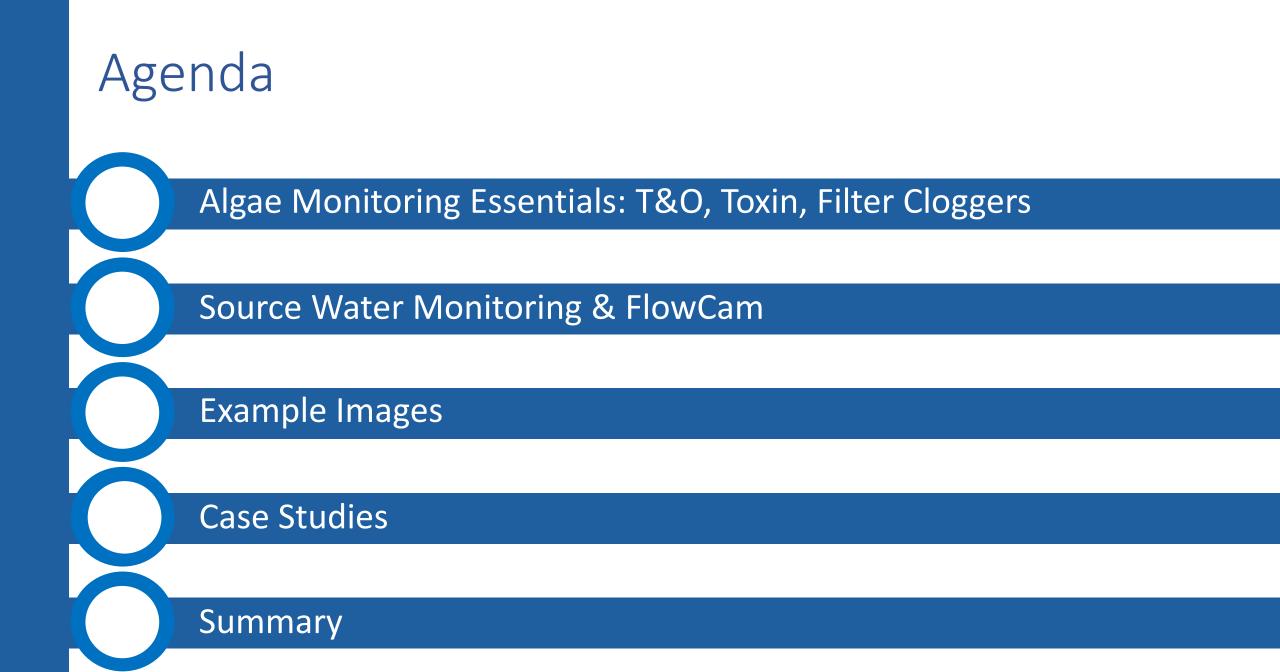
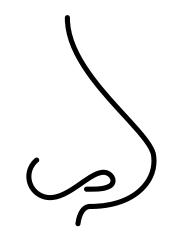


Algal Identification Using Flow Imaging Microscopy

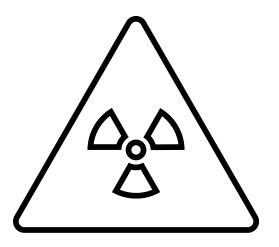


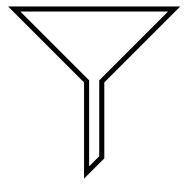
Savannah Judge

OTCO Reservoir Management Webinar


July 12, 2022

Taste and Odor Producers

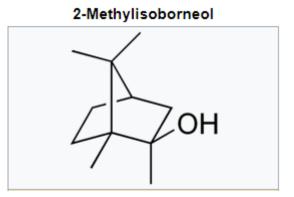



Taste and Odor Producers

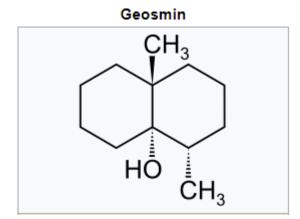
Toxin Producers

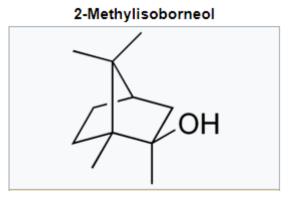
- Taste and Odor Producers
- 🔅 Toxin Producers
- Filter Cloggers


Many sources of T&O complaints: natural, synthetic


- Many sources of T&O complaints: natural, synthetic
- Volatile organic compounds produced by actinomycetes (bacteria) & various algal species

- Many sources of T&O complaints: natural, synthetic
- Volatile organic compounds produced by actinomycetes (bacteria) & various algal species
- Most commonly known T&O compounds are produced by cyanobacteria:
 - Geosmin earthy odor
 - o 2-Methylisoborneol (MIB) musty odor


Low odor detection threshold: 0.006 to 0.01 ppb

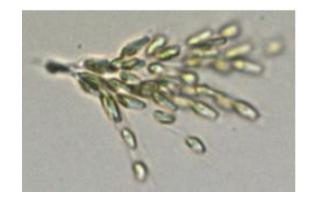

Low odor detection threshold: 0.002 to 0.02 ppb

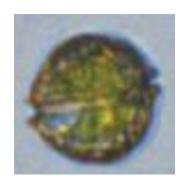
- Many sources of T&O complaints: natural, synthetic
- Volatile organic compounds produced by actinomycetes (bacteria) & various algal species
- Most commonly known T&O compounds are produced by cyanobacteria:
 - Geosmin earthy odor
 - o 2-Methylisoborneol (MIB) musty odor
- Metals (manganese, copper, iron)

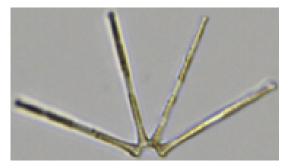
Low odor detection threshold: 0.006 to 0.01 ppb

Low odor detection threshold: 0.002 to 0.02 ppb

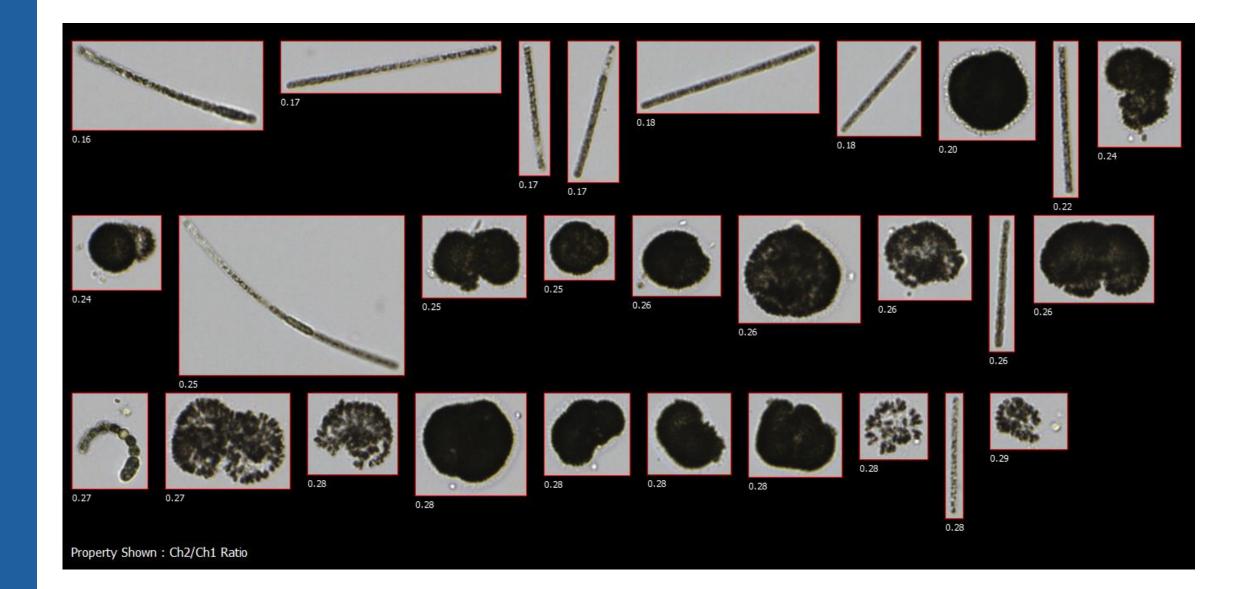
Compound	отс	Odour	Compound	отс	Odour
SULPHUROUS			AMINES	µg.L*	
dimethyltrisulphide	0.01	septic, garlic, putrid,swamov	Ethanolamine	6.5	Mild ammonia –fish ^v
dimethyldisulphide	<4.0	septic, garlic, putrid	isopropylamine	210	Ammonical, amine
methanethiol	2.1		butylamine	80	Sour, ammonical, amine
ethanethiol	1		propylamine	90,000	ammonia
propanethiol	0.74		methylamine	21	ammonia
t-butythiol	0.09		trimethylamine	0.21	pungent, fishy, ammonia
dimethyl sulphide hydrogen sulphide	1 7.2		Dimethyl amine	47	a =
nyurogen supmoe 7.2			TERPENO	DS	
PUFA DEF	RIVATI	/ES	a-ionone	0.007	violets
n-heptanal	3	fishy, oily	β-ionone	0.007	violets
n-hexanal	4.5	grassy, fatty	epoxy -a-ionone	0.007	
3-methyl-butyrate	20	rotten, rancid	geosmin	0.004	earthy/musty
n-pentanal	60	fishy	3-methylbut-2-enal	0.15	rancid; putrid
trans-2-nonenal	0.8	cucumber	3-methyl butanal	0.15	rancid/putrid
1-penten-3-one	1.25	pungent; rancid; fishy	2-methylisoborneol	0.015	earthy, musty
trans-2-hexenal	17	-	limonene	4	citrus
cis-3-hexen-1-ol	70	grassy	linalool	6	grassy, floral
2-methylpent-2-enal	290	rhum, marzipan	cieneole (1,8)	12	camphor, spicy, cool
trans-2, cis-6 - nonadienal	0.08	grassy; cucumber	6-methyl-5-hepten-2- one	50	fruity; ester-like
1,3-octadiene	5600	earthy/mushroom	β-cyclocitral	19.3	tobacco, smoky/mouldy
trans, cis-2,4 heptadienal	5	fishy, oily	styrene	65	sweet, balsamic
trans, cis,cis-2,4,7- decatrienal	1.5	fishy, oily			
	PYRAZINES				
			2,6-dimethyl pyrazine	6	cocoa, roasted nuts, coffee
			3-methoxy-2-isopropyl pyrazine	0.0002	earthy/potato bin
			2-isobutyl-3-methoxy pyrazine	0.001	earthy/potato bin

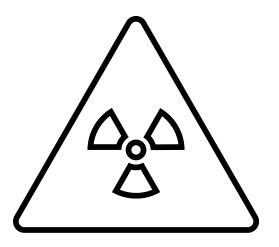

Table 1. Survey of aquatic Odour Threshold Concentrations (OTC; µg.L⁻¹) reported for selected odourous algal metabolites. Source: Maleville and Suffet 1987; Young et al. 1998; Watson 2002)




Common T&O Producers

Cyanobacteria	DolichospermumMicrocystis
Diatoms	SynedraAsterionella
Dinoflagellates	CeratiumPeridinium
Crysophytes	DinobryonPrymesium
Synurophytes	SynuraMallomonas

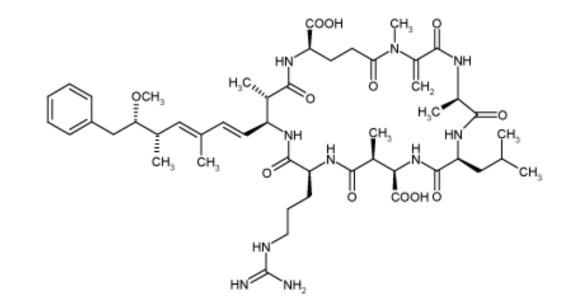




FlowCam[°]

Taste and Odor Producers

Toxin Producers


Toxin Producers

 In addition to VOCs, algae can also produce toxins

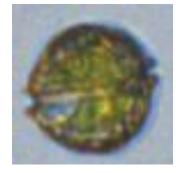
 Cyanotoxins: cyanobacteria
 Include: neurotoxins, hepatotoxins, cytotoxins, dermatotoxins, & lipopolysaccharides

Icthyotoxins

 Prymnesin (Prymnesium parvum)
 Euglenophycin (Euglena sanguinea)

Toxin
Anatoxin-A
Azaspiracid
Brevetoxin
Ciguatoxin
Cylindrospermopsin
Domoic acid
Dinophysistoxin
Haemolytic toxin
Homoanatoxin
Karlotoxin
Lyngbyatoxin
Maitotoxin
Microcystin
Nodularin
Okadaic acid
Pectenotoxin
Prymnesin
Saxitoxin
Other
Unknown

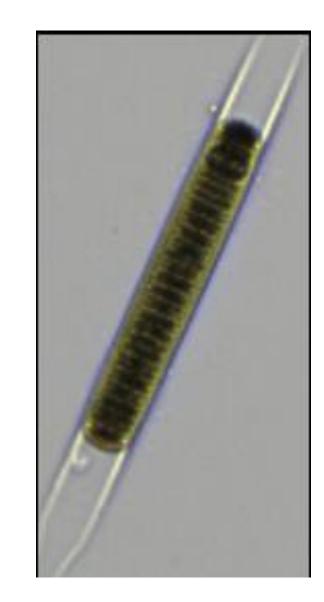
Common Toxin Producers


- Aphanizomenon
- Dolichospermum
- Microcystis
 - Planktothrix
 - Cylindrospermopsis

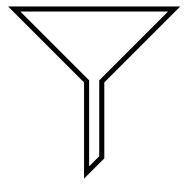
Chrysophytes (Golden Algae)

Cyanobacteria

• Prymnesium



Yokogawa Fluid Imaging Technologies


Toxin Producers

- States monitoring for common toxins: Microcystin-LR, Saxitoxin, Cylindrospermopsin
- UCMR4 monitored 10 toxins with >35,000 samples
 - Detections were low
 - Not bloom focused
- By focusing on only a few toxins over a set schedule we are failing to get the big picture
 - Is it better to monitor algae community composition which in turn can point to further toxin monitoring

- Taste and Odor Producers
- Toxin Producers
- Filter Cloggers

Filter Cloggers

Algae that do not settle and are not removed by the water treatment process

- Require increased backwashing
- Reduced production
- Economic loss

Common Filter Cloggers

Most common filter cloggers are generally Diatoms like:
 Asterionella
 Fragilaria

o Pediastrum

Algae Monitoring Essentials: T&O, Toxin, Filter Cloggers

Source Water Monitoring & FlowCam

Monitoring

- An algae monitoring program is essential for every water supplier.
- Routine testing of raw and finished water should be conducted to identify and treat problems before they reach the distribution system.
- Blooms caught early reduce health risks and customer complaints.

Lakes and Reservoirs

- Algal community composition
- o Cyanobacteria
- Taste & Odor producers
- Water Treatment Plant
 - Filter cloggers

Monitoring Tools

Algae community composition
 Microscope
 FlowCam
 Algae Toxins
 ELISA

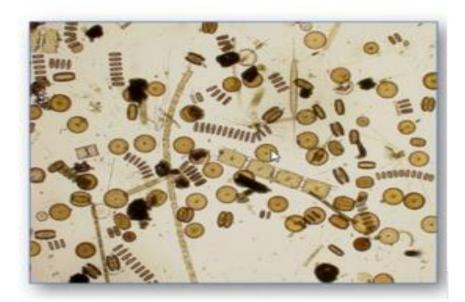
• LCMS-MS

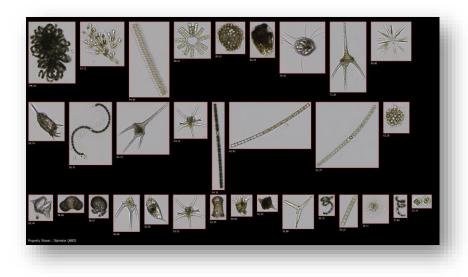
Monitoring Tools

Algae community composition
 Microscope
 FlowCam
 Algae Toxins
 ELISA
 LCMS-MS

🔶 QPCR

FlowCam


Flow-imaging microscope


- Fluid Imaging Technologies founded in Maine in 1999
 - Became part of Yokogawa Electric in 2020
 - Combines principles of flow cytometry (fluorescence) and microscopy
- FlowCam is a tool for water managers
 looking to implement a T&O monitoring plan
- Developed for algae monitoring but has since been recognized as a valuable tool for the analysis of any particle types between 2μm – 1mm.

Why FlowCam?

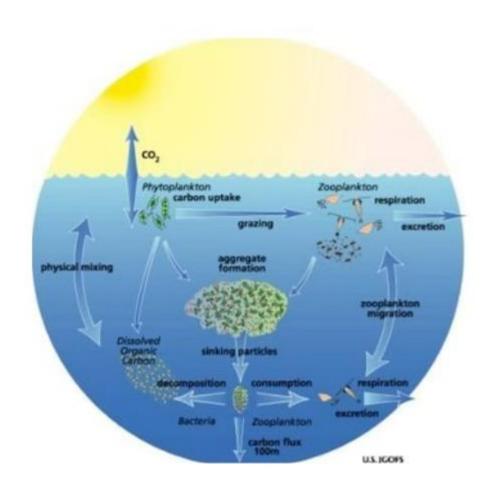
- FlowCam was invented because the standard way of counting plankton using traditional microscopy can be slow and tedious
- However, it is important to remember that both methods have their strengths and weaknesses.



FlowCam[®]

Plankton Overview

- Plankton are organisms that are too small to overcome the current
 - **Phytoplankton**: tiny photosynthetic plants (aka alga)
 - **Cyanobacteria**: main culprits of freshwater harmful algal blooms (some of the oldest organisms on Earth!)
 - **Zooplankton**: slightly bigger predators that eat phytoplankton
- Marine and freshwater
- Categorized in many ways (size, taxonomy, morphology and means of obtaining energy)
- Questions users want to answer about plankton and other particles using the FlowCam
 - What kind?
 - How many?
 - How big?



FlowCam[®]

Phytoplankton

Base of all aquatic food webs

- Sequester CO2, generate
 oxygen and transport nutrients
 (Biological Pump)
- Human influence and rising temperatures can upset the community balance and certain organisms are able to bloom.

FlowCam[®]

Passive, rapid data acquisition (1 mL in 6 minutes)

Taxonomic training helpful but not required

Historically microscopes were used to monitor algae in lakes and reservoirs. Utilities are now switching to FlowCam.

\mathcal{N}	Facilitates forecasting: statistically significant data
	sets

Method consistent regardless of staff turnover

Morphology (biovolume) automatically measured

Import data to LIMS

FlowCam[®]

);;

FlowCam is NOT a tool for speciation

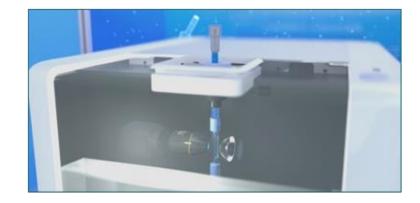
ğ

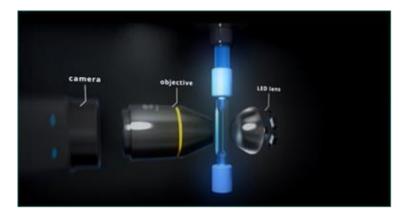
Does not confirm presence/absence of toxins or toxin producing genes.

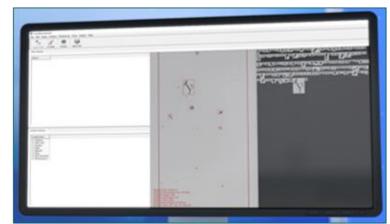
Algae analysis considerations...

Filtration often required, especially in bloom conditions

Can count colonies as large as 1 mm, but requires extra sample preparation.

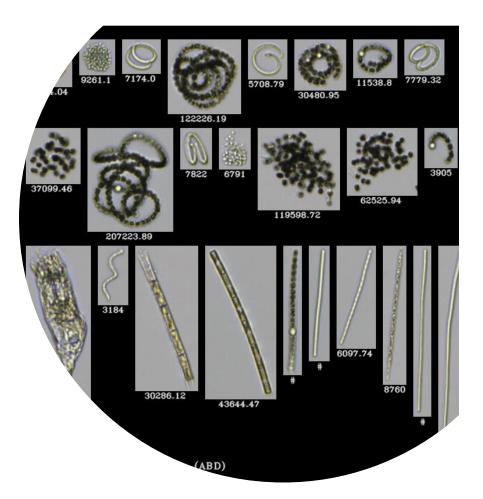

FlowCam under counts cells in dense colonies

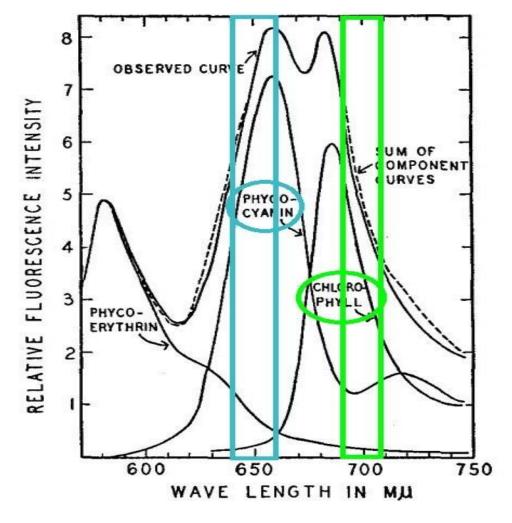

FYI this is challenging on a microscope too


• FlowCam


FlowCam Cyano Operation

- 1. Sample is prepared & introduced to the top of the FlowCam.
- 2. Syringe pump draws sample into the flow cell.
- 3. Sample passes in front of LED light, objective lens, and digital camera.
- 4. Software "crops" particles (ROIs), saving them to a database and recording concentration and particle property data.
- 5. User post-processes the data, builds libraries, classifies particles, and exports reports.




Data Classification

Organize data using morphological features:

- 🔅 Size, shape, color
- Semi-automated
- Pigment (FlowCam Cyano):
 Chlorophyll (Algae)
 Phycocyanin (Cyanobacteria)

FlowCam Cyano for HAB Monitoring

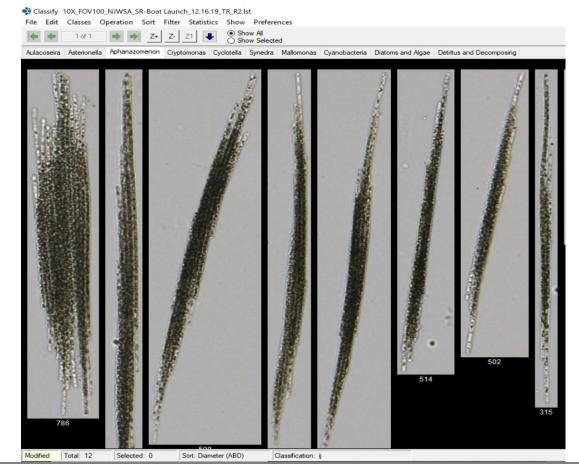
- Differentiate and quantify cyanobacteria from other algae (pigment analysis)
- 633 nm laser
 - 2 fluorescence channels:
 - Ch 1: 700nm ± 10nm (detects Chlorophyll)
 - Ch 2: 650nm ± 10nm (detects Phycocyanin)

Ratio of Ch2/Ch1 enables classification (since cyanobacteria can contain chlorophyll).

A	AutoSave Off 日 り~	<	s	ummary_terr	np - Excel	کر
Fi	le Home Insert	Draw P	age Layout	Formul	as Data	Review
Pa	Calibri La v ste v Market Calibri		A^ A` ~ <u>A</u> ~	= = <u>=</u> = = =		b Wrap Text ☑ Merge & Cen
CI	ipboard 🔽	Font	t I Alignment			
$012 \bullet : \times \checkmark f_X$						
	А	В	С	D	E	F
1	Count	338				
2	Particles / ml	6757				
3						
4	Summary Stats	Mean	Min	Max	StdDev	% CV
5	Area <mark>(</mark> ABD)	551.8	79.86	4182.52	495.42	81
6	Aspect Ratio	0.24	0.03	0.98	0.22	5
7	Average Blue	133.64	52.54	167.49	14.75	
8	Average Green	142.1	56.23	168.52	13.19	
9	Average Red	144.85	60.74	168.41		
10	Biovolume (Cylinder)	6013.11	146.7	1.21E+05	10461.59	
11	Biovolume (P. Spheroid)	7219.88	107.91	2.72E+05		
12	Biovolume (Sphere)	12173.36	536.87	2.04E+05		
	Ch1 Peak	4.51	3.17	5.34		
	Ch2 Peak	4.33	0			
15	Ch2/Ch1 Ratio	-0.18				
16		0.35	0.05			
17	Diameter (ABD)	24.61				
	Length	72.09	12.00			
	Volume (ABD)	12173.36				
20	Width	11.6				
21						

Reporting: **CSV** Output

Libraries and Filters


Over time develop libraries of images

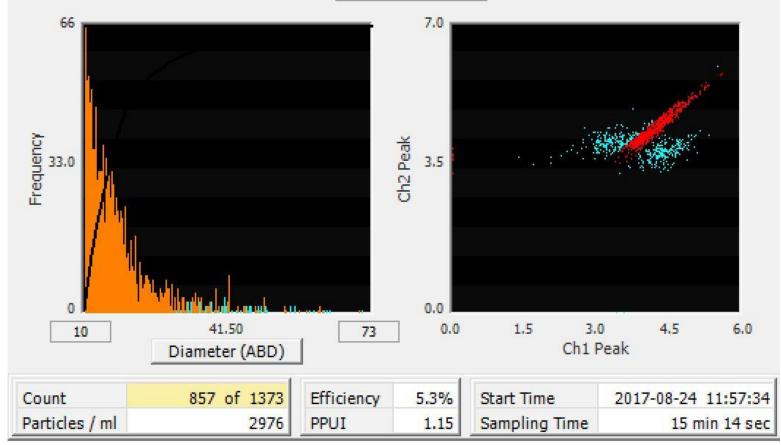
- Semi-automate analysis using filters built from libraries
- Determination of organisms based on image statistics
- Libraries and filters function best with an appropriate number of representative images
- Separate organisms within the same genus that have different morphological characteristics.

Classification

- Feature dominant nuisance organisms
- FlowCam automatically classifies remaining organisms by functional group:
 - Cyanobacteria
 - Diatoms and Algae
 - Detritus and Decomposing Organisms
 - o Genus

Aphanazomenon: Cyanobacteria capable of producing toxins, as well as T&O compounds.

Source Water Monitoring


How does FlowCam Impact Monitoring?

- Utilities can increase sampling frequency, location and depth
 - Cyanobacteria move in the water column to outcompete algae for light. They are simple but evolved, so be strategic!
 - Treatment strategies evolve with data collected at an increased frequency rather than relying solely on large sample volumes.
 - Treat small problems before they become blooms. Small problems are easier to identify with increased sampling frequency

Freshwater Monitoring of Lakes and Reservoirs for HABs and T&O Compounds

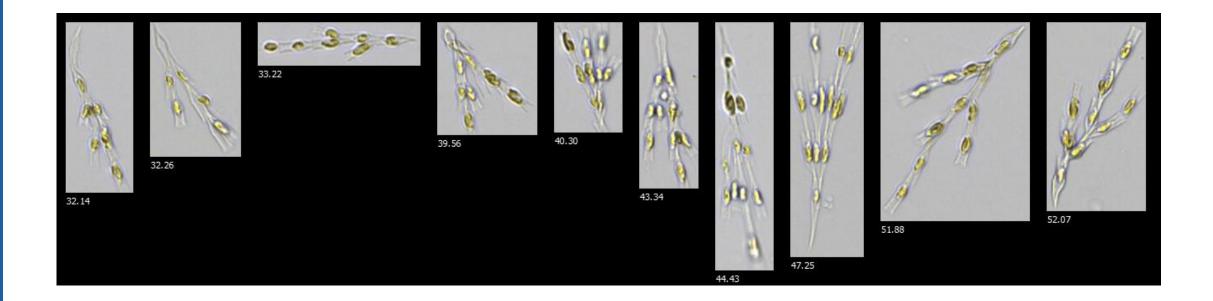
Pose simple questions that were not possible to ask with a microscope:

"Are we at risk for a significant problem?" Yes/No

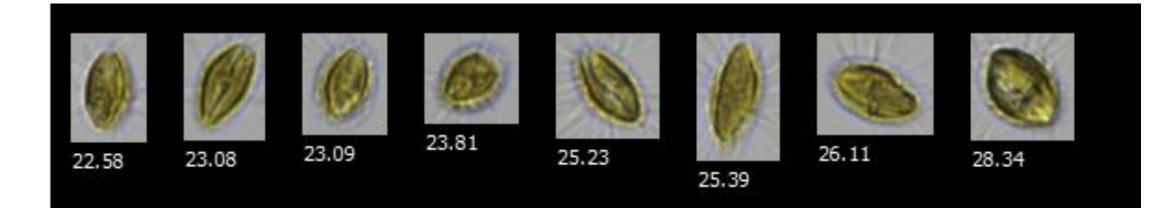
Freshwater Monitoring of Source Water

Use FlowCam to determine:

- Which organisms are dominant and likely to cause trouble?
- Produce reports featuring the "troublemakers" for faster turnaround to treatment.
- If more detail is desired, reanalysis can be done later (ex: in the slower winter months).



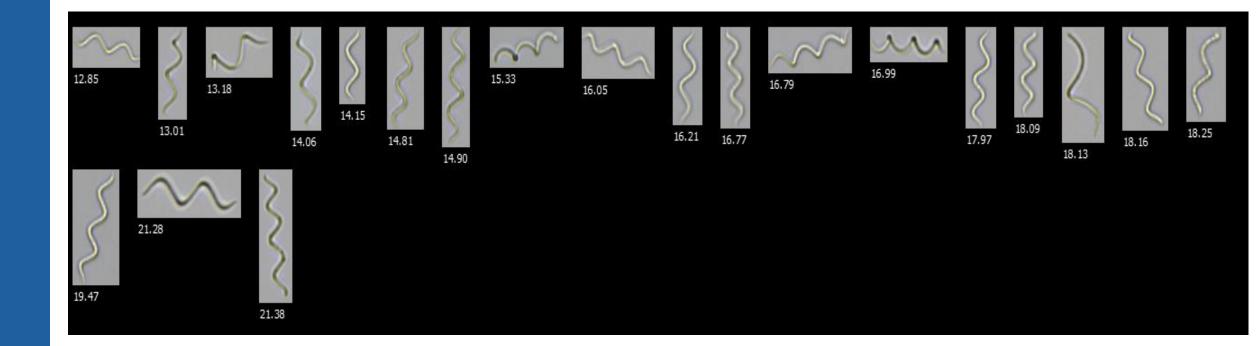
Algae Monitoring Essentials: T&O, Toxin, Filter Cloggers


Source Water Monitoring & FlowCam

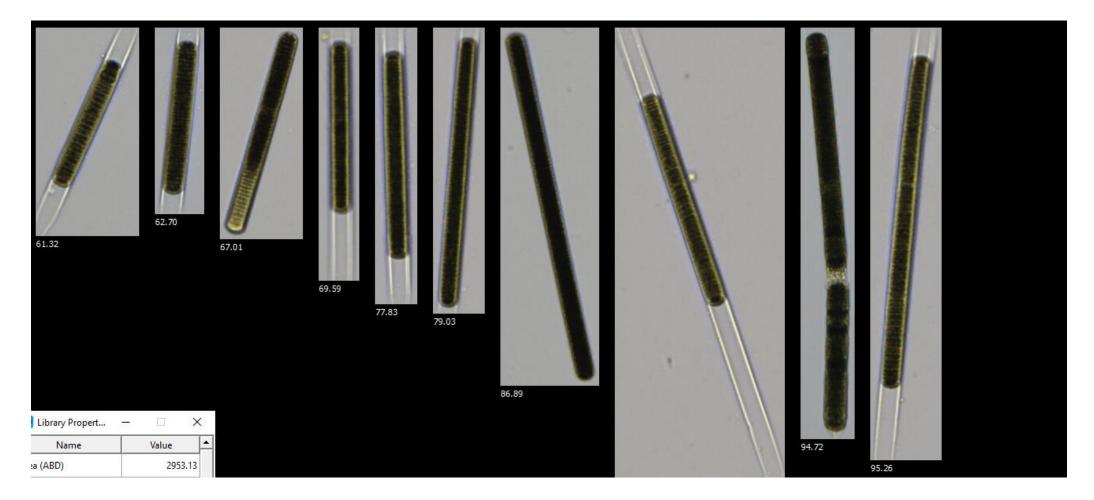
Example Images

Example Library: T&O Producers (Dinobryan)

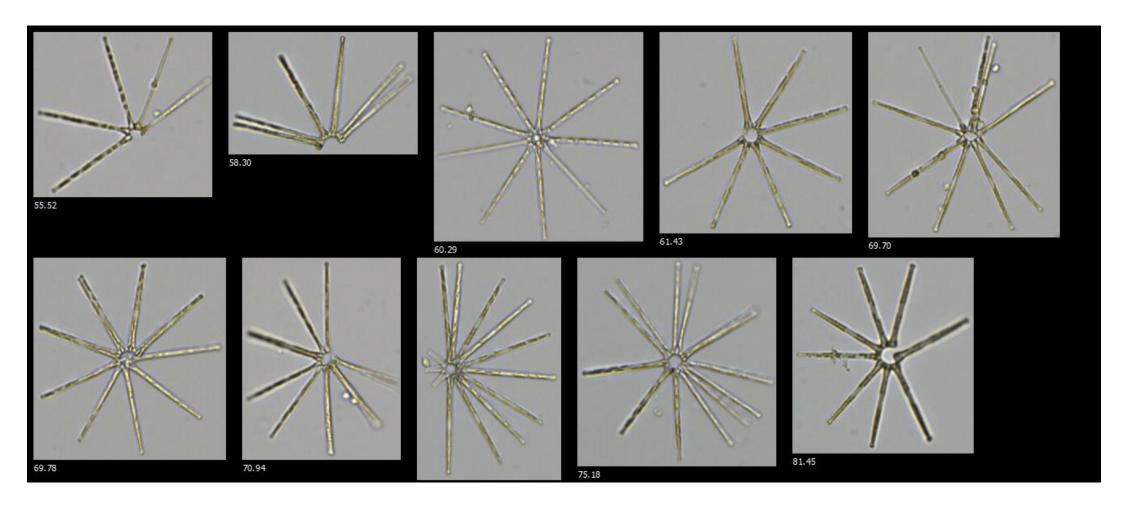
Example Library: T&O Producers (Mallomonas)



Example Library: Toxin Producers (Dolichospermum)

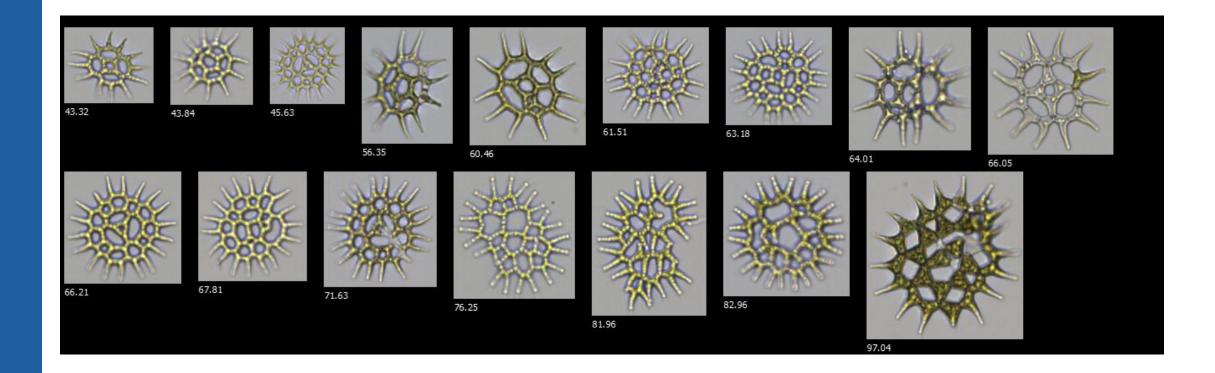


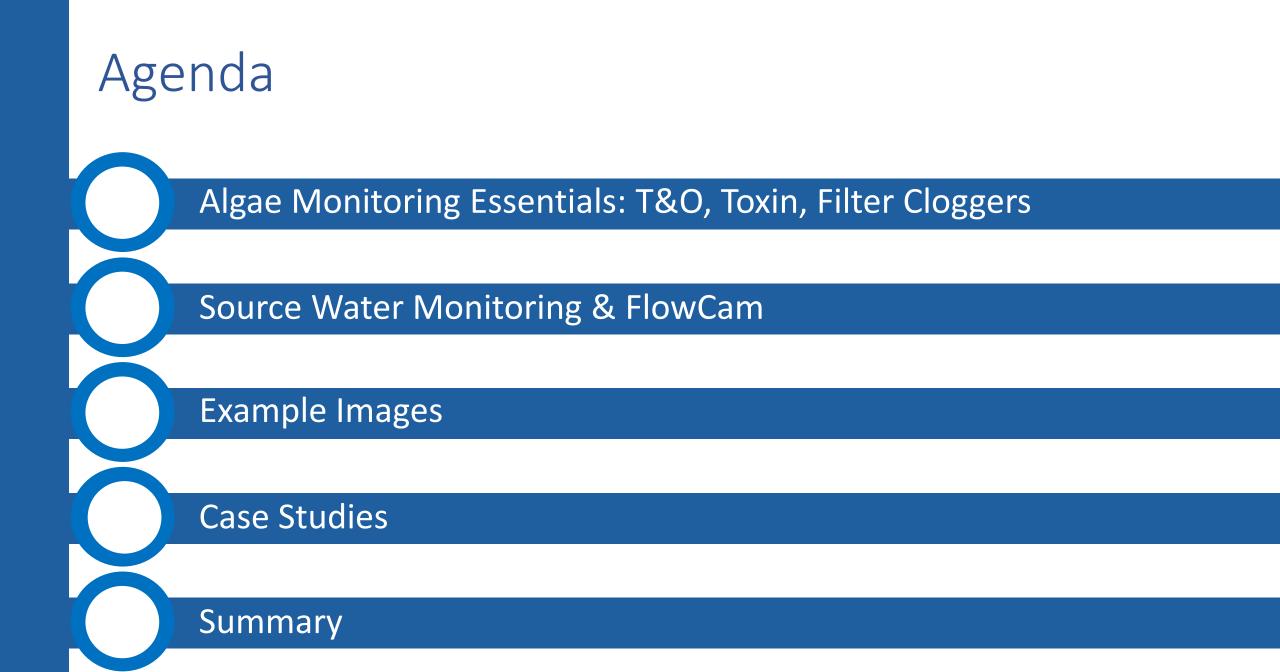
Example Library: Toxin Producers (Cylindrospermopsis)


Example Library Toxin Producers (Lyngbya)

FlowCam[®]

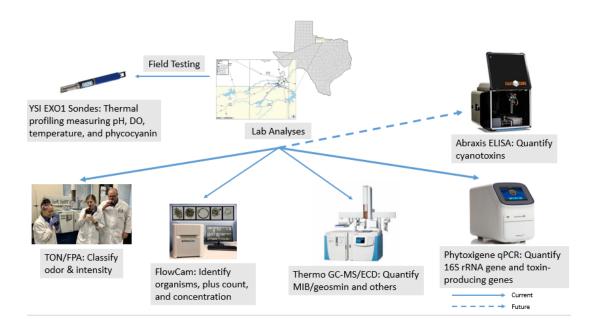
Yokogawa Fluid Imaging Technologies


Example Library: Filter Cloggers (Asterionella)

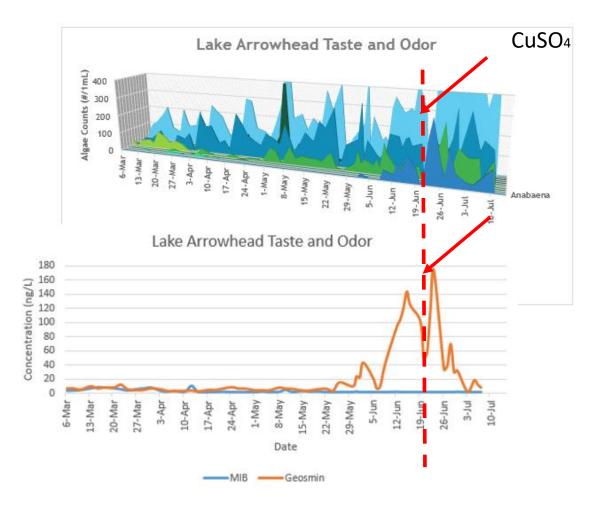

FlowCam[®]

Yokogawa Fluid Imaging Technologies

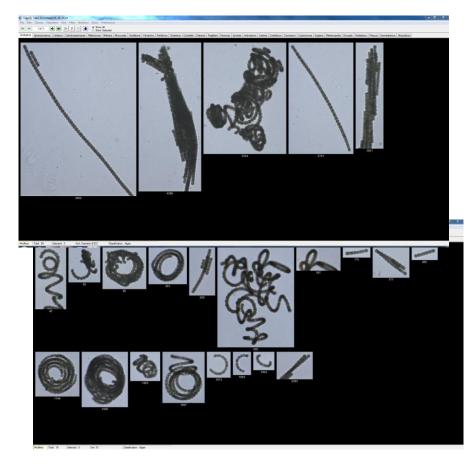
Example Library: Filter Cloggers (Pediastrum)



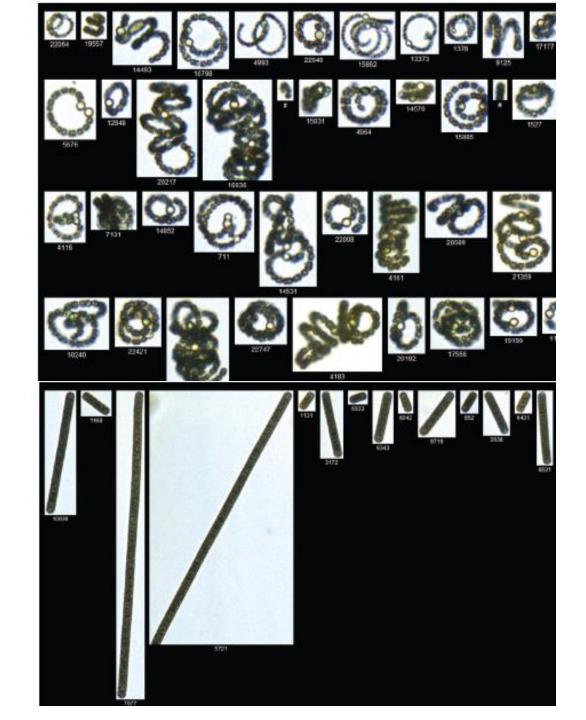
Yokogawa Fluid Imaging Technologies



Case Study: City of Wichita Falls, TX


- Sondes measure pH, DO and temp. Can trigger a trip to the field
- FlowCam used to monitor changes in algae baseline concentrations and create trigger levels
- When trigger levels are tripped, additional testing is performed.

An Integrated Approach – FlowCam & GC-MS/ECD



Anabaena

Case Study: Newport News Waterworks

- Previously using a microscope to monitor algae
 - 1-2 samples/week
- FlowCam enabled them to increase sampling to 7-8 samples/week
 - Increased efficiency
 - Better sample visibility
- Instrument upgrade to a FlowCam Cyano has enabled them to confidently determine Cyanobacteria from other algae and diatoms

Publications

Characterizing and Mitigating Cyanobacterial Blooms in Drinking Water Reservoirs

Hunter Adams, Stephanie A. Smith, Sam Reeder, Emily Appleton, Butch Leinweber, Steve Forbes, Polly Barrowman, Greg Ford, Keisuke Ikehata, and Mark Southard

Key Takeaways

Successful detection and treatment of cyanobacterial blooms benefit from a thorough understanding of them.

The sooner a harmful algal bloom is detected and identified, the easier and less expensive it will be to eliminate it.

Many tools are available to refine monitoring and mitigation methods; research and technological advances continue to help support water utilities' efforts.

A laboratory in Wichita Falls, Texas, has developed a proactive, multifaceted approach to address the complexities of monitoring and mitigating blooms. Water Quality

hhttps://doi.org/10.1002/opfl.tktk

Frances Buerkens is sales director for water quality markets, Yokogawa Fluid Imaging Technologies (www.fluidimaging.com), Scarborough, Maine. Stephanie A. Smith is product segment manager for YSI Xylem (www.ysi.com), Yellow Springs, Ohio. Greg Ford is director of development for Phytoxigene. (www.phytoxigene.com), Akron, Ohio. Hunter Adams is environmental laboratory supervisor for the city of Wichita Falls. Texas (www.wichitafallst.gov).

Microscopes can do only so much when it comes to monitoring raw water and managing potential hazards such as algal blooms. Technological advances are opening new frontiers in understanding cyanobacteria, leading to improved monitoring and forecasting at levels of efficiency and effectiveness unheard of until now.

BY FRANCES BUERKENS, STEPHANIE A. SMITH, GREG FORD, AND HUNTER ADAMS

TACKLE TASTE AND ODOR WITH PROACTIVE WATER QUALITY MONITORING

Cyanobacteria

https://doi.org/10.1002/opfl.1113

Hunter Adams, Ashley Cottrell, Sam Reeder, and Mark Southard are with the city of Wichita Falls, Texas (www.wichitafallstx.gov). Frances Buerkens is with Fluid Imaging Technologies (www.fluidimaging.com), Scarborough, Maine.

Use an Integrated Approach to Monitor Algal Blooms

One drinking water utility found a comprehensive, cost-effective strategy for monitoring toxin-producing cyanobacteria that can harm water quality.

BY HUNTER ADAMS, FRANCES BUERKENS, ASHLEY COTTRELL, SAM REEDER, AND MARK SOUTHARD

Yokogawa Fluid Imaging Technologies

Arren Water Assoc

Summary

- FlowCam is a powerful tool for particle analysis
- It can be used to monitor taste and odor and toxin producing organisms as well as filter cloggers in lakes and reservoirs
- It can also be used in the water treatment plant to measure particle size distribution at various points.
- FlowCam can reduce TAT from sample to results, meaning faster response time and reduced treatment cost while offering a visual of the organisms being counted.
- Particle analysis in the treatment plant is an accurate way of monitoring filter performance and adjusting protocols as necessary

THANK YOU

<u>www.fluidimaging.com</u> savannah.judge@fluidimaging.com