ALUM FOR PHOSPHORUS CONTROL IN LAKES

Adapted from 2018 NALMS workshop

Lake Advocates

HAB Aquatic Solutions

Tetra Tech, Inc.

Wenck Associates, Inc.

GUIDANCE

LAKE MANAGEMENT BEST PRACTICES

ALUM FOR PHOSPHORUS CONTROL
IN LAKES AND PONDS

http://www.lulu.com/shop/dick-osgood-and-harry-gibbons-and-shannon-brattebo/lake-management-best-practices-alum-for-phosphorus-control-in-lakes-and-ponds/paperback/product-23393687.html

ALUM LAKE TREATMENT

- Alum used as a phosphorus control Since 1960's
- Aluminum precipitates with phosphorus from pH 2 to pH 9
- Phosphorus becomes biologically unavailable through inactivation by binding P to Al
- Aluminum phosphate is Very insoluble
 - Al is Not Easily Leached
 - P is Not Easily Resolubilized
- Other Phosphorus Precipitants are Less Effective in long-term sediment inactivation due to background sediment conditions and may be significantly more expensive.

ALUM (ALUMINUM SULFATE)

- Advantages
 - Inexpensive
 - Widely Available
 - Handles Variable Water
 - Broad Application Window
 - Effective at Organic Removal
 - Binds Phosphorus Even in Anoxic Conditions
 - Effective longevity
- Disadvantages
 - Produces Chemical Solids
 - Reduction in Alkalinity (release of H+ ions)
 - Reduces pH of Aqueous Solutions when used without a Buffer

SODIUM ALUMINATE

- Liquid products are 32 to 45% solutions and contain 9 - 12 % as AI.
- Dry products with 30 34 % as Al.
- Expensive
- Good in very low alkalinity waters
- Can be used in conjunction with alum.

ALUM: BUFFER APPLICATION RATIO

Alum:

Sodium Aluminate:

 $Al_2(SO_4)_3$

 $3Na(AIO_2)$

Ratio of Alum to Sodium Aluminate:

- 2:3 Al ratio by weight of Al or moles of Al
- Ratio change when by weight of compound:
 - 3:4 ratio of alum to buffer by weight
- For application, need volumetric ratio:
 - 2:1 ratio of alum to buffer by volume

ALUM TREATMENT NUMBERS

- Trend of increasing alum use in lakes/ ponds
- 200+ recorded lakes treated (14 repeats)
- 165 in Mn, FL, WA, and WI, 25 in other states, 25 in Europe
- 16 treated by interception
- Only 3 reservoirs treated

ALUM TREATMENT STRATEGIES

- Phosphorus water column stripping
- Sediment phosphorus inactivation
- Phosphorus interception (external lake loading)
- Combination

ALUM PHOSPHORUS STRIPPING

- Removal of water column phosphorus
- Dose dependent on phosphorus water column concentration
 - Jar test used to define alum dose relative to
 - P removal and
 - System buffering capacity (buffer sometimes required)
 - Most treatments between 1 to 15 mg Al/L or 5 to 20 times the phosphorus concentration

JAR TEST TECHNIQUE

- Add varying concentrations of alum to test water
- Measure pH, alkalinity, P at 0 and 1, 4 and 24 hours
- Pick the dose at 90% P removal w/residual alkalinity of at least 25% and pH >6
- Alkalinity will rebound from the sediments

EFFECTIVENESS

- Effectiveness varies from few weeks to few years depending on
 - External loading
 - Internal loading
 - Excess aluminum added
 - to inactivate sediment phosphorus

SEDIMENT PHOSPHORUS INACTIVATION

- Due to alum delivery P inactivation includes water stripping
- Inhibits sediment phosphorus bioavailability
 - Binding to aluminum
 - Controlling diffusion out of sediments
 - Reduces Phosphorus concentration at sediment water interface
- Mechanisms of Sediment P Recycling
 - Periodic bottom anoxia and iron redox
 - Mineralization of organic P
 - Rate controlled by wind in both Upper Klamath Lake and GLSM
 - Macro-Biotic disturbance

SEDIMENT PHOSPHORUS INACTIVATION

- Key factors are rate of application with buffer and what buffer is used
- Maximization of Aluminum added relative to mobile phosphorus
- Even coverage of bottom sediments
- Alum will sink into sediment
- Diffusion capture is vertical in both directions

SEDIMENT PHOSPHORUS INACTIVATION

- Alum effectiveness demonstrated as an average reduction in internal P loading of 60 to 90% lasting for 5 to 20 years
- Chl a decreased proportionate with TP
- Dose based on sediment mobile phosphorus
 - Excess aluminum added to inactivate sediment phosphorus
 - Buffer often needed
 - 1 to 324 mg Al/L dose rates
 - Common 12 to 30 mg Al/L range, 90 to 100 g/m²

ALUM DOSES

- Wide range of doses used
- Only 20% actual lake doses
 > 40 g/m²
- 23 whole lake doses based on Mobile P
 - Mean 37 ± 22 g/m²
- Many lakes historically under-dosed because
 - Alkalinity limitation
 - Funding limitation
 - Toxicity worry
 - Multiyear treatments

EFFECTIVENESS: UNSTRATIFIED LAKES

- TP decrease averaged 48 (29-75)% for at least 5-11 years in 6 of 9 lakes/basins
- TP release rate decrease averaged 68 ±17%
- Effectiveness poor if macrophytes present (3 lakes)
- Chl a and transparency consistent with TP (Aphanizomenon disappeared)
- Green Lake 2004 treatment 95% reduction of mobile P for 12 years+

EFFECTIVENESS: STRATIFIED LAKES

- Observed decrease in TP release rate averaged 68 ±24% after 4-21 years (mean 13) in 7 of 7 lakes with adequate data
- ChI a and transparency in epilimnion related to diversion as well as to reduced internal loading due to alum
- Alum worked for 15 years in West Twin Lake, OH. Epilimnion insensitive to internal load
- Epilimnion sensitive to internal load in Lake Morey, NH

APPLICATION TECHNOLOGIES

JOHN HOLZ, PHD TADD BARROW, MS

APPLICATION VESSELS

Large Vessels

APPLICATION VESSELS

Intermediate application vessels

APPLICATION VESSELS

Small application vessels

PRECISE GPS GUIDED APPLICATION

- Advances have increased project effectiveness and safety
- Computerized GPS guidance and tracking ensure complete and accurate coverage and allows for multiple alum dose zones

Pinto Lake, CA Coverage Map

Dual Zone Application Map; Spring Lake, MN

- Alum is injected below the water's surface through pressurized lines fitted with jet nozzles
- Alum flash mixes and forms the floc at a depth of 18-24 inches; promoting rapid settling and minimizes drift due to wind and wave activity

Alum Floc at Bald Eagle Lake, MN

- Corrosion resistant stainless-steel pipes/fittings and heavy duty HDPE hoses have eliminated leaks and safety issues
- pH is measured in real-time on barge
- Advanced application protocol in contractor specifications ensures and effective and safe alum project

Alum Application Barge

EXAMPLE: LAKE KETCHUM

LAKE KETCHUM

- Small, 26 acres, NW Snohomish county
- Relatively shallow, max depth = 6.4m mean depth = 3.7m
- Strongly stratified May-September
- Hypereutrophic to eutrophic
- Plagued by toxic blooms of cyanobacteria

WATER BUDGET & PHOSPHORUS MASS BALANCE

- Identify current amounts & sources of P causing algal blooms
- Identify most effective method to treat both internal & external P sources
- Two layer, Two week time step calibrated mass balance model
 - Determine Sediment Release Rates
 - Test and Evaluate most effective methods for reducing sources of P

Source	Total P Inflows (kg)	% P Load
Internal (Sediments)	455	73%
Inlet Stream	146	23.4%
Surface Runoff	13	2.1%
Groundwater	7	1.2%
Direct Precipitation	2	0.3%
Total	623	100%

PHOSPHORUS MASS BALANCE MODEL

MANAGEMENT PREDICTIONS

SEDIMENT DATA

DOSE CALCULATION

- Dose = (P_{avail} * BD * D_{sed} * AI:P) / mean depth
- First calculated for deep areas of the lake
 - Average Available-P in top 10 cm = 0.805 mg/g
 - BD = 0.052 g/cm^3
 - Ratio of 20:1 for Al added to available P
 - 83.72 g Al/m² or 24 mg Al/L
- Shallow sediment dose calculated as 60 g Al/m²
- Recommended higher dose rate of 24 mg AI/L for measure of safety
- Water Column stripping dose based on TP of 200µg/L prior to stratification; 20:1 ratio
 - 4 mg Al/L
- Total Volumetric Dose = 28 mg Al/L

CHEMICAL QUANTITIES AND TECH SPECS

- Lake Volume = 363,670 m³
- Ratio of Al from Alum:Sodium Aluminate by weight = 44:56
- Volume application rate 2:1 Alum:Sodium Aluminate
- Al per gallon Alum = 0.22 kg
- Al per gallon Sodium Aluminate = 0.58 kg @ 32% available SA
- Total Gallons
 - Alum = 20,384
 - Sodium Aluminate = 10,192
- Specifications include application timing, equipment, WQ restrictions, safety, chemical handling, application ratios, and quantities

CHEMICAL QUANTITIES AND TECH SPECS

- May 2014 (Planned)
 - 20,384 gallons of alum
 - 11,313 gallons of sodium aluminate
 - 2:1.11 ratio
- 2014 Treatment only 66% of total dose

CHEMICAL QUANTITIES AND TECH SPECS

- March 2015 Remaining Whole Lake Sediment Inactivation Dose
- Planned 2015 Annual Water Column Stripping Dose
 - Little bit extra for good measure
- 2015 Total Quantities
 - 13,000 gallons of alum
 - 8,118 gallons of sodium aluminate
- 2014 Total Quantities
 - 13,484 gallons of alum
 - 7,415 gallons of sodium aluminate

RESULTS

LAKE KETCHUM MAY-OCTOBER AVERAGES							
				Changes	Changes	Changes	
	2013	2014	2015	2013- 2014	2014- 2015	2013- 2015	
TP 1 meter (µg/L)	289	34	12	88%	65%	96%	
TP 5 meters (µg/L)	1427	186	16	87%	91%	99%	
Chl a 1 meter (µg/L)	56	45	17	20%	62%	69%	
SRP 5 meters (µg/L)	1235	83	1	93%	99%	99.9%	
Secchi (meters)	1.7	2.1	4.0	20%	94%	133%	

RESULTS

2014-2015 Costs and Funding

	2014	2015	TOTAL
PLAN	Projected	Projected	Projected
Initial Sediment Alum Treatment	\$194,000		\$194,000
Maintenance Alum Treatments		\$36,000	\$36,000
Total Costs	\$194,000	\$36,000	\$230,000
ACTUAL COSTS	Actual	Actual	Actual
Contractor	\$67,700	\$74,500	\$142,200
Design & Monitoring	\$60,300	\$47,000	\$107,300
Total Costs	\$128,000	\$121,500	\$249,500
FUNDING SOURCES	Actual	Actual	Actual
WA Dept. of Ecology Grant	\$45,000	\$5,000	\$50,000
CWD Discretionary Fund	\$40,000		\$40,000
County SWM funds	\$9,440	\$78,060	\$87,500
LID Reserves	\$20,000	\$16,000	\$36,000
LID Assessments		\$8,880	\$8,880
SWM Fee Surcharge	\$13,560	\$13,560	\$27,120
Total Funding	\$128,000	\$121,500	\$249,500

SUMMARY

- Internal P loading in shallow lakes may be more important than external P loading in summer algal bloom production
- In shallow lakes even modest flux rates from sediments result in high water column concentrations due to shallowness that may lead to HAB
- Watershed BMPs will only address part of the increase in external P loading due to land-use compared to historical P loading
- Alum proven effective in shallow lakes, regardless of the level of watershed management, in reducing internal P loading and HABs
- Alum is also effective in deep stratified lake where hypolimnetic P becomes available to drive Cyanobacteria blooms

PHOSPHORUS INTERCEPTION

- Interception before it reaches the lake
 - Detention
 - Removal
 - Inactivation
- Storm water injection
- Wetland soil enhancement and flocculation

ALUM PHOSPHORUS INTERCEPTION

- Removal of phosphorus from inflows
 - Stormwater runoff
 - Streams
 - Aluminum-phosphorus formed removed from system

PRAIRIE CREEK WETLAND TREATMENT TRAIN

- 200 acres
- Began treating water in June 2013

1.3 MGD pumped through alum dosing station, settlement ponds, and wetlands

Photos: Milt Miller, GLSM Restoration Commission

Alum was not used until Fall 2013

WETLAND CELLS OF BMP TREATMENT TRAIN

Photos: Milt Miller, GLSM Restoration Commission

- Nitrogen into GLSM from Prairie Creek decreased average of 41%
- Dissolved P into GLSM decreased average of 65%
- Total P into GLSM dropped almost 75%