

Best Practices in Energy Efficiency

Tom Sherman C.E.M., C.E.A., C.D.S.M.

President

Sustainable Energy Services, Inc.

440.773.5044 Tom@sustainable-energy-services.com

How Do You Buy What You Can't Afford?

Pay Your Utility Less!

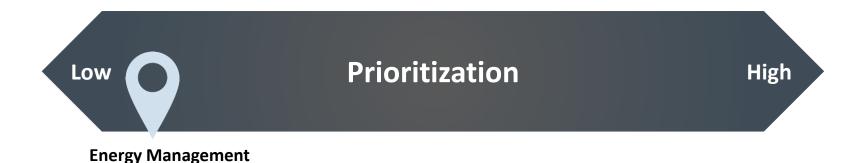
What We Will Cover Today

- Where to Start
- Lighting
- HVAC
- Building Envelope
- Motors and Pumps
- Motor Management
- Motor Preventive Maintenance
- Rebates
- Project Financing

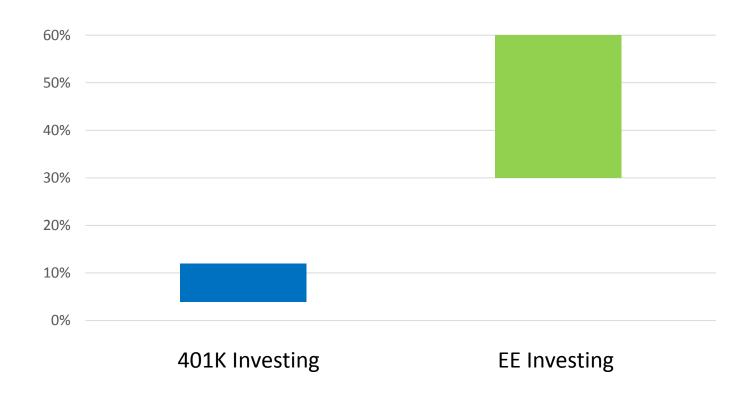
Energy management competes with other priorities

Will we make our energy budget?

How can we optimize maintenance to reduce costs?

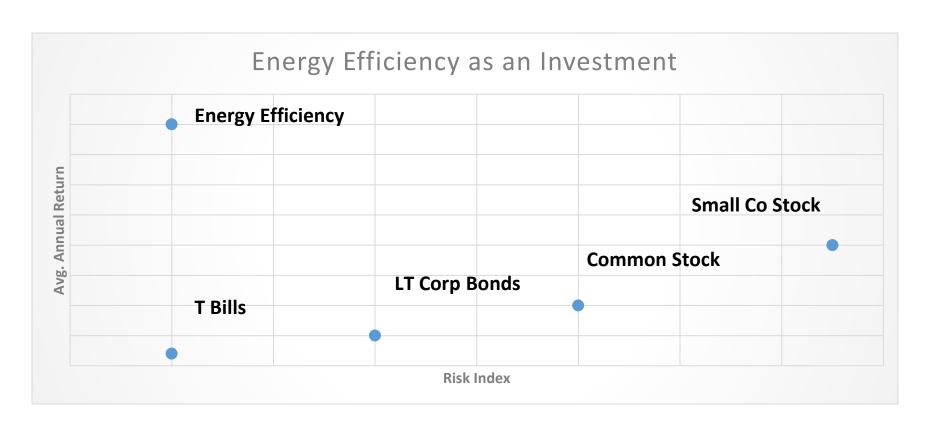

What operational savings opportunities exist across my facilities?

How can I comply with local Energy STAR laws and GRESB reporting?


Are properties up to code and ready for transaction? Are renovations on schedule and budget?

How do I prioritize my capital budget?

Are facilities meeting the needs of occupants? Are occupancy and prices trending up?



What Holds Decision Makers Back?

50% of Home Depot Shoppers Interviewed said a "Watt" is a Unit of Light!

How Energy Efficiency Stacks up

What 200 CFO's Said!

- Average required hurdle rate for core projects = 21%
- Average required hurdle rate for non-core projects = 27%

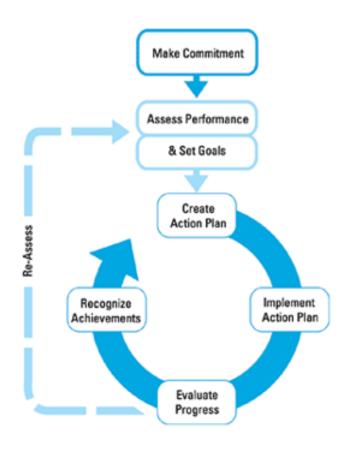
So why do core projects get favored treatment? ...because core projects generate additional benefits!

A Robust Energy Efficiency Program

Will...

- decrease energy costs 20% and more...
- reduce operating costs
- increase cash flow
- improve the environment
- improve facility sustainability
- provide a great marketing op
- Improve employee productivity
- improve employee morale

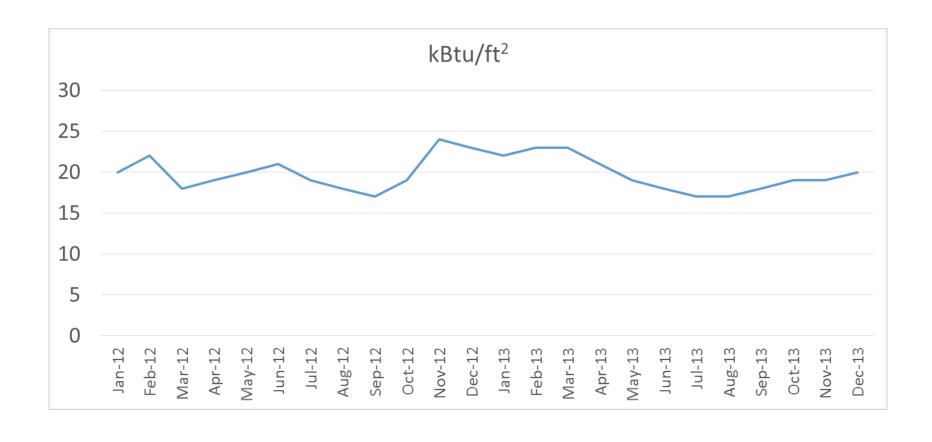
How will you get there?

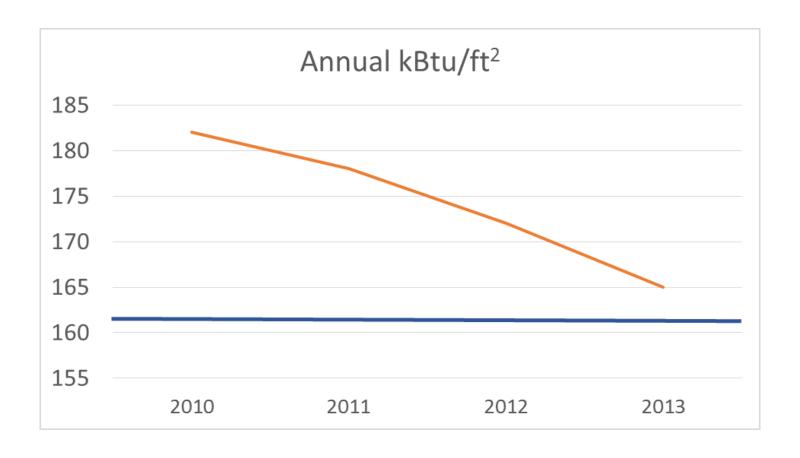

Do you have...

- a plan?
- the expertise?
- the tools?
- a road map?
- a champion?

Getting Started

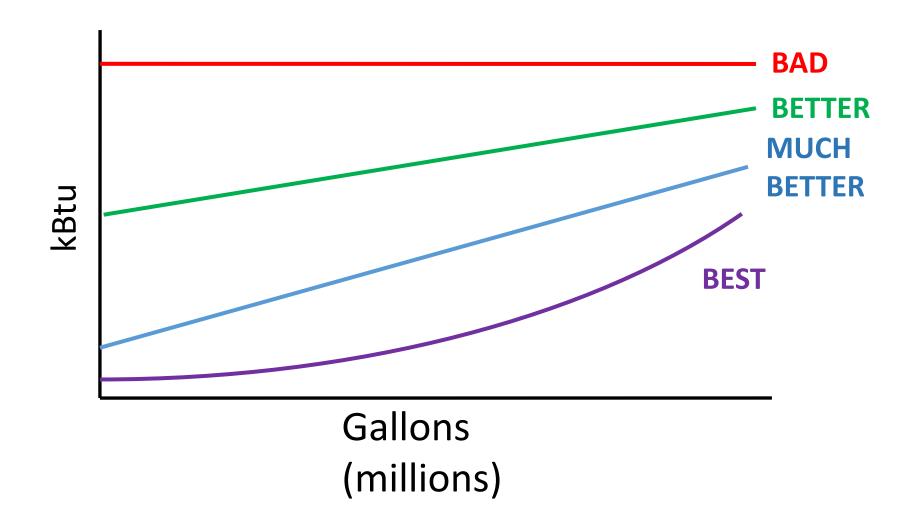
- You need a Champion (senior level)
- Assess 'Current State'
- Decide on 'Future State' The Goal
- Assemble the Team
- Develop a Plan
- Implement
- Evaluate
- Correct as required

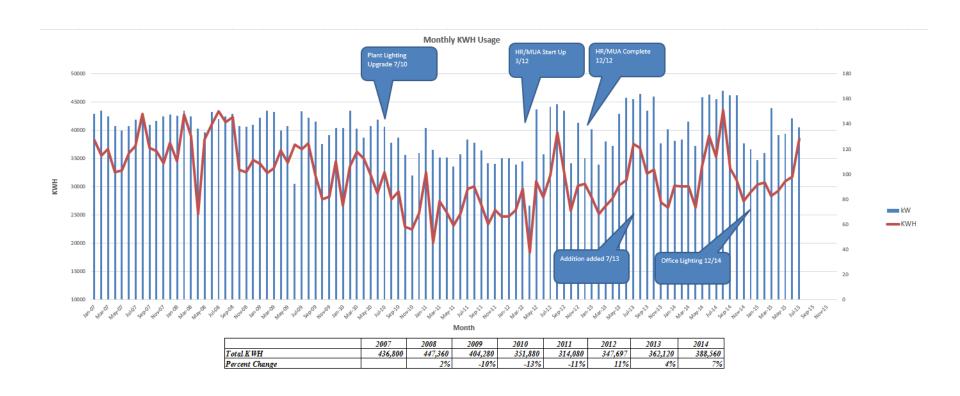

www.EnergyStar.gov


Use only qualified, independent energy auditor

- Encompass Whole Facility
 - Find all the savings possibilities
- Insist on ASHRAE Level 2 Energy Audit
 - American Society of Heating, Refrigeration and Air Conditioning Engineers
 - Level 2 ensures technical and financial analysis for decision making
- Use Independent Qualified Firm
 - Required for objectivity and utility incentives
 - Look for C.E.M. or C.E.A. certification
 - Independent: No tie to any equipment supplier or contractor
- Utilities Offer Energy Audit Incentives
 - Some utilities pay up to 50% of the energy audit fee

Start With A Baseline – 2 years of data min


Goal is to improve vs benchmark

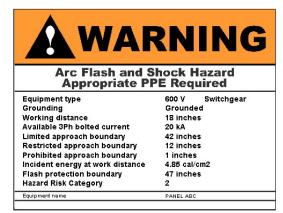

Energy Star: One Source for Benchmark Data energystar.gov

Water Treatment Plants 2.89 kBtu / gallon per day

Track Energy to Flow

Insert project completion dates

Isolate Major Contributors


- Understand the major contributors to your kBtu/gallon
- Year to year weather differences can affect data (CDD and HDD)
- If peak demand (kW, kVA, kVars) is part of your electric rate, know the major contributors and operating schedule

Be Careful How You Measure it



NFPA 70E Label – Required by OSHA, NEC

sample are justi lavel created using ALA v4.1 sojiware

Sample arc flash label created using AFA v4.1 software (alternate layout)

Typical Energy Audit Findings

- Lighting
- HVAC
- Motors
- Pumps
- Equipment
- Building Envelope
 - Windows
 - Insulation
 - Infiltration

Typical Energy Audit Findings

- Lighting
- HVAC
- Motors
- Pumps
- Equipment
- Building Envelope
 - Windows
 - Insulation
 - Infiltration

The Biggest Savings Opportunity

Do No Cost / Low Cost First

- Promote awareness
- Shop electric along with natural gas
- Consider *Demand Response* programs
- Adjust schedules off peak power
- Add occupancy sensors
- Repair compressed air leaks
- Reduce compressed air pressure
- Seal openings to outside air

More Low Cost/No Cost Areas

- Implement Bi-level lighting
- Set back thermostats
- Shut off PC's and other eqmt at night
- Shut off any unused equipment during day
- Cycle A/C units at different intervals

More Low Cost/No Cost Areas

- Change filters in air movers regularly
- Locate compressor air intakes in coolest area
- Add de-stratification fans
- Use V-notched belts for belt-drives
- Insulate furnaces, pipes, etc.
- Increase recycling efforts

LIGHTING

High Bay Lighting

Lighting

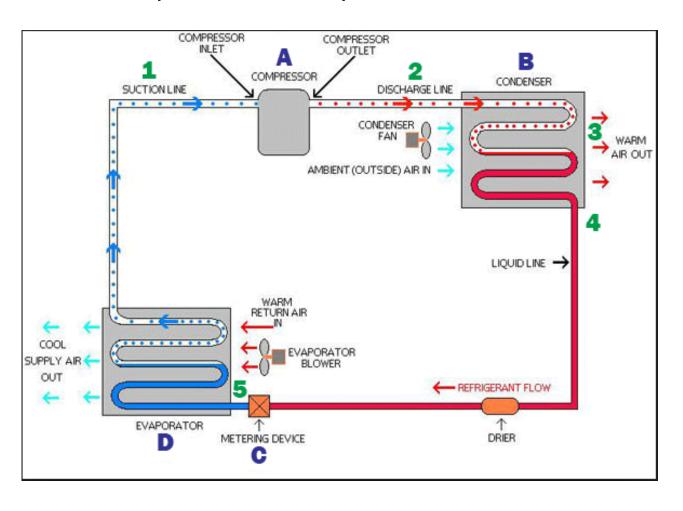
Example: Single High Bay Fixture; On 24 / 365

	HID	Fluorescent	LED	Induction
Fixture W	458	254	180	200
kWh/year	4030	1927	1577	1752
Cost/kWh	\$0.12	\$0.12	\$0.12	\$0.12
Cost/year	\$484	\$231	\$189	\$210
Life of bulb	15,000 hrs	35,000 hrs	70,000 hrs	100,000 hrs
Rebate	\$0	\$105	\$122	\$114

2 x 4 Office Ceiling Fixture

Lighting

Example: Single 2 x4 Office Ceiling Fixture; On 12 / 260


	T12 Fluorescen t	T8 Fluorescent	LED
Fixture W	160	112	36
kWh/year	499	349	112
Cost/kWh	\$0.12	\$0.12	\$0.12
Cost/year	\$60	\$42	\$13
Life of bulb	15,000 hrs	35,000 hrs	70,000 hrs
Rebate	\$0	\$7.5	\$19.35

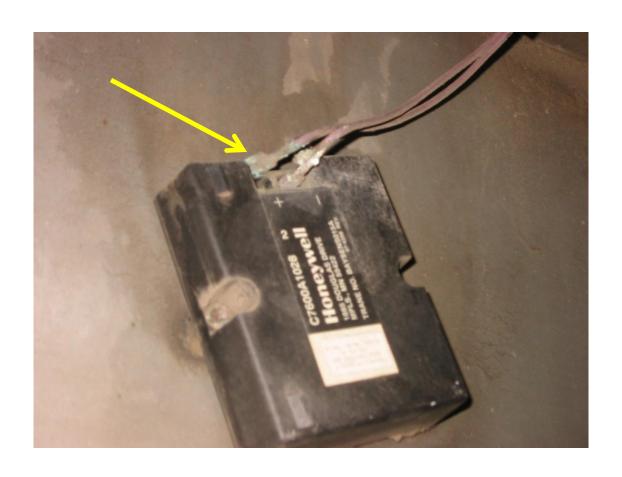
HVAC

HVAC – Typical Roof Top Unit

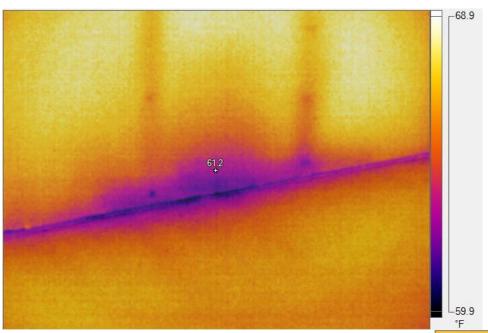
HVAC – Compression Cycle

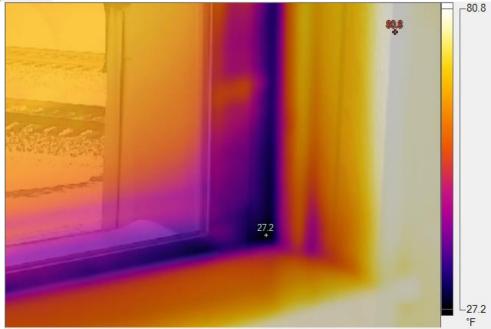
HVAC – Condenser Coil Debris Accum.

HVAC – Condenser Coil Hail Damage


HVAC – Economizer Screen

HVAC – Economizer Screen


Hvac – Economizer Enthalpy Sensor



HVAC - Building Envelope

• Windows, doors, insulation, sealing

Motors and Drives

Motors and Pumps

- Motors consume 90% of the energy in pumping stations
- Motors are the largest opportunity for savings money
- Running a motor costs more than 10 times its purchase price each year in energy costs alone
- Over life of motor, 98%+ of cost of ownership is operating cost

If owning a car was like owning a motor

- Purchase price = \$30,000
- Annual operating cost = \$500,000
- Operating cost over life of car = \$4,000,000

What would you be willing to do to make your car run more efficiently?

How important is purchase price to you now?

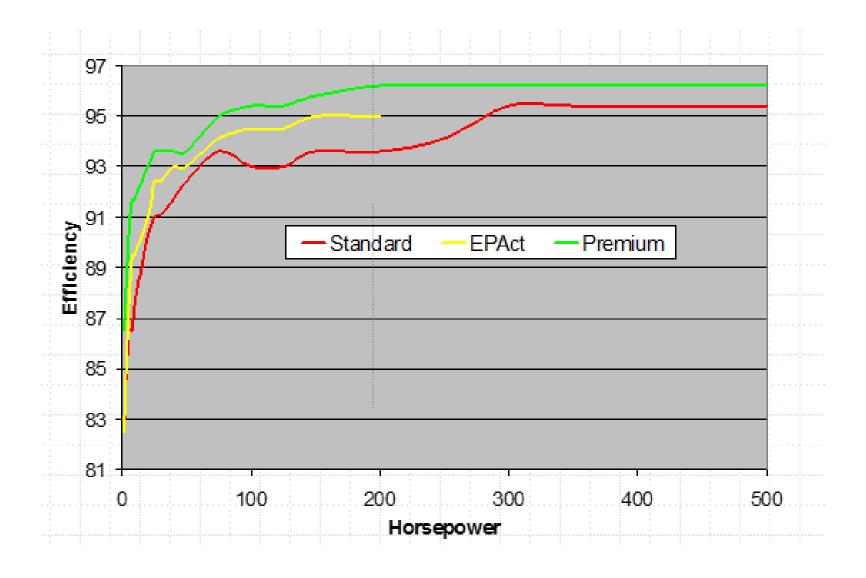
Motor Basics

➤ Standard Efficiency

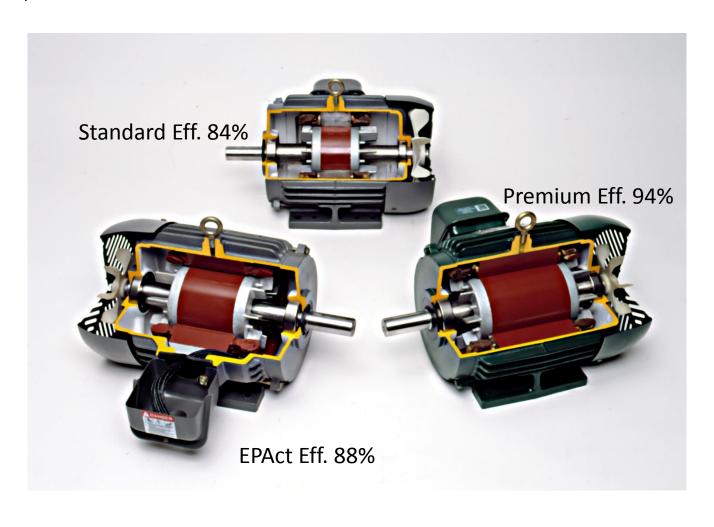
- Most motors today where installed before 1997
- Typical efficiency is 83% to 90%

➤ EPAct Motors

- Energy Policy Act of 1992
- Effective October 1997
- Typical efficiency is 87% to 92%


➤ NEMA Premium Motors

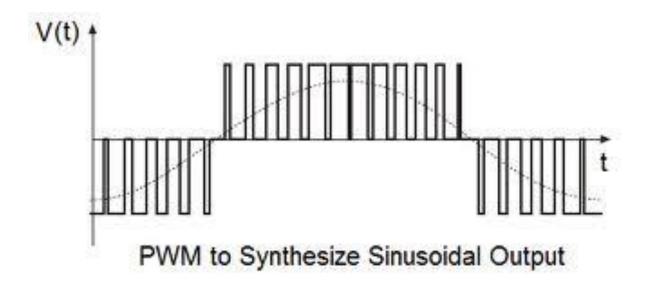
- Energy Independence and Security Act 2007
- Effective December 2010
- Typical efficiency is 91% to 95%


➤ DOE Extending Range for Premium Efficiency Motors with Effectivity June 2016

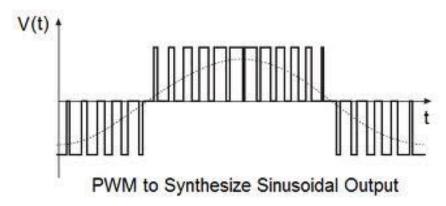
- New rule adds NEMA A, B, C and IEC N, H plus specials in 1HP to 500HP
- Applies to 5 million units vs 1.6 2 million units currently
- Current rule affects 18 million connected HP; ne rule affects 50 million HP

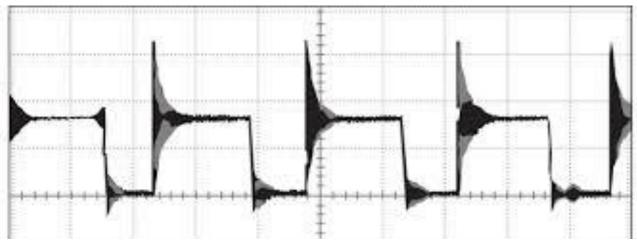
Motor Basics

Differences in Motor Construction 10 HP, 1200 RPM



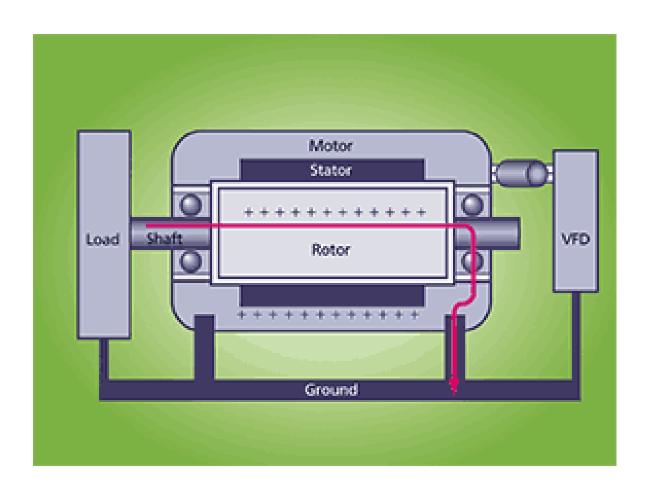
Inverter Grade Motors


- NEMA Premium Efficiency features plus
- Beginning and ending of windings are separated
- Extra insulation to protect against voltage spikes
- Wound with inverter grade magnet wire (for voltage spikes)
- Designed to handle higher frequency components
- Either rated for higher temperatures or constant speed cooling fan on auxiliary power for low speeds
- Will provide full-rated torque at zero speed and well past base speed


VFD Basics

VFD Output Voltage – PWM

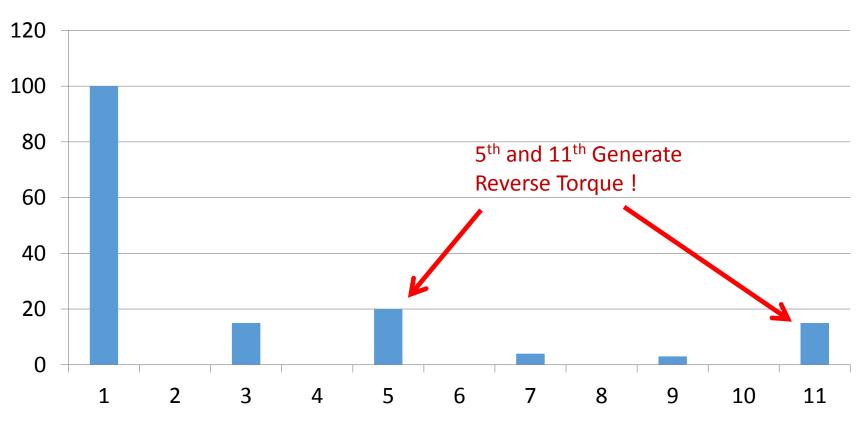
VFD Output Voltage – Reflected Wave



Rapid dV/dT!!!

VFD Output Voltage – Insulation Failure

VFD Caused Bearing Wear


- Capacitive coupled leakage current
- Static electricity from load

Fluting in Bearing Chase Caused by Leakage Current

Negative Sequencing

Harmonic Current

Do VFD Drives Make Sense?

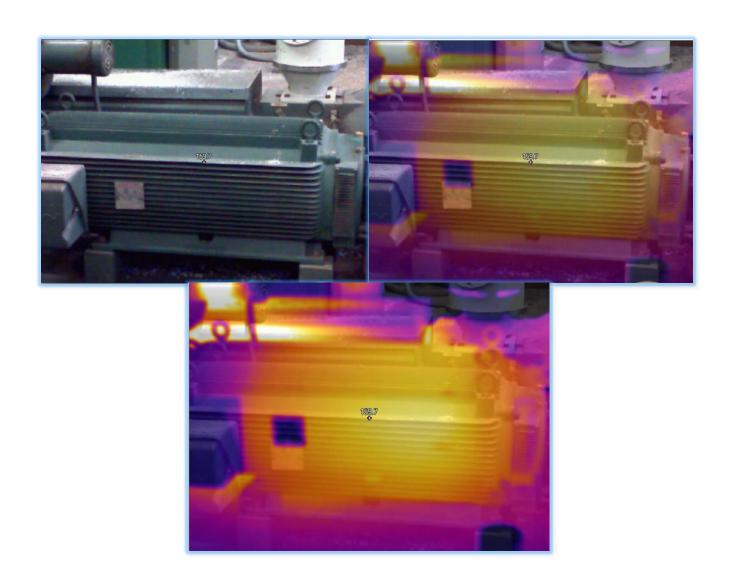
$$HP = 300$$
 \$/kWh = \$0.09
Hours = 8760 \$/kW = \$7

Standard Motor	NEMA Prem Eff Motor	With VFD		
\$221,867	\$203,378	\$126,184		

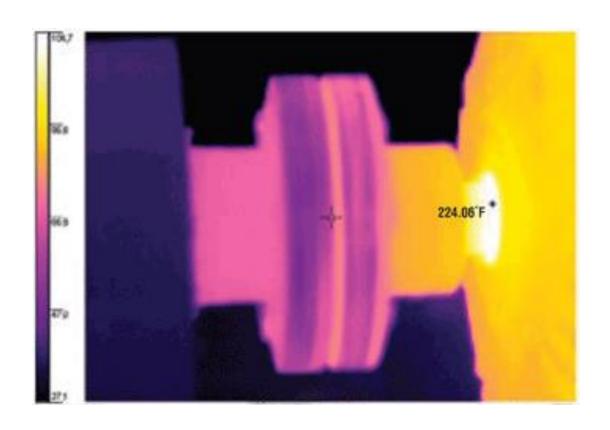
Save \$18,489 annually with a more efficient motor

OR...save \$95,683 annually by adding a VFD to the same more efficient motor

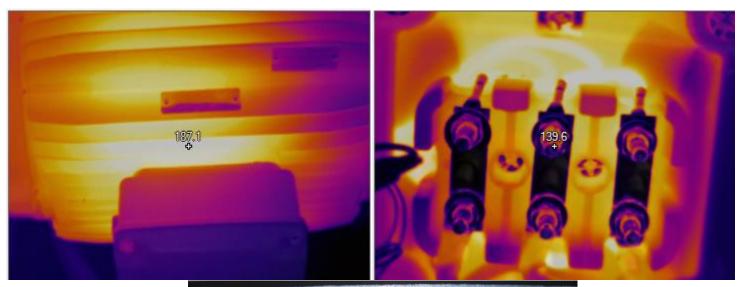
Investing in a 300HP Motor with VFD


ltem	Amount
Cost of Motor	\$16,000
Cost of VFD	\$18,000
Ship/Install cost	\$16,000
Rebate	(\$18,000)
Total Investment	\$34,000
Annual Energy Savings	\$126,184
Simple Payback	0.3 Years
Return on Investment	370%

VFD Technical Considerations


- Requires a varying load
- Requires inverter grade motor
- Limit VFD-Motor distance to 50 feet or less
- Preventive Maintenance critical for long term success
 - VFDs cause leakage current through bearings
 - 5th and 11th harmonic generate reverse torque
 - Current imbalance between phases < 10%
 - Voltage imbalance between phases < 3%
 - Watch for dV/dT exceeding CIV (corona inception voltage)
 - Thermal imaging should be compared every 3 to 6 months

Other Considerations


Infrared Imaging as a PM Tool

What Bearing Wear Looks Like

thermal Imaging - Extremely Helpful!

Motor Management, Preventive Maintenance (PM)

- Well planned PM is key to dependable, long-life operation of motors, pumps and generators
- Unscheduled stoppage and long repairs are intolerable
- Leadership often sees value of PM but resists investment for proper tools, resources and training
- PM often needs to be pitched as a business case
- Case studies of prior breakdowns and resulting costs will help
- Once budget approved, develop a plan for each motor category

Motor management Program

- Survey motors. Gather nameplate information (HP, RPM, enclosure, voltage, amps, etc.)
- Initially focus on motors that exceed minimum size and operating hours
 - 50 HP and above
 - 6,000 hours/year of operation minimum
- Collect info re Standard, EPAct and NEMA Prem. Eff.
- Constant load (not intermittent, cycle or fluctuating)
- Older or rewound motor

Areas to Cover for Good PM Program

- Thermal Imaging
 - Over-heating (insulation class, impact on life)
 - Overloads
 - Imbalances
- Vibration Analysis
 - Included load on shaft (pump bearing)
- Load Analysis
 - Tachometer and slip equations
- Power Analysis
 - Phase imbalance
 - Overload
 - Harmonics
 - Power Factor
 - Power Quality

Create a Record for Each Motor

Annual Oper, Hours

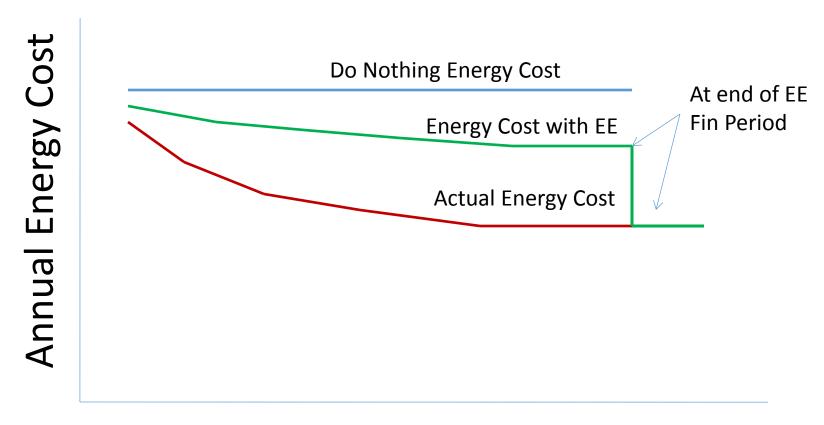
M-13

Motors General Information Site Name Motor ID/ Tag Location/Service Year Built 2011 Motor Data Nameplate Design/Operating Conditions Manufacturer MATATHON Measured Model Number EVD 25677 FNA 600 / Ambient Temp 129F 136F Serial Number A & R140 Load on shaft Blower Motor Type TEFC AC Premet Motor Efficiency 92.4% Full-Load HP 20 Frame Size Frame Style 256 T Full-Load RPM 33 3537 Synch RPM Measurments Volts Voltage A 460 476.1 Voltage B 472.4 Full-Load Amps 23.4 Voltage C 474.6 Power Demand (kW) Current A 21.7 Connection Type Current B 22.9 Current C 22.4 Motor Control Shaft RPM 3541 ON/OFF yes Frame Temp Range class H VFD 110 Hotspot Temp 164.2 F Soft-start NO Multiple Speed Settings Operating Schedule Time of Day Scheduling M-F 530A-10P Sat 74 - 3P

4654

Convert Collected Data into Database

2	ID	Location	Make and Model	HP	Photo	Vibration	IR	Power	Condition	Comments
3	M1	806 Erema Cutter/Compactor	WEG Lenze 06AG008	22.8	Yes	Yes	Yes	Yes		Excessive bearing wear, severe current unbalance
4	M2	806 Erema Extruder	WEG LENZE TEO1FOXOXOXO00091180	22.8	Yes	Yes	Yes	Yes		Severe bearing wear, excessive heating at power connection, overloaded
5	МЗ	2 1/2 - Extruder	RELIANCE 01KL517389DFT1	150	Yes	Yes	Yes	Yes		Excessive bearing wear; severe 5th and 11th harmonic
6	M4	3 Layer 1 - Extruder C				No	No	No		Machine down
7	M5	3 Layer 1 - Extruder B				No	No	No		Machine down
8	M6	3 Layer 1 - Extruder A				No	No	No		Machine down
9	M7	5 Layer - Extruder D	CONTRAVES 2190B450B03	10	Yes	Yes	Yes	No		Moderate bearing wear; non-std
10	M8	5 Layer - Extruder E	CONTRAVES N058/0413-FN112	10	Yes	Yes	Yes	No		Excessive bearing wear
11	M9	5 Layer - Extruder C	BALDOR P28800450035000	25	Yes	Yes	Yes	No		Moderate bearing wear
12	M10	5 Layer - Extruder B	CONTRAVES 2190B450B02	10	Yes	Yes	Yes	No		Excessive bearing wear
13	M11	5 Layer - Extruder A	BALDOR 59084771-001001-JN	50	Yes	Yes	Yes	No		Moderate bearing wear; non-std
14	M12	2 1/2 - Grinder	LEESON M286TDB10B	30	Yes	Yes	Yes	No		
15	M13	9 Layer - IBC Exhaust Blower	MARATHON EVD 256TTFNA6001	20	Yes	Yes	Yes	No		
16	M14	3 Layer 2 - Air Ring Exhaust	MARATHON DUB 215TTFS6001GWR140	10	Yes	Yes	Yes	No		
17	M15	9 Layer - Air Ring Blower	MARATHON EVD286TSTFN6001BHR1401	30	Yes	Yes	Yes	No		
18	M16	9 Layer - IBC Supply	MARATHON EVD286TSTFN6001BHR1402	20	Yes	Yes	Yes	No		Slight looseness
19	M17	9 Layer - Extruder A	RELIANCE 73424318-00-DR-T1	60	Yes	Yes	Yes	No		
20	M18	9 Layer - Extruder B	RELIANCE 7350638-001-CK-T2	40	Yes	Yes	Yes	No		
21	M19	9 Layer - Extruder C	RELIANCE 7350638-001-CK-T3	40	Yes	Yes	Yes	No		
22	M20	9 Layer - Extruder D	RELIANCE 7350638-001-CK-T4	40	Yes	Yes	Yes	No		
23	M21	9 Layer - Extruder E	RELIANCE 7350638-001-CK-T5	40	Yes	Yes	Yes	No		
24	M22	9 Layer - Extruder F	RELIANCE 7350638-001-CK-T6	40	Yes	Yes	Yes	No		
25	M23	9 Layer - Extruder G	RELIANCE 7350638-001-CK-T7	40	Yes	Yes	Yes	No		
26	M24	9 Layer - Extruder H	RELIANCE 7350638-001-CK-T8	40	Yes	Yes	Yes	No		
27	M25	9 Layer - Extruder I	RELIANCE 7342431A-00-DKT1	60	Yes	Yes	Yes	No		
28	M26	3 Layer 2 - Extruder A	SAFTRONICS 5CD184TA096B017	60	Yes	Yes	Yes	No		
29	M27	3 Layer 2 - Extruder B	SAFTRONICS CD203PA097A151	50	Yes	Yes	Yes	No		
30	M28	3 Layer 2 - Extruder C	GE 5CD84TA096B032	60	Yes	Yes	Yes	No		
31	M29	605 Erema - Extruder	SIEMENS ILE10011DC434AB4Z	15	Yes	Yes	Yes	No		Moderate bearing looseness
32	M30	605 Erema - Cutter/Compactor	SIEMENS ILA91866	20	Yes	Yes	Yes	No		
33	M31	Macchi reclaim				No	No	No		motor not accessible
34	M32	3 Layer 1 - IBC Suply				No	No	No		Machine down
35	M33	2 /12 - Air Ring Supply	BALDOR M3314T	15	Yes	Yes	Yes	No		
36	M34	3 Layer 1 - IBC Exhaust				No	No	No		Machine down
37	M35	3 Layer 1 - Air Ring Supply				No	No	No		Machine down
38	M36	5 Layer - Air Ring Blower	TOSHIBA B02020LF2UMH01	20	Yes	Yes	Yes	No		
39	M37	3 1/2 - Extruder	RELIANCE 7135052-001-DJT1	150	Yes	Yes	Yes	No		
40	M38	3 1/2 - IBC Suply Blower	MARATHON DVF 254TTFNA6001 AER1401	15	Yes	Yes	Yes	No		
41	M39	3 1/2 - IBC Exhaust	RELIANCE P21G3319H	10	Yes	Yes	Yes	No		Moderate bearing looseness
42	M40	6" Extruder	POWERTEC A32EYS1000100000	250	Yes	Yes	Yes	No		Bearings at both ends have moderate wear
43	M41	6" - Air Ring Supply	BALDOR M4107T	25	Yes	Yes	Yes	No		Moderate bearing wear and looseness
44	M42	2" Extruder	GE 50D363NA001A015	30	Yes	Yes	Yes	No		
45	M43	6" - Grinder	LEESON C324T17FB7D	30	Yes	Yes	Yes	No		
46	M44	6" - Grinder	DELCO 1V9716L1	40	Yes	Yes	Yes	No		
47	M45	3 1/2 - IBC Exhaust Blower	MARATHON DVA 215TTFS6001GWR1401	10	Yes	Yes	Yes	No		
48	M46	GD VS-40 Air Compressor	RELIANCE 89864009	54.4	Yes	Yes	Yes	No		
49	M47	3 Layer 2 - Air Ring Supply	MARATHON BVA254TTFNA6001AER140	15	Yes	Yes	Yes	No		Slight bearing wear


Utility Rebates

- Dayton Power, AEP and Duke have rebates for lighting, HVAC, motors & drives, compressed air and custom projects.
- FirstEnergy cash rebates are gone but DSE-2 Rider can be removed
 - PJM rebates available to FirstEnergy customers
- Efficiency Smart administers rebate programs for municipal utilities
- Rebates typically require pre-approval before purchasing check the details with your utility
- Work with an independent energy efficiency firm if you need help

Financing Energy Efficiency

- Self-funding; no and low cost savings fund future ECM's
- Bank financing
- Utility rebates
- State funding thru grants and loans
- Pay for "fuel", not the equipment
- Performance contract
- Energy Efficiency Funding Specialists Firms

Energy efficiency financing

5 to 15 year period

Energy efficiency project financing

Year	Energy Savings	Operational Savings	Total Savings	Contract Costs	Savings - Costs	Cumm Cash Flow
1	8,600	1,100	9,700	6,231	3,469	3,469
2	9,045	1,170	10,215	6,231	3,984	7,453
3	9,512	1,230	10,742	6,231	4,511	11,964
4	10,103	1,345	11,448	6,231	5,217	17,181
5	10,546	1,399	11,945	6,231	5,714	22,895
6	11,121	1,486	12,607	6,231	6,376	29,271
7	11,678	1,567	13,245	6,231	7,014	36,285
8	12,345	1,654	13,999	6,231	7,768	44,053
9	12,987	1,724	14,711	6,231	8,480	52,533
10	13,876	1,833	15,709	6,231	9,478	62,011
11	14,345	1,975	16,320	6,231	10,089	72,100
12	15,332	2,122	17,454	6,231	11,223	83,323
13	16,876	2,324	19,200	6,231	12,969	96,292
14	17,998	2,546	20,544	6,231	14,313	110,605
15	18,765	2,621	21,386	6,231	15,155	125,760

Tom Sherman, C.E.M., C.E.A., C.D.S.M.

440-773-5044

Tom@sustainable-energy-services.com

