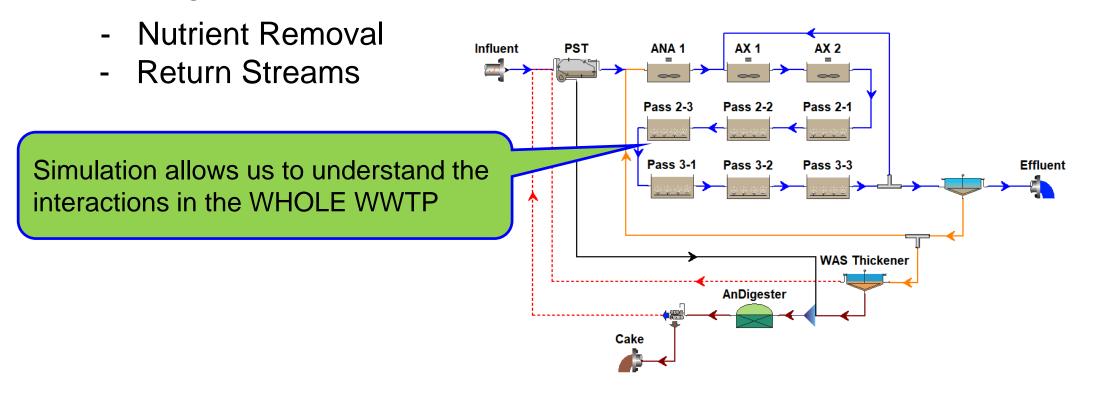

BioWin - Wastewater Treatment Process Modeling

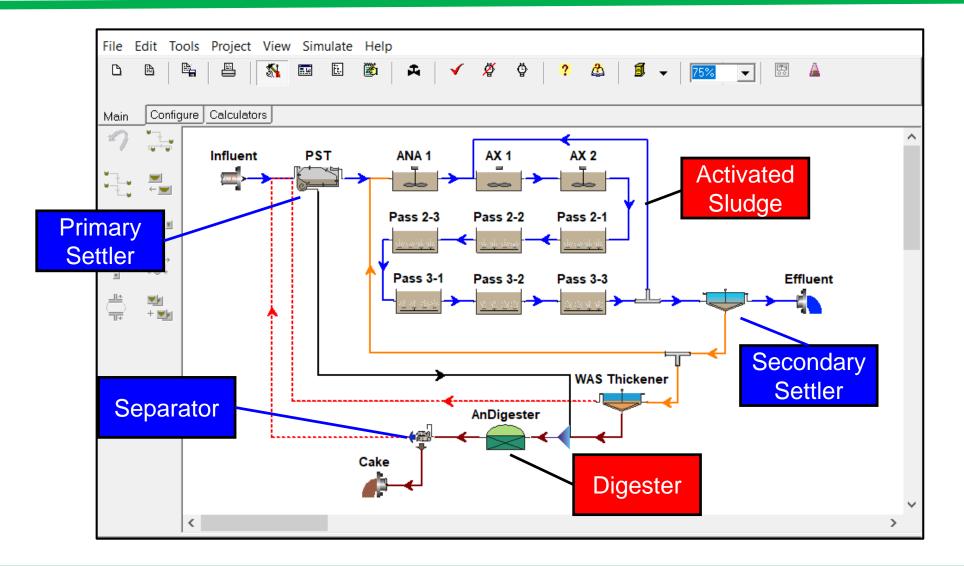


Why Use Modeling & Simulation?

"The Wastewater Treatment Industry is using modeling as a tool to extend traditional design methods"

□ New generation of WWTPs are complex

Main Purposes for Process Simulation


□ For process design

- To evaluate unit sizes and operating ranges

□ For process analysis

- As an optimization tool
- □ For process operation
 - To answer "What if...?" questions
- □ For operator training

Models in BioWin

BioWin Model Activated Sludge – Anaerobic Digestion Model

- Carbonaceous material removal
- □ Nitrification (NH₄ \rightarrow NO₂ \rightarrow NO₃)
- □ Denitrification (NO₃ \rightarrow N₂)
- Deammonification (Partial nitrification + Anammox)
- Biological phosphorus removal
- Sulfur oxidation / reduction
- **G** Fermentation
- □ Anaerobic digestion (i.e. methane production)
- □ Chemical precipitation (pH)

BioWin Model Tracking Components (State Variables)

Biomass Components

- \rightarrow Ordinary (non-polyP) heterotrophs (OHOs) \rightarrow
- \rightarrow PolyP heterotrophs (PAOs)
- \rightarrow Nitrifiers (AOBs and NOBs)
- \rightarrow Anammox organisms
- \rightarrow Anoxic methanol utilizers
- \rightarrow Propionic acetogens
- \rightarrow Methanogens
- \rightarrow Endogenous residue
- \rightarrow Sulfur oxidizing organisms
- \rightarrow Sulfur reducing organisms

Other Components

- \rightarrow Organics
 - Soluble/particulate
 - Biodegradable/unbiodegradable
 - \rightarrow Nitrogen
 - Ammonia, nitrite, nitrate
 - Soluble/particulate organic N
 - \rightarrow Phosphorus
 - Soluble and precipitated phosphate
 - Organic P
 - \rightarrow Inorganic suspended solids
 - ISS = TSS VSS
 - \rightarrow Metals (Ca, Mg, Fe, Al) & Cations/Anions
 - \rightarrow Precipitates (e.g. Struvite, metal oxides)
 - \rightarrow Oxygen and other gases

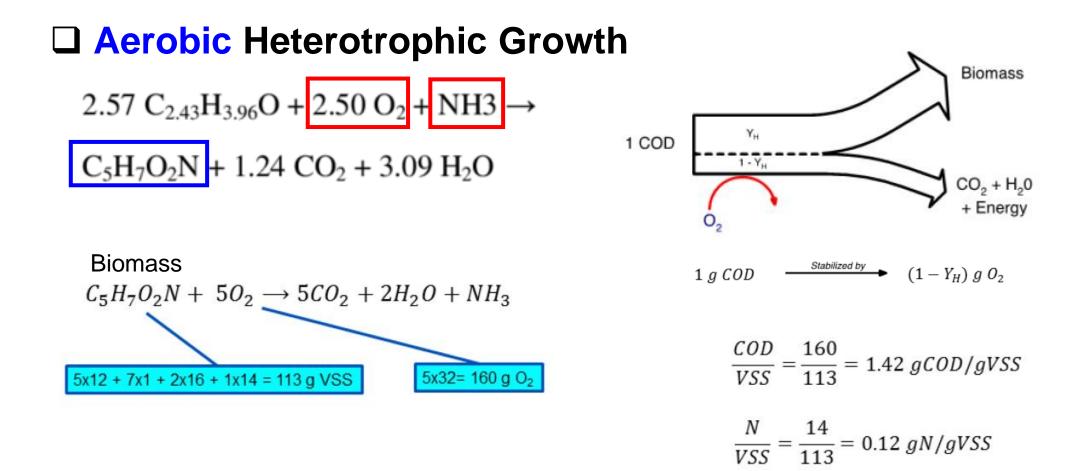
BioWin Model Model Processes

Biological

- \rightarrow Aerobic heterotrophic growth
- \rightarrow Anoxic heterotrophic growth on nitrate & nitrite
- \rightarrow Anaerobic fermentation
- \rightarrow Growth of bio-P microorganisms and storage of polyphosphate
- \rightarrow Various hydrolysis, ammonification and colloidal flocculation reactions
- \rightarrow Assimilative nitrate and nitrite reduction
- \rightarrow Growth of ammonia and nitrite oxidizer biomasses
- \rightarrow Growth of Anammox microorganisms
- \rightarrow Growth of autotrophic and heterotrophic methanogens
- \rightarrow Decay of all active biomasses in different environments
- \rightarrow Inorganic suspended solids fixation during polyP storage and heterotrophic growth

BioWin Model Model Processes

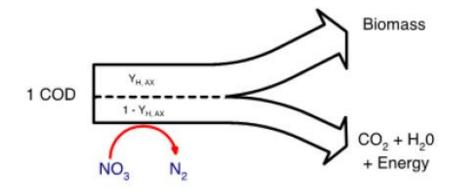
Physical & Chemical


 \rightarrow Species distribution for weak acid systems:

- Carbonate
- Ammonia
- Phosphate
- Acetate and propionate
- Nitrous acid

 \rightarrow pH estimation based on strong acids and bases, week acids, charge balancing, and reactions

- \rightarrow Precipitation of various calcium, magnesium, aluminum and iron complexes
- → Gas transfer for stripping and dissolution of gases: O₂, CO₂, N₂, N₂O, NH₃, H₂S, H₂, CH₄


Model Basics Carbonaceous Material Removal

Model Basics Carbonaceous Material Removal

□ Anoxic Heterotrophic Growth - Denitrification

$$2.57 \text{ C}_{2.43}\text{H}_{3.96}\text{O} + 2.0 \text{ HNO}_3 + \text{NH}_3 \rightarrow$$
$$1.24 \text{ CO}_2 + \text{C}_5\text{H}_7\text{O}_2\text{N} + \text{N}_2 + 4.09 \text{ H}_2\text{O}$$

$$1 g COD \xrightarrow{Stabilized by} (1 - Y_H) g O_2 \cdot \frac{1 g NO_3 \cdot N}{2.86 g O_2}$$

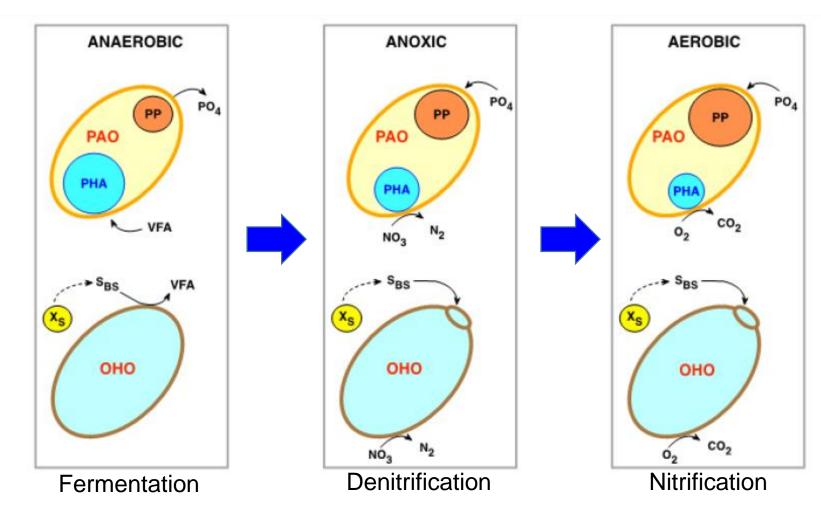
Model Basics Nitrification

Nitrification

$$NH_4 \longrightarrow NO_2 \longrightarrow NO_3$$

 $NH_4^+ + 2O_2 \longrightarrow NO_3^- + 2H^+ + H_2O$

$$2 \mod O_2 \Longrightarrow 1 \mod NO_3^- \cdot N$$

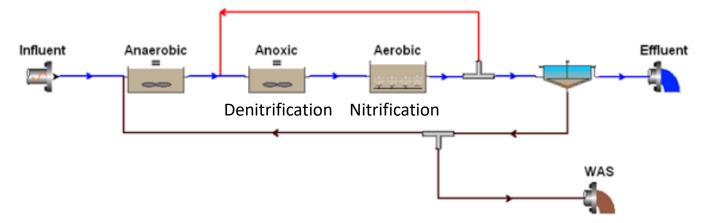

 $64~g~O_2 \Longrightarrow 14~g~NO_3^- \cdot N$

$$\frac{64}{14} = 4.57 \ g \ O_2 \Longrightarrow 1 \ g \ NO_3^- \cdot N$$

 $2 \mod H^+ \Leftrightarrow 1 \mod NO_3^- \cdot N$

$$2 \mod H^{+} \cdot \frac{1 \mod CaCO_{3}}{2 \mod Alk} \Leftrightarrow 14 g \operatorname{NO}_{3}^{-} \cdot N$$
$$100 g CaCO_{3} \Leftrightarrow 14 g \operatorname{NO}_{3}^{-} \cdot N$$
$$\frac{100}{14} = 7.14 g CaCO_{3} \Leftrightarrow 1 g \operatorname{NO}_{3}^{-} \cdot N$$

Model Basics Biological P Removal


→ Phosphorus Accumulating Organisms (PAO) have the ability to store phosphorus within the cells as long chains of inorganic polyphosphate (PP), commonly known as volutin granules

→ Under anaerobic conditions, the energy associated with PP bonds can be used to take up VFAs and PAOs store Polyhydroxyalkanoates (PHA) until they reach alternative terminal electron accepters (i.e. $NO_3 \& O_2$)

→ In the anoxic & aerobic zones, PAOs metabolize the PHA and use the energy to take up all available phosphorus using oxygen or nitrate as electron acceptor

BioWin Model Biological Nutrient Removal System

Biological N & P Removal (3-Stage Bardenpho Process)

□ What impacts nutrient removal performance?

- → Influent wastewater characteristics
- \rightarrow Size of anaerobic and anoxic zones
- → Temperature
- \rightarrow Solid retention time (SRT)
- \rightarrow Dynamic behavior