Not just spin. Revolution!

9586 58th Place Kenosha, WI 53144 Headquarter Facilities www.centrisys.us

3 Corporate Buildings
Over 150,000 ft²!

HEADQUARTERS: 9586 58th Place ■ Kenosha, WI 53144 ■ P (877) 339-5496 ■ info@centrisys.us

WESTERN DIVISION: 825 Performance Drive ■ Stockton, CA 95206 ■ P (877) 339-5496 ■ info@centrisys.us

Not just spin. Revolution!

HEADQUARTERS: 9586 58th Place ■ Kenosha, WI 53144 ■ P (877) 339-5496 ■ info@centrisys.us WESTERN DIVISION: 825 Performance Drive ■ Stockton, CA 95206 ■ P (877) 339-5496 ■ info@centrisys.us

High Performance Decanter Centrifuges

Sedimentation Theory Basic Centrifuge Function

Sedimentation Theory

Sedimentation is influenced by

- ✓ Particle diameter
- ✓ Density difference between solids and liquids
- ✓ Centrifugal force "G" Force
- ✓ Viscosity of liquid

Sedimentation Theory

Sedimentation Theory

G=3000

Sedimentation is influenced by

- ✓ Particle diameter
- ✓ Density difference between solids and liquids
- ✓ Centrifugal force "G" Force
- ✓ Viscosity of liquid

ρ_p: Particle density

ρ: Liquid density

d: Particle diameter

η: Liquid viscosity

Sedimentation velocity:

$$V = \frac{d^2(\rho_p - \rho_l)}{18 \, \eta} \times G \, m/s$$

Fig. 2.2 Vessel with small sedimentation height

DECANTER CENTRIFUGE IN OPERATION

Process Control Continuous Mass Balance

Settling and compression at 3000 x Gravity

centrifugally cast / A890 duplex (comparable to 316 SS but 30% higher tensile strength)
/municipally optimized / wear protected

Axial Flow Flights in Cylinder

Reduced Polymer Consumption

Increased Throughput

High Flow Feed Chamber

Low Wear

Gentle Acceleration for Treated Sludge High Flow / Low Wear Feed Chamber
Optimal Beach Angle for Municipal Applications /15°
Axial Flow in Cylinder of Conveyor
Drying Disc Technology
Ultra Deep Pool / Narrow Scroll Body

Centrisys

Competition Low Flow / High Energy Feed Chamber Results = HIGH WEAR

Excessive Beach Angle for Municipal Applications / 20

BOWL - DESIGN VARIABLES / LD RATIO

The "LD ratio" is the overall internal bowl length ÷ by the bowl inside diameter in the cylinder

A smaller LD ratio is better suited for processes that have High Specific Gravity Solids that settle well

A higher LD ratio is better suited for light solids that need more time to settle from the liquid phase or where liquid clarity is important

BOWL DESIGN VARIABLES / BEACH ANGLE

The conical bowl is called "the beach"
The "beach angle" can vary depending on applications

8 degree beach Cylinder = 1000mm

15 degree beach Cylinder = 1200mm

Two machines - the same length & diameter but with different beach angles offer different capacities

A steeper beach has a longer cylinder = more clarification volume

A steeper beach gives greater capacity provided ALL solids can convey up the beach while maintaining high bowl speed & G forces (15° / municipal)

Centrisys tested various bowl angles from 8 - 90 degrees for many applications

Polymers

POLYMERS - COMPLIMENTARY ADVANCEMENTS

- ✓ Higher solids
- ✓ Higher Recovery
- ✓ Higher Torque

POLYMER FUNCTION

The primary mechanism is electrostatic attraction

Attractions between positive and negative charges

Analogous to magnetic attraction

POLYMER FUNCTION

Negative-Charge Particles

Polymer

Destabilized Flocculated Particles

SEDIMENTATION THEORY

Sedimentation Theory

Sedimentation is influenced by

- ✓ Particle diameter
- ✓ Density difference between solids and liquids
- ✓ Centrifugal force "G" Force
- ✓ Viscosity of liquid

ρ_p: Particle density

ρ: Liquid density

d: Particle diameter

η : Liquid viscosity

Sedimentation velocity:

$$V = \frac{d^2(\rho_p - \rho_l)}{18 \, \eta} \times G \, m/s$$

CENTRISYS KEY FEATURES

- High Speed High "G" Force all Centrisys centrifuges are designed for the operation of minimum of 3000xG
- ✓ CENTRIFUGALLY CAST DUPLEX BOWL COMPONENTS. ALL PART OF STRUCTURAL PARTS OF THE BOWL ARE CENTRIFUGAL CASTED OR FORGED TO GUARANTEE MAXIMUM PERFORMANCES.
- ✓ DUPLEX STAINLESS HAS 30% HIGHER STRENGTH IN COMPARISON TO 316L AND EQUAL OR BETTER CORROSION RESISTANCE.

CENTRIFUGAL CASTING PROCESS

Centrifugally Cast Bowls

Forged Headwalls

Centrifugally Cast Scroll Body

Centrifugal castings are frequently referred to as "liquid forgings"

In the centrifugal process molten metal is literally forged by the high compressive pressure exerted by centrifugal force

IN SIMPLE TERMS - WE BUILD OUR CENTRIFUGES WITH CENTRIFUGES

CENTRIFUGAL CASTING PROCESS

Physical properties such as tensile, creep & fatigue strength are increased by 30% in a centrifugally cast bowl vs. a static cast or fabricated bowl assembly

Centrifugally cast centrifuge components withstand greater overload and strain enabling higher operating speeds for improved process performance

Free from impurities and oxides, the centrifugal cast is a corrosion free / defect free component. Welded or static cast stainless bowls are subject to corrosion and weakness

Directional solidification of sound metal progresses from outside toward the bore.

Oxides and impurities are forced inward; metal is forced centrifugally to outside.

3.
Impurities are concentrated in the bore; the centrifugal is completely solidified.

Impurities are removed by machining, resulting in a defect-free structure.

ALL STRUCTURAL COMPONENTS

Centrifugally Cast or Forged for Ultimate Integrity and Strength

CENTRISYS KEY FEATURES

- HIGH SPEED HIGH "G" FORCE
- CENTRIFUGALLY CAST DUPLEX BOWL COMPONENTS

- ✓ ADVANCED TUNGSTEN CARBIDE WEAR PROTECTION
- ✓ CENTRISYS SUPPLIES THE MOST ROBUST MATERIALS FOR EACH APPLICATION AS NEEDED
- ✓ TC (TUNGSTEN CARBIDE) IS SUPPLIED WHEN THE CENTRIFUGE REQUIRES PROTECTION FROM WEAR

ADVANCED WEAR PROTECTION PACKAGE STANDARD ON ALL MODELS

SCROLL – WEAR PROTECTION

flight tips protected with tungsten carbide tiles and spray fused carbide

Bowl - Wear Protection

Protected internally by wear strips

is protected by tungsten carbide liners

Key Features

- HIGH SPEED HIGH "G" FORCE
- CENTRIFUGALLY CAST DUPLEX BOWL COMPONENTS
- ADVANCED TUNGSTEN CARBIDE WEAR PROTECTION

✓ 3D DESIGN

ALL CENTRISYS EQUIPMENT IS DESIGNED IN SOLIDWORKS® 3D CAD SOLUTIONS

ALL CENTRISYS EQUIPMENT IS SIMULATED TO REAL-WORLD CONDITIONS TO RAISE THE QUALITY OF OUR PRODUCTS WHILE REDUCING COSTS FOR LIVE PROTOTYPES AND TESTING

(STANDARD)

3-D modeling of equipment & systems

(STANDARD)

detailed design and stress analysis

3-D MODEL OF A DECANTER TRAILER

KEY FEATURES

- HIGH SPEED HIGH "G" FORCE
- CENTRIFUGALLY CAST DUPLEX BOWL COMPONENTS
- ADVANCED TUNGSTEN CARBIDE WEAR PROTECTION
- 3D DESIGN

- ✓ HIGHER TORQUE CAPABILITIES OF THE HYDRAULIC
 MOTOR IN COMPARISON TO THE CYCLO REDUCERS
 OR PLANETARY GEAR DRIVES
- ✓ LOWER OVERHANG LOAD ON MAIN BEARINGS DUE TO LIGHTER WEIGHT AT SAME TORQUE OUTPUT equals in less stress on main bearing

THE CENTRISYS SCROLL DRIVE SYSTEM WITH ROTODIFF® TECHNOLOGY

the most efficient in the industry

- ✓ VFD Controlled/ power run- thru technology
- ✓ Lowest Installed HP for similar size machines
- ✓ Unmatched Reliability / a trusted technology in any environment
- ✓ Increased solids loading capacity
- ✓ Easy to Maintain
- ✓ Lower Operating Costs
- ✓ Simple and accurate measurement of scroll speed
- ✓ Highest torque-to-weight ratio
- √ 100% torque at all speeds (including stand-still)
- ✓ Low energy consumption(power is not lost or wasted)
- ✓ Simple Compact Lightweight
- ✓ Versatile design for multiple applications

SCROLL DRIVE EVOLUTION

todays technology

- ✓ HIGH EFFICIENCY
- ✓ HIGH TORQUE
- ✓ LOW WEIGHT

2080-D Rotodiff Weight: 170kg/375lbs Torque: 25,400Nm

2071-D Rotodiff Weight: 82kg/180lbs Torque: 13,000Nm

CENTRISYS IS A GLOBALLY RECOGNIZED LEADER OF

- ✓ Innovative + Focused Centrifuge Technology
- ✓ Expert Dewatering Process Knowledge for municipal and industrial applications
- ✓ The Most Comprehensive Range of High Efficiency Scroll Drive Systems in the Industry

SCROLL DRIVE EVOLUTION

todays technology

2080-D Rotodiff Weight: 170kg/375lbs Torque: 25,400Nm

2071-D Rotodiff Weight: 82kg/180lbs Torque: 13,000Nm

yesterdays technology

P180 Gearbox Weight: 460kg/1012lbs Torque: 20,340Nm

1970 Technology

112T Rotodiff Weight: 550kg/1210lbs Torque: 27,646Nm

1980 Technology

Double-Cyclo Drive Weight: 312kg/686lbs Torque: 8800Nm

1970 Technology

COMPARISON

Torque: approx. 232330 Nm

Weight: 1018 lbs

approx. 223040 Nm

422 lbs

Click for video

SCROLL DRIVE COMPARISON

Click to Play Video

Slow Speed High Torque Low Weight

Click to Play Video

High Speed High Torque High Weight

VFD HYBRID SCROLL DRIVE SYSTEM

most advanced centrifuge scroll drive available on the market

- highest torque
- lowest power consumption
- simple to understand
- simple to operate
- simple to maintain
- touchscreen interface

INTEGRATED PROCESS CONTROL

continuous monitoring of process & mechanical operation

ISO 9001: 2008 Certified Facilities

