Chemistry of Cyanotoxins in Surface Waters

Marvin Gnagy, P.E., President

pmg PMG Consulting, Inc.

OTCO Reservoir Management Webinar July 12, 2022

Agenda

- Cyanotoxins in water
 - Microcystins
 - Cylindrospermopsins
 - Anatoxin-a
 - Saxitoxins
 - Nodularins

- Observations from Case Studies
- AWWA CyanoTox 2.0 vs. Oxidation Studies

Chemistry of Cyanotoxins in Surface Waters

Microcystins

Microcystins in Water

- Most common cyanotoxin
 - Presence of nitrate increases toxin concentration within cells
 - Maximum toxin concentration at 20°C to 25°C
 - Intracellular toxins released as cell lysing or mortality occurs
 - Natural life cycle or chemical means
 - UV irradiation slowly breaks down microcystins

Microcystis Aeruginosa

Microcystins in Water

- Made up of 7 amino acids in unique structure
 - $C_{49}H_{74}N_{10}O_{12}$ (MC-LR)
 - Similar for other variants
 - 995 g/mole to 1,040 g/mole
 - Solubility in water ~1,500 mg/L
 - Half-life in water environment is up to 10 weeks
 - Henry's Law constant
 - Reduction by aeration not likely
 - Toxicity from enzyme reaction stripping phosphate from proteins that leads to liver damage
 - LD50
 - 5 mg/kg

Microcystins in Water

Microcystin-LR (7) amino acids

Microcystin-LR

Oxidation at double bonds degrades structure to amino acids groups

Microcystin-RR

Microcystin-YR

Microcystin-LA

Other congeners include MC-H4YR, MC-WR, MC-FR

Chemistry of Cyanotoxins in Surface Waters

Cylindrospermopsins

- Common cyanotoxin
 - Presence of nitrate increases toxin concentration within cells
 - Maximum toxin concentration at 20°C to 25°C
 - Intracellular toxins released as cell lysing or mortality occurs
 - Natural life cycle or chemical means
 - More toxic than microcystins
 - UV irradiation breaks down cylindrospermopsins

Cylindropspermopsis Raciborskii

- Polycyclic uracil derivative in unique structure
 - $\bullet C_{15}H_{21}N_5O_7S$
 - 415 g/mole
 - Solubility in water very high
 - Stable over wide pH range
 - Half-life in water environment is about 8 weeks
 - Toxicity from inhibited protein synthesis leading to cell mortality
 - LD50
 - 4.4 mg/kg to 6.9 mg/kg

Cylindrospermopsin

Guanidine and Uracil rings

Guanidine and Uracil rings

Guanidine and Uracil rings

Non-toxic metabolites

5-chloro-cylindrospermopsin uracil ring altered with Cl

Deoxycylindrospermopsin no toxicity - OH stripped

Chemistry of Cyanotoxins in Surface Waters

Anatoxin-a

Anabeana Aequalis

- Less common cyanotoxin
 - Maximum toxin concentration at 20°C to 25°C
 - Intracellular toxins released as cell lysing or mortality occurs
 - Natural life cycle or chemical means
 - Strong neurotoxin with acute toxicity
 - Named very fast death factor (VFDF) aquatic toxin
 - LD50 0.25 mg/kg
 - Toxicity from attack of neuromuscular receptors resulting in paralysis
 - Half-life in water environment
 - <24 hours, degrades within hours at pH greater than 8</p>

Anatoxin-a

- Bicyclic amine alkaloid in unique structure
 - $C_{10}H_{15}NO$
 - 165 g/mole
 - Solubility in water very low
 - <50 mM/L
 - Unstable in water, UV irradiation leads to degradation into non-toxic forms
 - Dihydroanatoxin-a
 - Epoxyanatoxin-a

Carbonyl (C=O) near nitrogen responsible for toxicity

Chemistry of Cyanotoxins in Surface Waters

Saxatoxins

Aphanizomenon flos-aquae

- Less common cyanotoxin
 - Maximum toxin concentration at 20°C to 25°C
 - Intracellular toxins released as cell lysing or mortality occurs
 - Natural life cycle or chemical means
 - Strong neurotoxin with acute toxicity
 - Named paralytic shellfish toxin (PST)
 - LD50 ≈ 0.26 mg/kg
 - Toxicity from attack of neuromuscular receptors resulting in paralysis
 - Half-life in water environment
 - Up to 10 weeks

Aphanizomenon flos-aquae

- Reduced purine and guanidine rings in unique structure
 - $C_{10}H_{17}N_7O_4$
 - 299 g/mole
 - Solubility in water lower than other toxins
 - <0.14 moles/L</p>
 - 193 μ g/L found in one surface source (WHO)
 - More research needed related to saxitoxins

Guanidine ring structures

 $H_2N \rightarrow O$ $H_1N \rightarrow H$ $H_1N \rightarrow G \rightarrow H_2$ $H_1N \rightarrow H_2$ H_2 H_2 $H_$

7,8,9-Guanadine ring responsible for toxic bonding at neurons -Possible substitution may alter toxicity, Oxidation possible for substitution?

Other metabolites

- Neosaxitoxin
- Gonyautoxins
- Decarbamoylsaxitoxin
- More than 57 metabolites known

Gonyautoxin

Chemistry of Cyanotoxins in Surface Waters

Nodularins

Nodularins in Water

- Uncommon cyanotoxin
 - Microcystin-like structure
 - Maximum toxin concentration at 20°C to 25°C
 - Intracellular toxins released as cell lysing or mortality occurs
 - Natural life cycle or chemical means
 - UV irradiation breaks down nodularins
 - Toxicity like microcystins

Nodularia spumigena

Nodularins in Water

- Made up of 5 amino acids in unique structure
 - $C_{41}H_{60}N_8O_7$
 - Similar for other variants
 - 825 g/mole
 - Solubility in water unknown
 - Half-life in water environment is up to 18 days
 - Toxicity from enzyme attack of proteins resulting in liver damage
 - LD50
 - 5 mg/kg

Nodularin-R

Chemistry of Cyanotoxins in Surface Waters

Oxidative Treatments

Permanganate Treatment

Permanganate Treatment

Ozone Treatment

Ozone Treatment

AOP Treatment

Chemistry of Cyanotoxins in Surface Waters

Adsorptive Treatments

Activated Carbon Treatment

PAC Treatment

PAC Treatment

GAC Treatment

GAC Treatment

$$CUR, lbs/1,000 gallons = \frac{EBCT * \rho GAC * 10^{3}}{T * 7.48 * 1,440}$$

Where CUR = Carbon Usage Rate, pounds per 1,000 gallons EBCT= empty bed contact time, minutes QGAC = carbon density, pounds/cubic foot 7.48 = 7.48 gallons per cubic foot 1,440 = 1,440 minutes per day

1998 WRF report - 'Removal of DBP Precursors by GAC Adsorption"

2

GAC Treatment

Chemistry of Cyanotoxins in Surface Waters

AWWA CyanoTox 2.0

- Oxidation model works for some water systems, not others
 - KMnO₄ trials
 - Chlorine trials
- Input variables and run model
- Output gives remaining cyanotoxin based on research data in lab water
 - Does not account for natural water conditions

CT based version Page 1 of 4 Pages

Chemistry of Cyanotoxins in Surface Waters

Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931