Chloramination and Nitrification Part 1

pmg Marvin Gnagy, P.E., President PMG Consulting, Inc.

OTCO 58th Annual Water Workshop March 11, 2020

Agenda

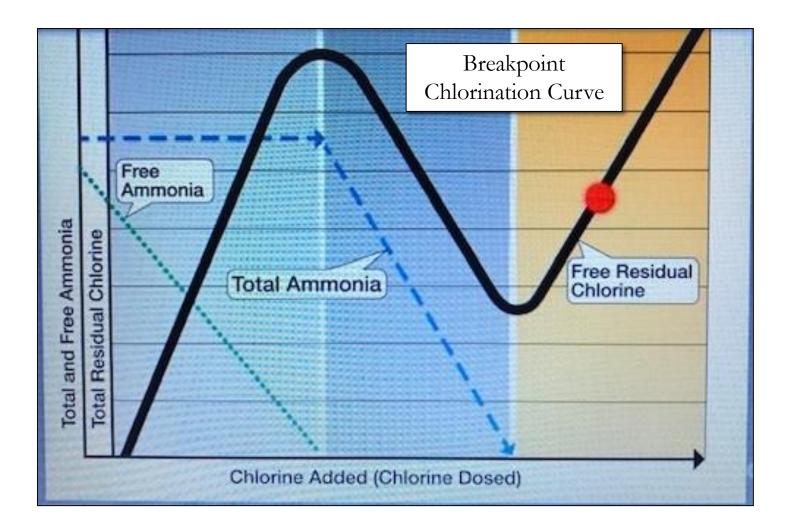
- Brief history of chloramination
- Chloramine production and chemistry
- Forms of ammonia
- Chlorine to nitrogen ratios
- Example dosage calculations
- Complexities of combined chlorine
- Chloramine decay reactions

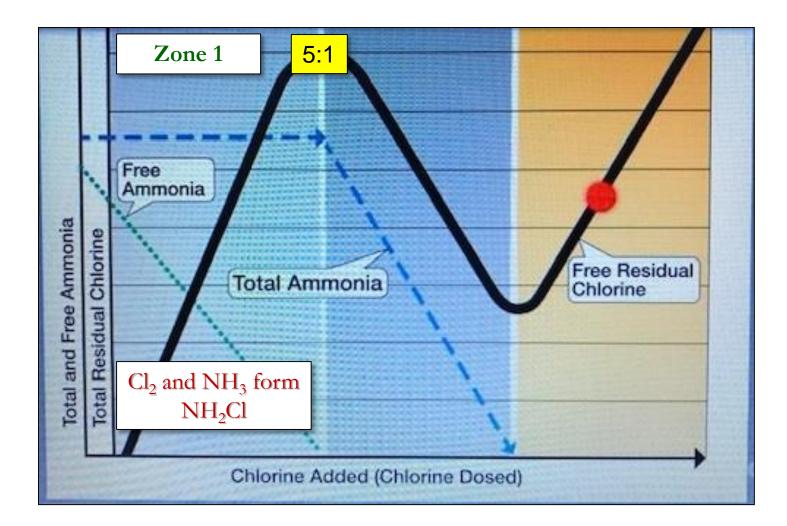
Brief History of Chloramines

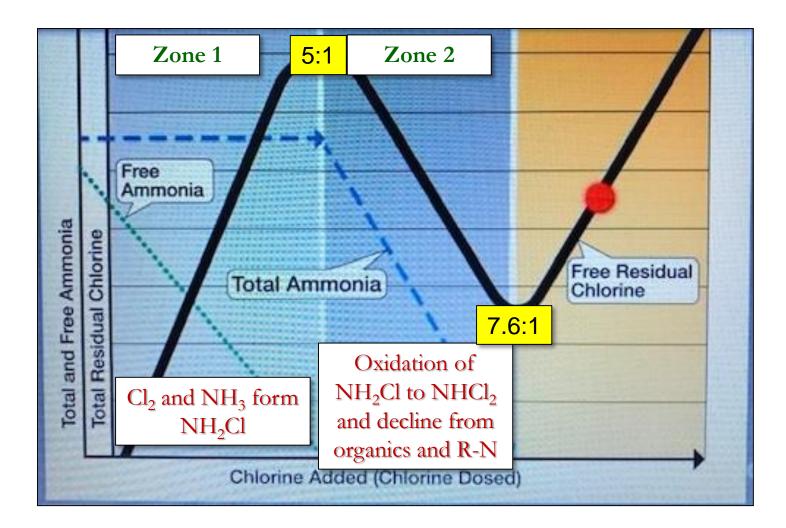
- Discovered by Friedrich (Fritz) Raschig in 1907
 - Accidental discovery reacting analine with hypochlorite and ammonia
 - Produced yellow oily substance that he named "chloramine"
- Later chloramination developed for its germicidal effects in water
 - First chloramination Ottawa, Canada 1916
 - First US facility Denver, Colorado 1917

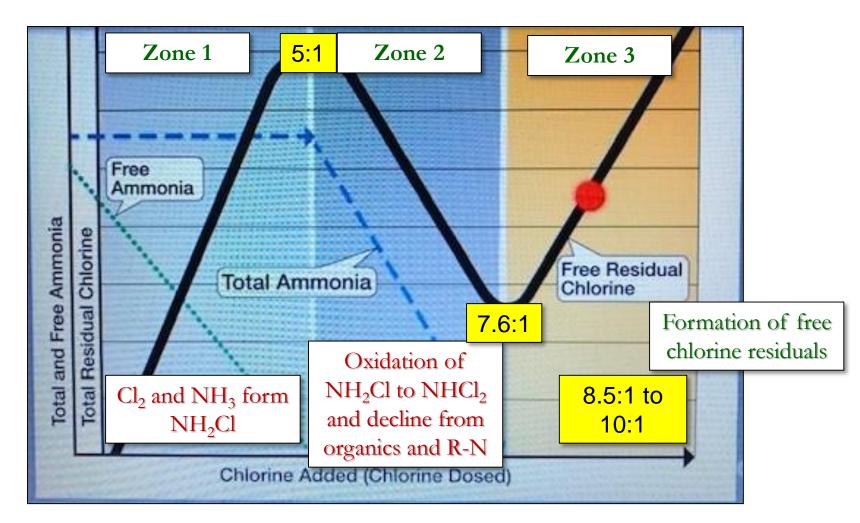
F. Raschig 1897

Brief History of Chloramines


- Popular disinfection method during 1920s and 1930s
 - 16% public water systems used chloramination in 1930s
 - Because of World War II, chloramination stopped 1940s since ammonia was difficult to obtain
 - Started using free chlorine disinfection
 - 1990s, DBP formation responsible for renewed interest in chloramination
 - Stage 2 D/DBP Rule THM reduced from 100 μg/L to 80 μg/L
 - Significantly reduced DBP formation
 - Today, about 20% of public water systems use chloramines
 - DBP control
 - More persistent residual maintenance

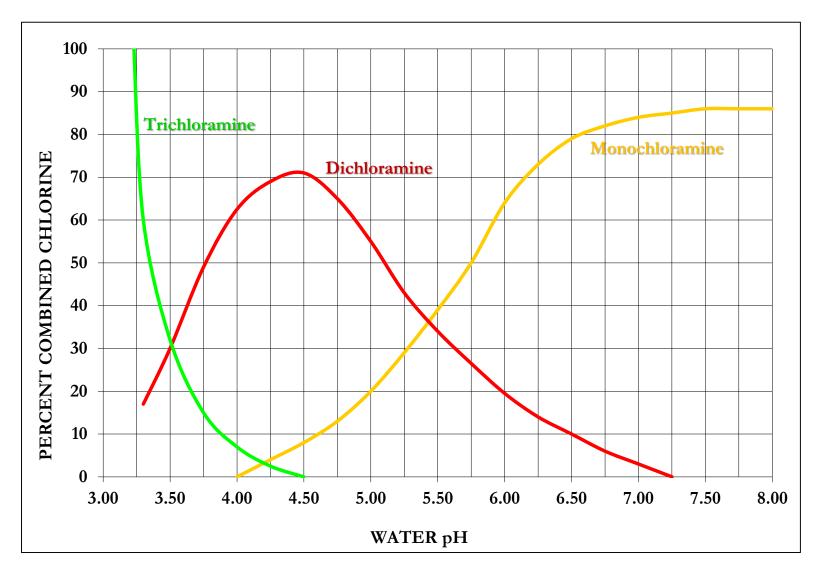


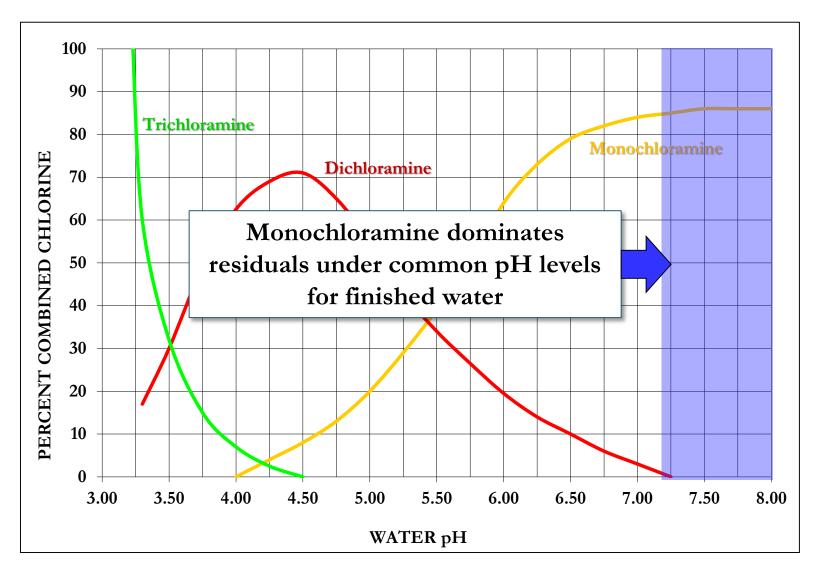

- Byproduct of reaction between chlorine and ammonia
 - Disinfecting capabilities
 - Longer lasting residual than free chlorine
 - Slower decay and decomposition than free chlorine
 - Lower DBP formation than free chlorine
 - 40% to 80% lower DBPs reported
- Most common practice in water treatment
 - Meet CT with free chlorine, then convert to chloramines with ammonia source
 - Equilibrium reaction, strongly favored to right $HOCl + NH_3 \leftrightarrow NH_2Cl + H_2O$


$NH_4^+ \leftrightarrow NH_3 + H^+$ $HOCl + NH_3 \leftrightarrow NH_2Cl + H_2O$

pH and temperature dependent Chlorine/nitrogen ratio dependent

- Three forms exist
 - Monochloramine
 - Dichloramine
 - Trichloramine
- Cl₂:N ratio dependency
 - Monochloramine 5:1
 - Dichloramine 7.6:1
 - Trichloramine 15:1


$\frac{Monochloramine}{HOCl + NH_3 \leftrightarrow NH_2Cl + H_2O} \quad (Cl_2: N 5: 1)$


$\begin{array}{l} \hline Dichloramine \\ NH_2Cl + HOCl \rightarrow NHCl_2 + H_2O \quad (Cl_2:N \ 7.6:1) \end{array}$

Trichloramine

$NHCl_2 + HOCl \rightarrow NCl_3 + H_2O$ (Cl₂: N 15:1)

Avoid formation of di- and tri- species by maintaining proper Cl₂:N ratios and pH levels

Equilibrium reverse reaction can lead to nitrification

$NH_2Cl + H_2O \Leftrightarrow HOCl + NH_3$

Conversion to hydroxylamines - high pH conditions

$NH_2Cl + OH^- \Longrightarrow NH_2OH + Cl^-$

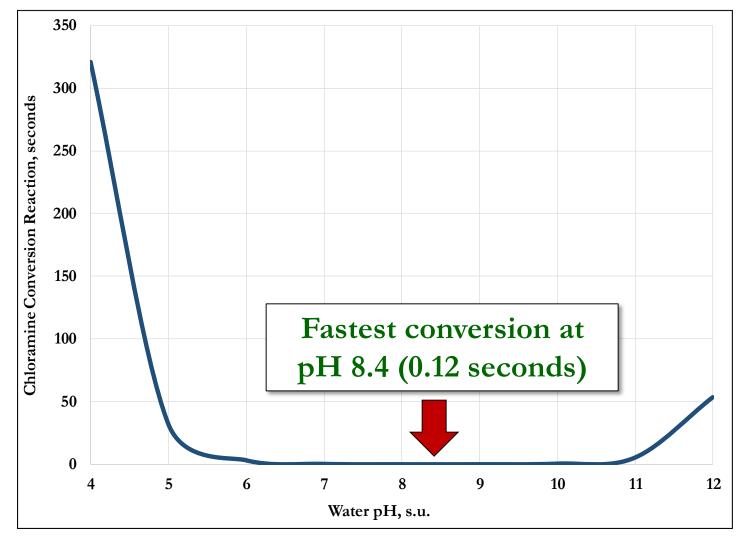
Disinfecting Power

Ozone	18,000,000
Hydrogen peroxide	347,000
Chlorine dioxide	263,000
Hypochlorous acid	10,000
Hypochlorite ion	100
Monochloramine	1.0
Fluorine	0.90
Bromine	0.63
Iodine	0.56

Known chloramination byproducts

- THMs
- HAA5s
- Haloketones
- Halonitriles
- Halonitroalkenes
- Haloamides
- Cyanogen chloride
- Chloropycrin
- Chlorophenols
- Nitrosodimethylamine (NDMA)
- Mono-, Di-, Tri-chloramines (residuals)
- Free ammonia

- Toxic to fish and amphibians
- Undesirable reactions with yeast in food manufacturing
 - Beer fermentation, musty taste
- Residuals difficult to remove from water
- WHO NOAEL
 - 9.4 mg/L based on human studies
- Common residuals from treatment
 2 mg/L to 5 mg/L



- Poor disinfectant for viruses and protozoa
 - CT requirements under SWTR

Microbial destruction mechanisms

- Electrochemical reaction with enzymes within microbial cell
- Disruption of enzyme system fails to repair/grow cells
- HOCl presence in NH₂Cl may increase disinfection capability
 - Biofilms tend to be resistant to chloramine disinfection once nitrification begins

- Can form non-germicidal residuals in reactions with certain organic compounds
 - Amino acids
 - Gelatin
 - Glycine
 - Cystine
 - Taurine
 - Uric acid
 - Uracil
 - Residuals often titrate as <u>dichloramine false-positive</u> values

Control of monochloramine formation

- Maintain proper chlorine to nitrogen ratios (Cl₂:N)
 - Target 4.5 to 5
- Maintain pH at 8.4 or greater
 - Fastest conversion reaction time
 - Maintains equilibrium toward NH₂Cl and not reverse reaction
 - Reduces residual decay
- Maintain free ammonia 0.05 mg/L or less
- Reduce TOC from source water
 - Creates monochloramine demand and nitrification issues
 - Increases nutrient availability for biofilm growth (AOC)

Control of taste and odor issues

- Monochloramine residuals less than 5.0 mg/L
- Dichloramine residuals less than 0.8 mg/L
- Trichloramine residuals less than 0.02 mg/L

Ammonia Sources

- Natural source water levels (SW and GW)
 - Need to account for background NH₃ if not removed in treatment
- Anhydrous ammonia gaseous
 99.95% NH₃
- Aqueous ammonia NH₄OH
 - 29.4% NH₃
- Liquid ammonium sulfate (NH₄)₂SO₄
 - Commonly LAS
 - 10% NH₃

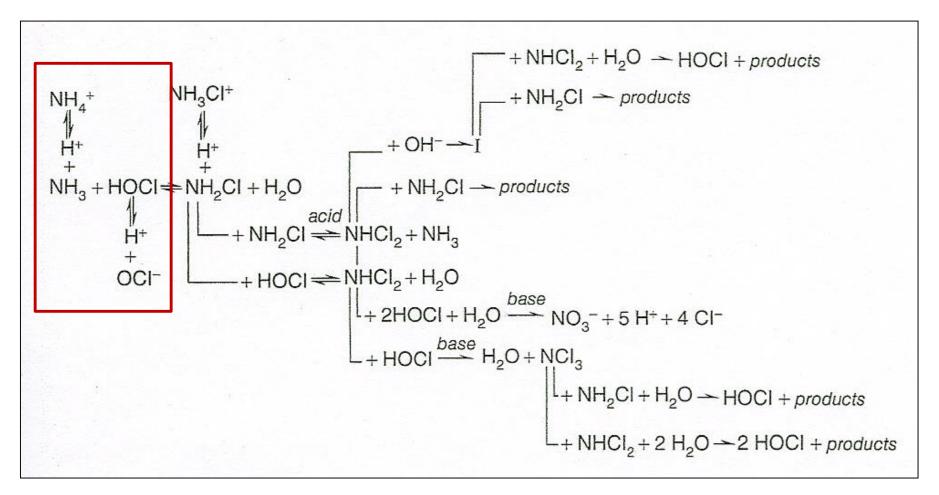
- Important to maximize monochloramine conversion and to minimize free ammonia residuals
- Cl₂:N target range
 - 4.5:1 to 5:1
- Common use of free chlorine for primary disinfection and CT compliance, then quench with ammonia source
 - Ammonia feed applied to convert free chlorine to monochloramine
 - Calculations important to prevent operating issues in distribution

Example 1

- Free chlorine residual 2.3 mg/L
- Target Cl₂:N ratio 4.6
- Anhydrous ammonia applied (99.95% NH₃)

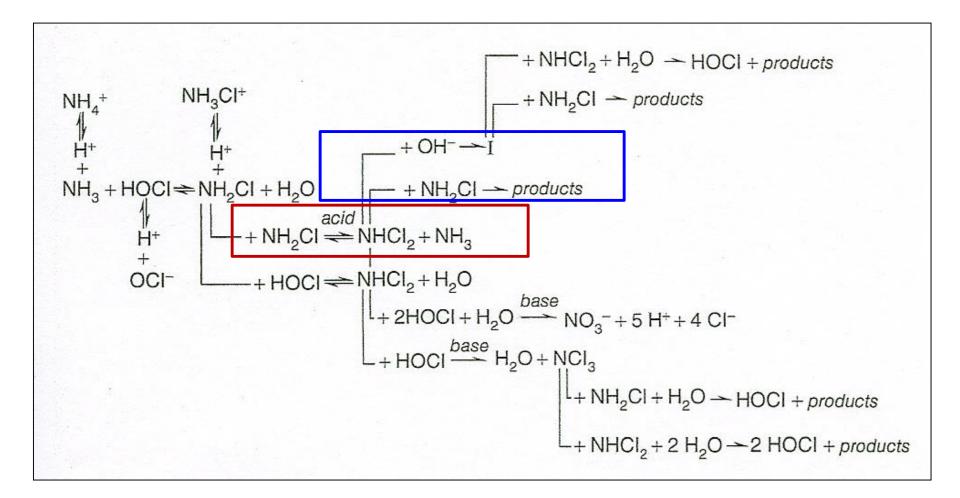
$$\frac{2.3 \ mg/L}{4.6} = 0.5 \frac{mg}{L} as N \qquad \frac{NH_3}{N} = \frac{17}{14} = 1.215$$
$$0.5 \frac{mg}{L} as N + 1.215 = 0.61 \frac{mg}{L} as NH_3$$

Example 2

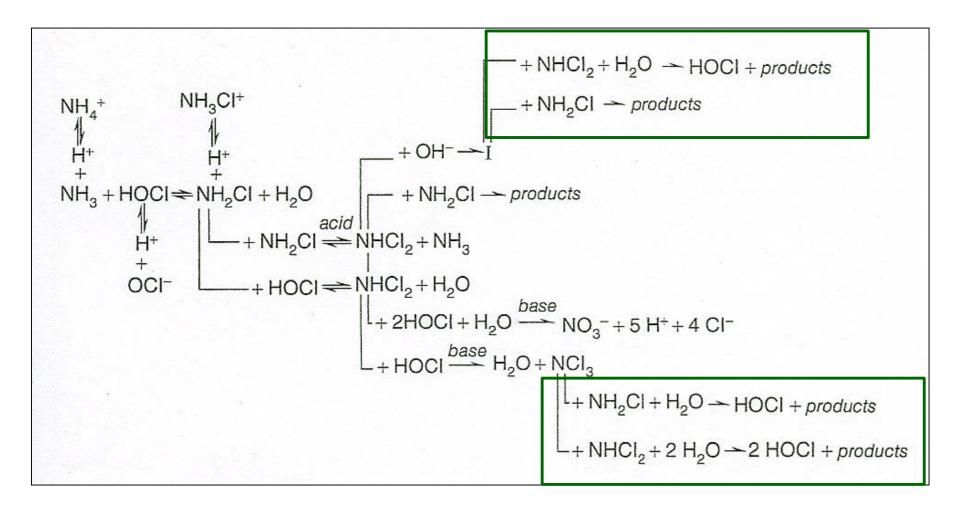

- Free chlorine residual 1.5 mg/L
- Target Cl₂:N ratio 5.0
- Aqueous ammonia applied (29.4% NH₃)

$$\frac{1.5 \ mg/L}{5.0} = 0.3 \frac{mg}{L} as N \qquad \frac{NH_3}{N} = \frac{17}{14} = 1.215$$
$$0.3 \frac{mg}{L} as N + 1.215 = 0.365 \frac{mg}{L} as NH_3$$
$$\frac{0.365 \ mg/L}{0.294} = 1.24 \frac{mg}{L} as NH_4OH$$

Example 3


- Free chlorine residual 2.8 mg/L
- Target Cl₂:N ratio 4.8
- Liquid LAS applied (10% NH₃)

$$\frac{2.8 \ mg/L}{4.8} = 0.58 \frac{mg}{L} as N \qquad \frac{NH_3}{N} = \frac{17}{14} = 1.215$$
$$0.58 \frac{mg}{L} as N + 1.215 = 0.70 \frac{mg}{L} as NH_3$$
$$\frac{0.70 \ mg/L}{0.10} = 7.0 \frac{mg}{L} as (NH_4)_2 SO_4$$

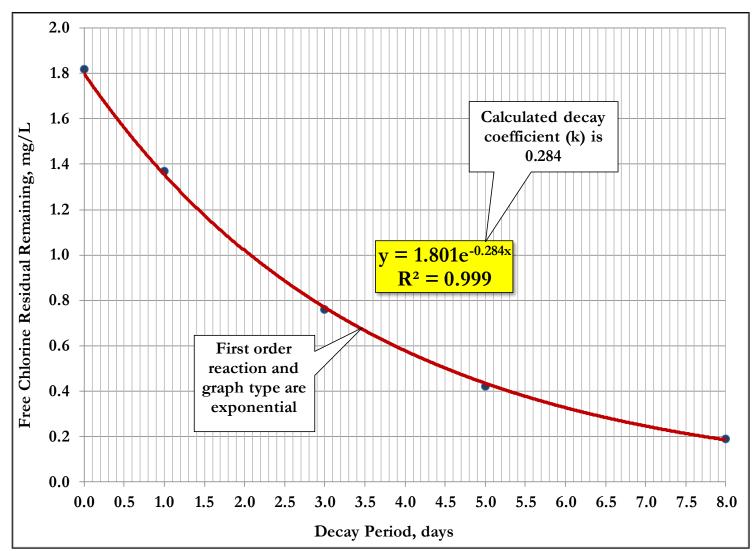


From "White's Handbook of Chlorination and Alternative Disinfectants"

Chloramine Decay

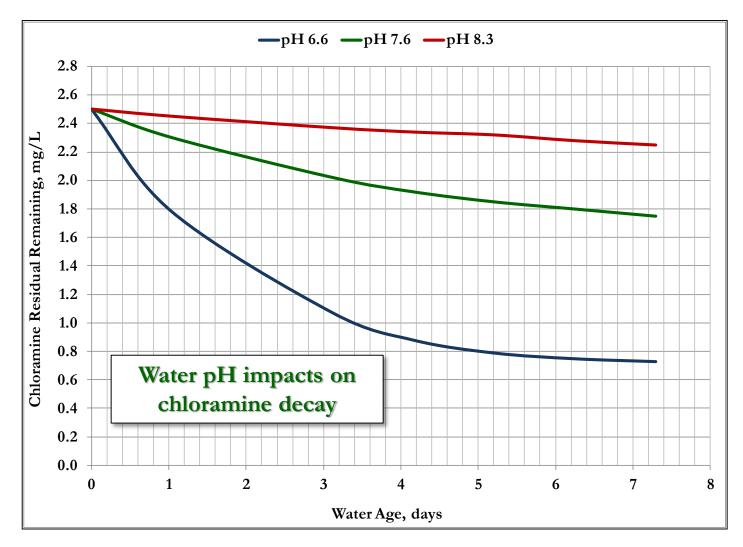
Residual decay generally follows first order reaction

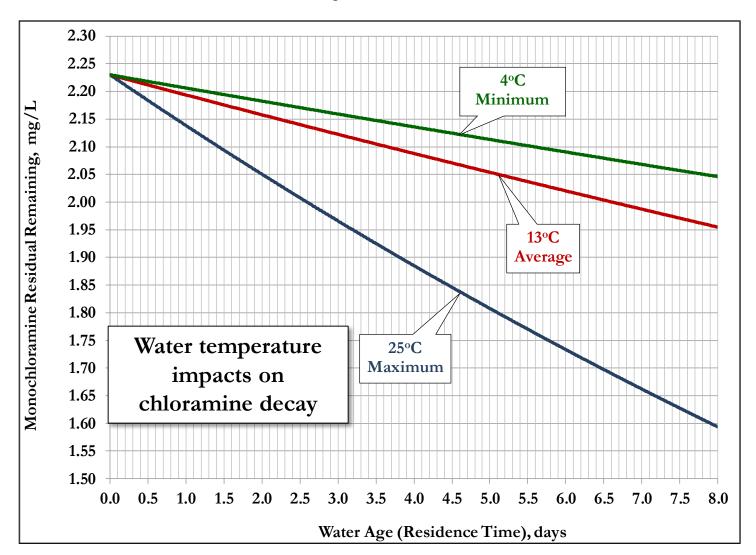
$$C_t = C_o e^{-kt}$$


 C_t = concentration at time t

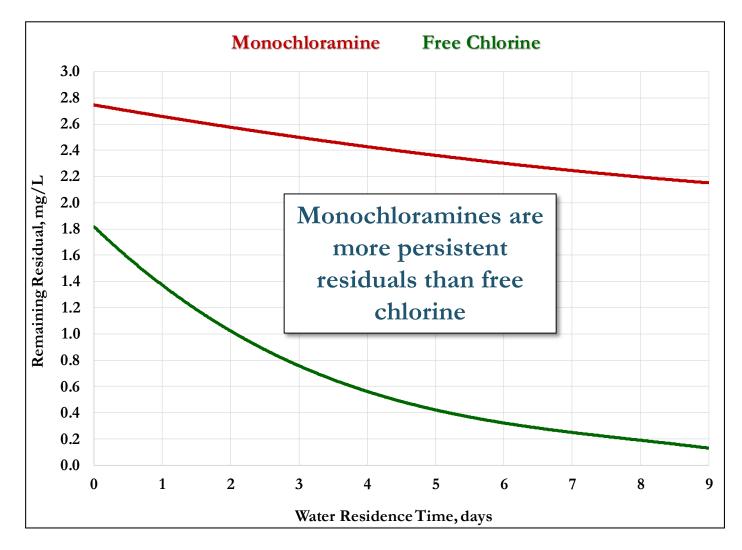
- C_o = initial concentration
- k = residual decay coefficient
- t = decay time in days

- Calculate decay coefficient (k) from experimental data using reaction equation
 - Bulk water only based on experimental observations


Chloramine Decay


Chloramine Decay

- System decay coefficient (k) contains 2 components
 - $k_t = k_b + k_w$
 - *k*_w decay coefficient pipe wall
 - *k*_b decay coefficient bulk water
- k_w impacted by contact at pipe wall and presence of biofilms, deposits, corrosion materials
- k_b affected by demand-causing substances in distribution system (bulk water quality)
- *k_t* dependent on water quality and pipe conditions, site specific


Chloramine Decay

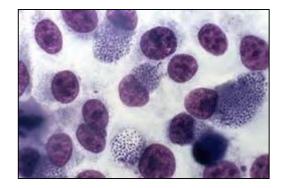
Chloramine Decay

Chloramine Decay

- Autodecomposition
- Reaction with corrosion byproducts (pipe surface)
- Excess ammonia and equilibrium reactions
- Oxidation of organic matter
- Nitrite reactions
- All decay reactions tend to reduce residuals resulting in potential nitrification occurrences

- Autodecomposition
 - Chloramine acting on itself

 $4NH_2Cl + 3H_2O \rightarrow 3NH_3 + NO_3^- + 5Cl^- + 5H^+(major)$


 $3NH_2Cl \rightarrow N_2 + NH_3 + 3Cl^- + 3H^+$ (minor)

- Impacted by water temperature, pH, and water age
 - Temperature affects reaction rates two-fold for every 10°C change
 - Low pH tends to increase NH₂CL decomposition and degradation
- Hydrogen reaction byproduct consumes alkalinity and reduces pH

Pipe surface impacts (corrosion byproducts)

$3NH_2Cl \rightarrow N_2 + NH_3 + 3Cl^- + 3H^+$

- Release of ammonia adds food for microbial growth
- Reaction depletes chloramine residuals
- Acid addition lowers water pH and may impact lead solubility

Excess ammonia (imbalance of Cl2:N ratio)

$$NH_3 + O_2 \rightarrow NO_2^- + 3H^+ + 2e^-$$

- Ammonia oxidizes to nitrite (adds decay component)
- Reaction depletes chloramine residuals
- Hydrogen ion release produces acids and lowers pH

Oxidation of organic matter

 $C_5H_7O_2N + NH_2Cl + H_2O \rightarrow CO_2 + HCO_3^- + NH_4^+ + Cl^-$

- Ammonium ion byproduct release ammonia (add decay component)
- CO₂ alters pH and consumes alkalinity, may impact lead solubility
- Chloride alters water quality and may impact lead solubility

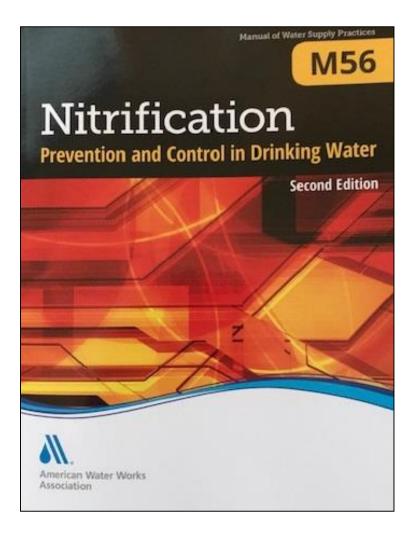
Oxidation of nitrite

$NH_2Cl + NO_2^- + H_2O \rightarrow NH_3 + NO_2^- + HCl$

- Reaction releases ammonia adds food for microbial growth
- Nitrite creates chloramine demand reducing residuals
- Acid alters water chemistry and may impact lead solubility
 - Not uncommon to see reductions in pH of 1.0 s.u. or more
 - Not uncommon to see alkalinity reductions of 20 mg/L or more

Part 1 Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931


Chloramination and Nitrification Part 2

pmg Marvin Gnagy, P.E., President PMG Consulting, Inc.

OTCO Water Workshop March 10, 2020

Agenda

- Nitrification and its causes
- Symptoms of nitrification
- Steps to avoid nitrification
- Nitrification occurrences
- Distribution monitoring plans
- Nitrification mitigation requirements
- Prevention using chlorite ion
- Nitrification case study 2019

- AWWA M56 Nitrification Prevention and Control in Drinking Water
 - Second Edition 2013
 - Excellent reference related to nitrification issues
 - Causes, symptoms, mitigation, monitoring programs, response plans

- Natural decay or decomposition of chloramines resulting in ammonia release and residual decline
 - Primary cause elevated water temperature >18°C
 - Can be highest in distribution storage tanks (>38°C observed in field)
 - Low DO and high water age contribute to decay
 - Chloramine demands produce NH₃, NH₄⁺ or NO₂⁻ feeding biofilm microorganisms
 - Excess free ammonia metabolizes biofilms
 - Biofilms resistant to chloramines and are protected in biofilm mass
 - Proliferate in high water age areas particularly with low DO and elevated temperatures
 - HPC increases as chloramine residuals decline

- Non-coliform bacteria always present in distribution systems
 - Free chlorine or chloramine residual maintenance typically control populations to background counts
 - HPC bacteria range typically from <1 to about 20 colonies per mL
- Nitrosomonas and Nitrobacter species are common in biofilms (non-coliform species)
 - Contribute significantly to nitrification events
 - Nutrient availability and temperature affect biolfilm growth
 - Exponential population growth exacerbates nitrification events

- Chloramine decay pathways
 - Autodecomposition
 - Chloramine demand
- System demands for chloramines
 - NOM (AOC) food source
 - Free ammonia nutrient source

- Biofilms (cometabolism accounts for 30% to 60% chloramine decay)
 - Ammonia-Oxidizing Bacteria AOB
 - Nitrite-Oxidizing Bacteria NOB
- Pipe corrosion byproducts and inhibitors provide strata for biofilms
- Nitrification events where NO₂⁻ creates chloramine demand

AOB and Nitrosomonas species

- Ammonia-oxidizing bacteria
- Optimum pH for increased growth rate 6 to 9
 - PH >9 less favorable for cell division
- Optimum water temperature 25°C to 35°C
 - Cell metabolism maximizes if food and nutrients available
 - Increases thermal stratification in unmixed storage tanks
 - Increases NH₂Cl decay and decomposition leading to free NH₃ release
- Resistant to NH₂Cl, but <u>easily</u> inactivated with free chlorine
- Use free NH₃ for metabolism and growth
 - NO_2^- reaction byproducts further degrade NH_2Cl releasing more NH_3
 - NO₂⁻ simple detection trigger that indicates nitrification is occurring

NOB and Nitrobacter species

- Nitrite-oxidizing bacteria
 - NO₃⁻ reaction byproducts produced
 - NO_2 and NO_3^- detection triggers that nitrification is occurring
- Optimum pH for increased growth rate 7.5 to 8.0
 - PH >8 less favorable for cell division
- Optimum water temperature 25°C to 35°C
 - Cell metabolism maximizes if food and nutrients available
 - Increased thermal stratification in unmixed storage tanks
- Resistant to NH₂Cl, but <u>easily</u> inactivated with free chlorine
- Use NO₂⁻ for metabolism and growth

Two-step microbiological process

- AOB metabolize NH₃ oxidizing to NO₂⁻
- NOB metabolize NO₂⁻ oxidizing to NO₃⁻
- Increases in nitrite (NO₂⁻) are early warning sign that nitrification is occurring
- Generally begins at elevated temperatures (>18°C), in low DO water, with highest water age
- NOM/TOC/AOC/free NH₃ can trigger metabolic growth of biofilms acting as nutrient at pipe wall
 - Nitrosomonas species
 - Nitrobacter species
 - Metabolic reactions release NH₃ from NH₂Cl residuals

- Declining chloramine residuals
 - Particularly in high water age locations due to NH₃ release
- Decreasing pH levels
 - Due to H⁺ and CO₂ byproduct formations from nitrification reactions
 - Acid formation increases NH₂Cl decomposition
- Decreasing alkalinity concentrations
 - Due to increased acidity from nitrification byproducts

- Significant decline in chloramine residuals
 - Commonly reduced to less than 50% of normal residual levels
- Reductions in water pH
 - Common reductions of about 1.0 s.u. or more have been recorded
- Reduced alkalinity levels
 - Common reductions of 20 mg/L or more have been recorded
- Changes in water quality may impact lead solubility

Flushing often pushes AOB and NOB into other non-affected areas of the system

- Presence of NO₂⁻ in distribution samples
 - NO₂⁻ greater than 0.02 mg/L signifies nitrification is occurring
 - NO₂⁻ can increase to 0.5 mg/L or more
- Increased HPC bacteria
 - Well above normal background,
 > 500 per mL
- Actual detection of AOB/NOB (not common)

- Reduction in dissolved oxygen (DO)
 - Consumed in nitrification reactions
 - Low levels in elevated water temperatures
- Elevated water temperatures
 - Optimal microbial growth at 25°C to 30°C
 - Temperatures can reach near 40°C in elevated storage tanks

- Steps to help avoid nitrification in distribution systems
 - Maintain Cl₂:N ratios in treatment above 4.5
 - Proper ratio assures complete conversion to chloramines and minimizes free ammonia
 - Account for actual free chlorine residual at ammonia application point
 - Produces low free ammonia residuals

- Steps to help avoid nitrification in distribution systems
 - Maintain water pH at 8.5 or greater
 - Maximizes chloramine conversion rate
 - Minimizes autodecomposition of chloramines
 - Inhibits microbial growth and nitrification reactions

- Steps to help avoid nitrification in distribution systems
 - Minimize free ammonia in finished water
 - Target 0.05 mg/L or less
 - Excess free ammonia becomes food for microbial growth
 - Primary result of improper Cl₂:N ratio in treatment
 - Can spark nitrification event
 - Establish 0.075 mg/L trigger to force adjustments in Cl₂:N ratio

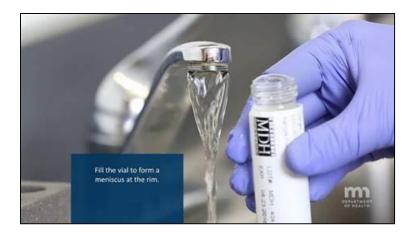
- Steps to help avoid nitrification in distribution systems
 - Maintain system chloramine residuals between 2 mg/L and 3 mg/L
 - Proper residual maintenance inhibits microbial growth by controlling biofilm populations
 - Avoid mixing chloraminated and chlorinated water in the system
 - Water chemistry issues and taste and odor issues
 - Install booster chloramination (chlorine and ammonia application)

- Steps to help avoid nitrification in distribution systems
 - Minimize organic matter
 - Establish target TOC/DOC level to minimize DBP formation
 - Maintain normal TOC/DOC levels in the finished water
 - Adjust organics removal based on source water levels
 - Increases of 0.3 mg/L or greater in TOC levels can provide nutrients for microbial growth

- Steps to help avoid nitrification in distribution systems
 - Control water age
 - Routine system flushing
 - Install tank mixing
 - Valve exercising to ensure system flow patterns
 - Maximize storage tank turnover
 - Take storage offline
 - Control booster pumping operations

- Steps to help avoid nitrification in distribution systems
 - Establish routine Water Quality monitoring programs
 - Define parameters that signal water quality degradation
 - Increase monitoring frequency when water temperature >18°C
 - Define critical water quality parameters affected by nitrification events
 - Sample at bacteria monitoring sites
 - Help ensure water quality degradation does not initiate nitrification event

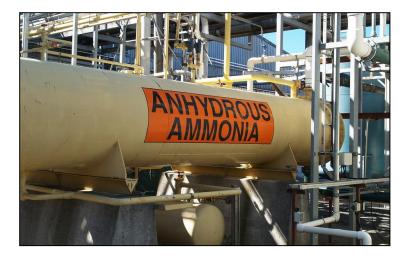
- Steps to take <u>once nitrification</u> <u>occurs</u>
 - Stop flushing hydrants
 - Only pushes AOB and NOB to other areas of system starting nitrification reactions in those areas
 - Notify Ohio EPA of possible nitrification and current water quality results
 - Confirm nitrification is occurring
 - Initiate conversations for next steps
 - Discuss public notification requirements and public notice language



- Steps to take <u>once nitrification</u> <u>occurs</u>
 - Conduct public notification for free chlorine burn period
 - Why, when, how long
 - Usually takes two to three weeks to complete the burn period
 - Possible taste and odor occurrences when free chlorine and chloramines combine
 - Who to contact with questions

- Steps to take <u>once nitrification</u> <u>occurs</u>
 - Initiate the burn period
 - Define target residuals and water pH levels
 - Research states 1.8 mg/L sustained free residual can inactivate AOB and NOB relatively easily
 - Terminate ammonia feed
 - Adjust finished water free chlorine to target residual level (2.5 mg/L or greater may ne needed depending on decay)
 - Continue system water quality monitoring
 - Maintain burn period until water pH is reestablished, NO₂⁻ reduces to 0.02 mg/L, and free chlorine residual persists

69



- Steps to take <u>once nitrification</u> <u>occurs</u>
 - Continue frequent monitoring of water quality
 - Water pH, alkalinity, NO₂⁻ levels, chlorine residuals, free ammonia, DO
 - Initiate flushing once free chlorine residuals established
 - Moves free chlorine more rapidly through distribution piping systems and inactivates AOB/NOB more quickly

- Steps to take <u>once nitrification</u> <u>occurs</u>
 - Work with OEPA on steps to return to chloramination
 - Conduct public notification related to return to chloramination
 - When, how long to return to normal
 - Possible taste and odor occurrences when free chlorine and chloramines combine
 - Usually takes about two weeks to convert back to chloramines after burn period depending on system size and hydraulics

- Steps to take <u>once nitrification</u> <u>occurs</u>
 - Implement ammonia feed and frequent water quality monitoring
 - Maintain minimum 4.5 Cl₂:N ratio for dosing
 - Maintain pH levels greater than 8.5
 - Continue flushing to move ammonia into free chlorine residual areas
 - SOP should be developed for next event
 - Consider more permanent means to reduce high water age areas

Distribution Monitoring Plans

- Specific water quality parameters either to deter or to confirm nitrification events
- Increase sampling frequencies based on water temperature and/or increased trigger values
- Routine and increased monitoring carefully planned with sample locations, test parameters, triggers, and written SOP to manage the program
 - Include indicators that confirm whether nitrification is occurring
 - Include nitrification response plan outlining activities if nitrification occurs
 - Include public notification procedures and language for public notices

Distribution Monitoring Plans

- Water quality parameters
 - Water temperature and pH
 - Residual concentrations
 - Cl₂:N feed ratios
 - Free ammonia concentration
 - Total alkalinity levels
 - Finished water TOC and SUVA
 - NO₂⁻ ion concentrations
 - Dissolved oxygen
 - HPC bacteria
 - Water residence time or age
 - Tank turnover rates

Routine monitoring should be conducted monthly

Increase frequency to biweekly once water temperature greater than 18°C

Increase frequency to at least 3 times per week if NO₂⁻ increase above 0.05 mg/L

Reverse frequency based on declining water temperature or when chlorine burn completed

Mitigation Requirements

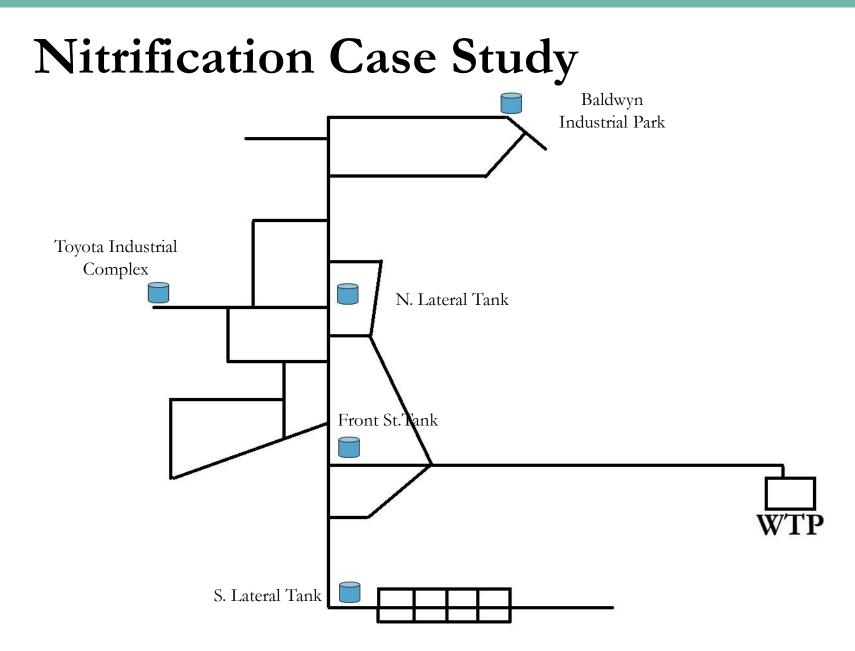
- Nitrification can create serious health concerns if not contained or mitigated in distribution systems
 - Significantly reduced chloramine residuals resulting in increased microbial activity
 - Potential coliform regrowth due to nitrification events
 - Potential growth of opportunistic microbes like Legionella
 - Increased disinfection byproducts concentrations
 - Potentially higher lead solubility
 - Increased metals uptake from corrosion reactions
 - Pipe damage

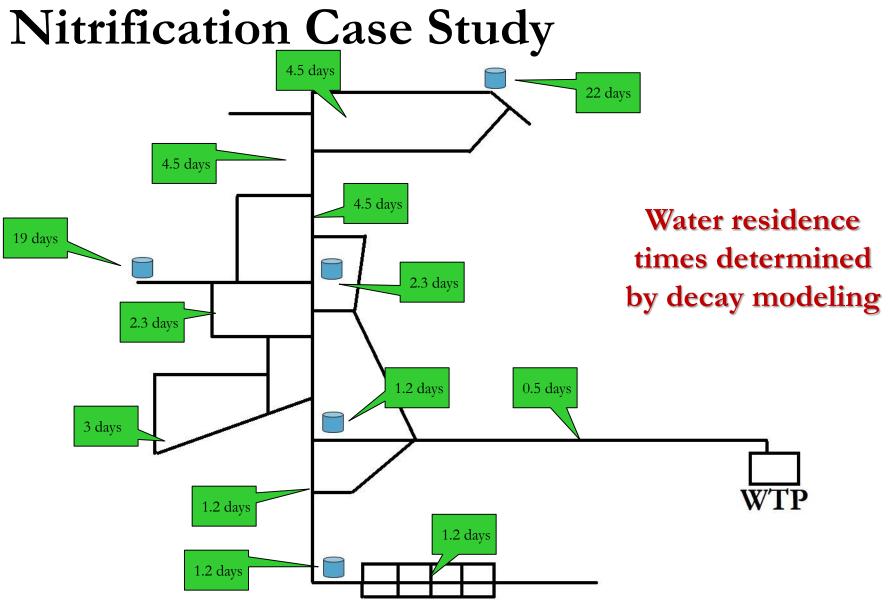
Mitigation Requirements

- Nitrification can get out of control if not mitigated or eliminated
- May require "free chlorine burn" period to kill off Nitrosomonas and Nitrobacter populations
- 1.8 mg/L sustained free chlorine residual will inactivate AOB and NOB (literature)
 - Feed rates may be higher due to free chlorine decay and mixtures of chloramines and free chlorine
 - 3.0 mg/L or higher may be needed in finished water to obtain 1.8 mg/L in some areas of distribution
 - Hydraulics and dead ends can produce problems obtaining residuals

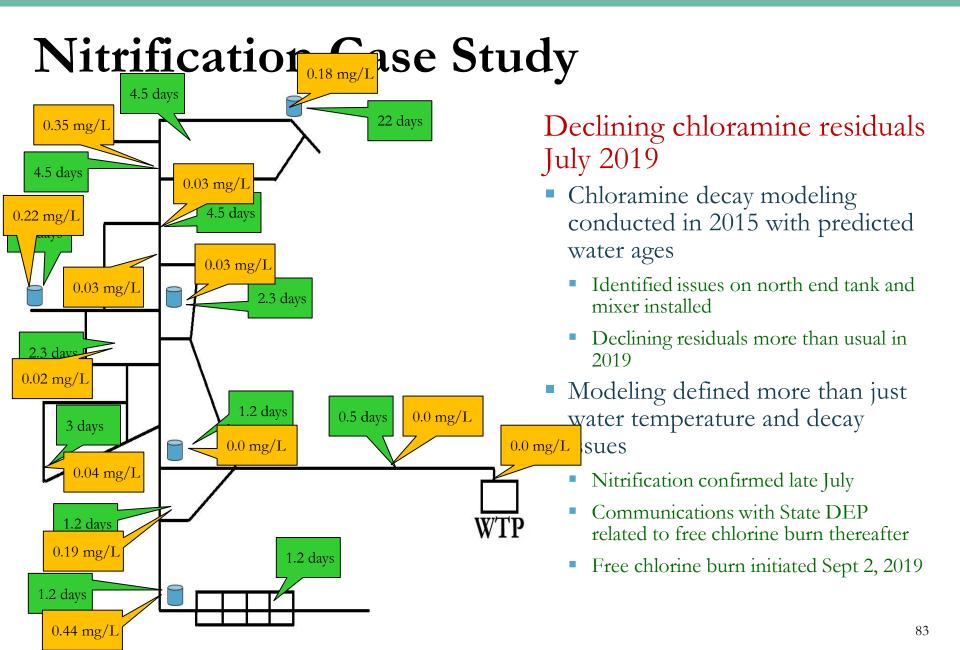
Mitigation Requirements

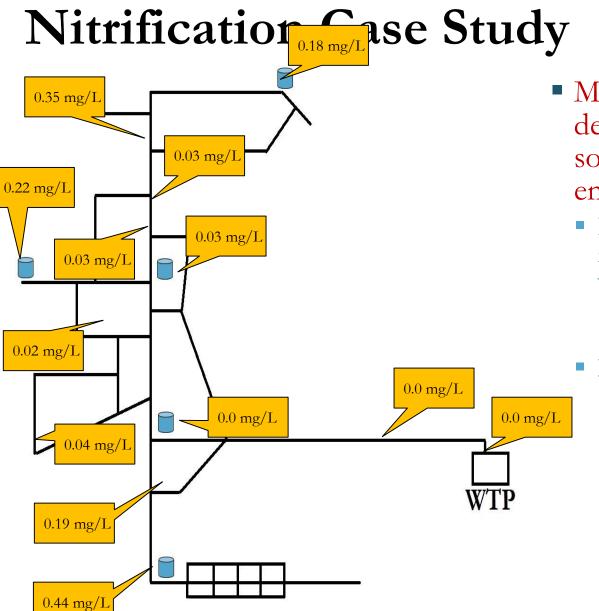
- Burn period may require public notification
 - Check with state regulatory agency (Ohio EPA)
- Burn must be long enough to rid the system of AOB and NOB while sustaining free chlorine residual throughout
 - May need two to four weeks of sustained free residuals depending on system hydraulics and microbial populations

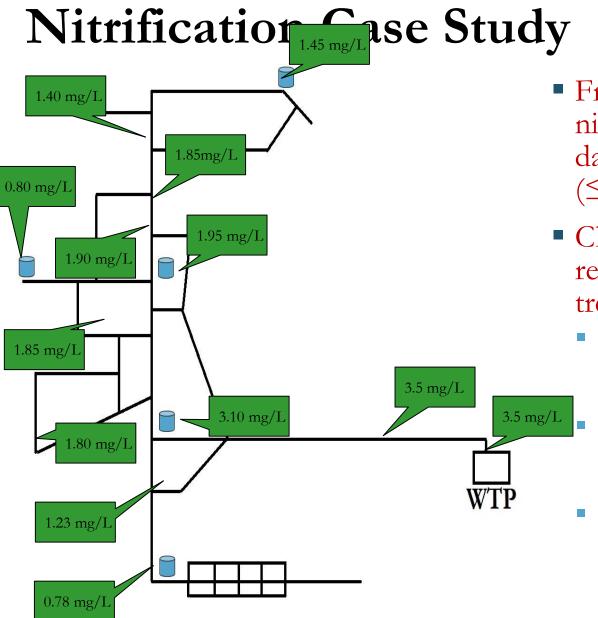

Prevention using Chlorite Ion

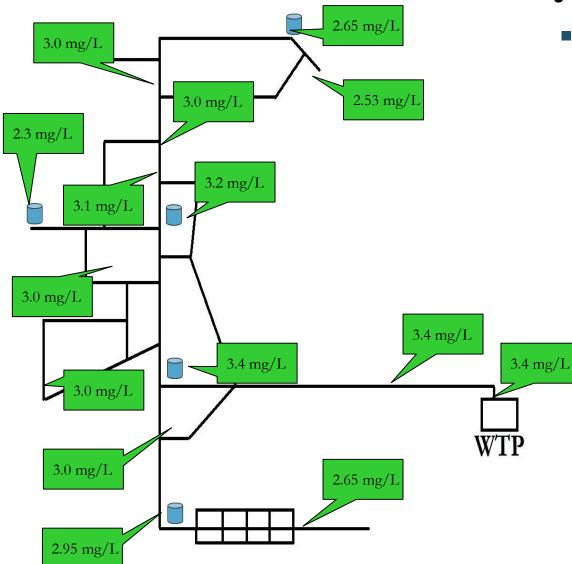

- Chlorite ion has proven to help prevent nitrification in some water systems
 - ClO₂⁻ toxic to AOB, does not allow prolific growth
 - ClO₂⁻ also a regulated disinfection byproduct
 - MCLG 0.8 mg/L
 - MCL 1.0 mg/L
- Key to prevent growth of AOB before it really begins
 - ClO₂⁻ not effective once nitrification starts
 - Target dosages generally 0.2 mg/L to 0.6 mg/L
 - Application of sodium chlorite to finished water
 - Used in onsite production of chlorine dioxide
 - Maintains NH₂Cl residuals by preventing nitrification
 - Monitor chlorite ion frequently if applied

Northeastern Mississippi


- Chloramination practiced since 2004
 - NH₃ fed after CT compliance
- Cl₂:N ratio generally 4.0
- Free ammonia variable from 0.02 mg/L to 0.12 mg/L
- Water pH 8.34 ±
- Alkalinity averages 45 mg/L
- Finished TOC averages 1.9 mg/L
- Max water temperature generally 29°C in summer months
- Very large distribution system serving multiple consecutive systems




NE Mississippi Regional Water Supply District																						
Tupelo, I	MS																					
Total Ch	lorine De	cay Mod	el						01	1	•	D				D	11	. •				
									Ch	llora	m1r	ie D	eca	V IVI	odel	Pre	ed1c	t10n	S			
Temp	Temp 35 °C			(temp varies 7°C to 29°C)									•									
k	0.0734				,																	
Days	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Initial Total C2, mg/L	3.80	3.53	3.28	3.05	2.83	2.63	2.45	2.27	2.11	1.96	1.82	1.69	1.57	1.46	1.36	1.26	1.17	1.09	1.01	0.94	0.88	0.81
	3.70	3.44	3.19	2.97	2.76	2.56	2.38	2.21	2.06	1.91	1.78	1.65	1.53	1.42	1.32	1.23	1.14	1.06	0.99	0.92	0.85	0.79
	3.60	3.35	3.11	2.89	2.68	2.49	2.32	2.15	2.00	1.86	1.73	1.61	1.49	1.39	1.29	1.20	1.11	1.03	0.96	0.89	0.83	0.77
	3.50	3.25	3.02	2.81	2.61	2.42	2.25	2.09	1.95	1.81	1.68	1.56	1.45	1.35	1.25	1.16	1.08	1.00	0.93	0.87	0.81	0.75
	3.40	3.16	2.94	2.73	2.53	2.36	2.19	2.03	1.89	1.76	1.63	1.52	1.41	1.31	1.22	1.13	1.05	0.98	0.91	0.84	0.78	0.73
	3.30	3.07	2.85	2.65	2.46	2.29	2.12	1.97	1.83	1.70	1.58	1.47	1.37	1.27	1.18	1.10	1.02	0.95	0.88	0.82	0.76	0.71
	3.20	2.97	2.76	2.57	2.39	2.22	2.06	1.91	1.78	1.65	1.54	1.43	1.33	1.23	1.14	1.06	0.99	0.92	0.85	0.79	0.74	0.68
	3.10	2.88	2.68	2.49	2.31	2.15	2.00	1.85	1.72	1.60	1.49	1.38	1.28	1.19	1.11	1.03	0.96	0.89	0.83	0.77	0.71	0.66
	3.00	2.79	2.59	2.41	2.24	2.08	1.93	1.79	1.67	1.55	1.44	1.34	1.24	1.15	1.07	1.00	0.93	0.86	0.80	0.74	0.69	0.64
	2.90	2.69	2.50	2.33	2.16	2.01	1.87	1.73	1.61	1.50	1.39	1.29	1.20	1.12	1.04	0.96	0.90	0.83	0.77	0.72	0.67	0.62
	2.80	2.60	2.42	2.25	2.09	1.94	1.80	1.67	1.56	1.45	1.34	1.25	1.16	1.08	1.00	0.93	0.86	0.80	0.75	0.69	0.64	0.60
	2.70	2.51	2.33	2.17	2.01	1.87	1.74	1.61	1.50	1.39	1.30	1.20	1.12	1.04	0.97	0.90	0.83	0.77	0.72	0.67	0.62	0.58
	2.60	2.42	2.24	2.09	1.94	1.80	1.67	1.56	1.45	1.34	1.25	1.16	1.08	1.00	0.93	0.86	0.80	0.75	0.69	0.64	0.60	0.56
	2.50	2.32	2.16	2.01	1.86	1.73	1.61	1.50	1.39	1.29	1.20	1.11	1.04	0.96	0.89	0.83	0.77	0.72	0.67	0.62	0.58	0.53
	2.40	2.23	2.07	1.93	1.79	1.66	1.54	1.44	1.33	1.24	1.15	1.07	0.99	0.92	0.86	0.80	0.74	0.69	0.64	0.59	0.55	0.51
	2.30	2.14	1.99	1.85	1.71	1.59	1.48	1.38	1.28	1.19	1.10	1.03	0.95	0.89	0.82	0.76	0.71	0.66	0.61	0.57	0.53	0.49
	2.20	2.04	1.90	1.77	1.64	1.52	1.42	1.32	1.22	1.14	1.06	0.98	0.91	0.85	0.79	0.73	0.68	0.63	0.59	0.55	0.51	0.47
	2.10	1.95	1.81	1.68	1.57	1.45	1.35	1.26	1.17	1.08	1.01	0.94	0.87	0.81	0.75	0.70	0.65	0.60	0.56	0.52	0.48	0.45
	2.00	1.86	1.73	1.60	1.49	1.39	1.29	1.20	1.11	1.03	0.96	0.89	0.83	0.77	0.72	0.66	0.62	0.57	0.53	0.50	0.46	0.43
	1.90	1.77	1.64	1.52	1.42	1.32	1.22	1.14	1.06	0.98	0.91	0.85	0.79	0.73	0.68	0.63	0.59	0.55	0.51	0.47	0.44	0.41
	1.80	1.67	1.55	1.44	1.34	1.25	1.16	1.08	1.00	0.93	0.86	0.80	0.75	0.69	0.64	0.60	0.56	0.52	0.48	0.45	0.41	0.39
	1.70	1.58	1.47	1.36	1.27	1.18	1.09	1.02	0.94	0.88	0.82	0.76	0.70	0.65	0.61	0.57	0.53	0.49	0.45	0.42	0.39	0.36
	1.60	1.49	1.38	1.28	1.19	1.11	1.03	0.96	0.89	0.83	0.77	0.71	0.66	0.62	0.57	0.53	0.49	0.46	0.43	0.40	0.37	0.34
	1.50	1.39	1.30	1.20	1.12	1.04 0.97	0.97	0.90	0.83	0.77	0.72	0.67	0.62	0.58	0.54	0.50	0.46	0.43	0.40	0.37	0.35	0.32
	1.40	1.30		1.12	1.04 0.97	0.97		0.84	0.78	0.72	0.67	0.62		0.54		0.47	0.43	0.40 0.37	0.37	0.35	0.32	
	1.30	1.21	1.12				0.84	0.78			0.62		0.54		0.47		0.40					0.28
	1.20 1.10	1.12	1.04 0.95	0.96	0.89	0.83	0.77	0.72	0.67	0.62	0.58	0.54 0.49	0.50	0.46	0.43 0.39	0.40	0.37	0.34 0.32	0.32	0.30	0.28	0.26
	1.00	0.93	0.86	0.80	0.75	0.69	0.64	0.60	0.56	0.52	0.48	0.45	0.41	0.38	0.36	0.33	0.31	0.29	0.27	0.25	0.23	0.21



- Most significant residual decline in northern end, south end, and western end near industrial park
 - Reduced pH and increased nitrite observed into August waiting for public notice
 - pH reductions observed from 0.5 units to 1.1 units
 - Maximum nitrite 0.44 mg/L
 - Variations showed nitrification primarily at system extremities with highest water age in storage tanks

- Public notice request and chlorine burn procedures approval by state regulators late August
 - 10-day public notice followed by termination of ammonia feed
 - One phone call received simply to verify what we were doing (Water District official)
 - Flushed clearwells at the plant to remove chloraminated water quickly
 - Adjusted water pH levels from 8.35 to 8.6
 - Adjusted free chlorine in finished water to 3.5 mg/L (hot weather and likely chlorine decay reactions)
 - Continued monitoring system residuals, nitrite levels, pH, alkalinity

- Free chlorine reduced nitrite levels within three days to background levels (≤0.02 mg/L)
- Chlorine residuals responded well close to the treatment plant
 - Residuals increased in extremities within 10 days well above 1.3 mg/L
 - Maintained free chlorine for three weeks to ensure nitrification stopped
 - Began ammonia application Sept 25, 2019
 - Chloramines re-established within 5 days to normal levels

- Chloramine residuals after
 5 days ammonia feed shown
 - Decay modeling predictions very close to actual residual levels after burn period
 - No nitrite above background since burn period

- Nitrification monitoring plan and response plan functioned well
 - No previous written plans, developed onsite for the event and implemented procedures
 - SOPs now being developed for the next event
- First-ever event likely caused by several issues
 - High rainfall in June and July increased finished TOC at 2.4 mg/L (21 mg/L raw)
 - Extremely hot weather August and September averaging over 94°F
 - Observed tank temperatures were 42°C (108°F)
 - Cl₂:N ratios lower than optimum (4.0 average, 3.6 in some cases)
 - Excess free ammonia entering distribution (0.16 mg/L to 0.22 mg/L)
 - NH₃ and AOC nutrients plentiful for AOB and NOB growth
 - Increased water age due to conservation and low demands (June and July rains)
 - Data confirmed nitrification began in extremities and worked inward
 - Lack of nitrification planning and response activities (SOPs)

Chloramination and Nitrification

Part 2

Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931