Water Age Predictions Chlorine Decay Modeling and

Marvin Gnagy, P.E., President

Pm9 PMG Consulting, Inc.

OTCO Water Workshop

March 5, 2014

Agenda

- Residual Decay in Water
- Experimental Data Collection
- Data Evaluations
- Adjustment for Temperature Variations
- Decay Model Development
- Applications for Decay Evaluations
- Water Age Predictions for Water Systems
- Questions

Residual Decay in Water

Residual decay generally follows first order reaction

$$C_t = C_o e^{-kt}$$

 C_t = concentration at time t C_o = initial concentration k = residual decay coefficient

t = decay time in days

- Calculate decay coefficient (k) from experimental data using reaction equation
- Decay models developed using identified and monochloramine coefficients for free chlorine, total chlorine,

Decay Coefficients

- Decay coefficient (k) contains 2 components
- $\bullet \ k_t = k_b + k_w$
- $k_{\rm w}$ decay coefficient pipe wall
- $k_{\rm b}$ decay coefficient bulk water
- $k_{\rm w}$ impacted by contact at pipe wall and presence of biofilms, deposits, corrosion materials
- k_h affected by demand-causing substances in distribution system (water quality)
- k_t dependent on water quality and pipe conditions, site specific

Items Influencing Residual Decay

- Initial residual concentration
- Equilibrium reactions
- Residual half-life
- Water temperature
- Water pH
- Presence of reducing substances
- Water age or residence time
- S/V ratio (surface to volume ratio in pipelines, tanks)

Equilibrium reactions

Changes residual concentrations based on pH and

temperature variations

 $K_i = \frac{\begin{bmatrix} H^+ \mathbf{D}Cl^- \end{bmatrix}}{\begin{bmatrix} HOCl \end{bmatrix}} \quad HOCl = \frac{\begin{bmatrix} H^+ \mathbf{D}Cl^- \end{bmatrix}}{K_i}$

Free chlorine

Hypochlorous acid (HOCl) and hypochlorite ion (OCl-) remain in according to solubility relationships based on equilibrium chemistry solution, but their content may change with pH and temperature

- Monochloramine
- Equilibrium chemistry can shift monochloramine levels by simple pH and temperature changes

$$NH_3 + HOCl \Leftrightarrow NH_2Cl + H_2O$$

Residual half-life

- Residual reduces according to half-life reactions for the type of residual
- ½ concentration reduction each half-life
- Results in depletion over time in distribution and storage

30

Water temperature impacts

- Generally two fold change k each 10°C change in temperature
- Affects k and residual decay reactions
- Temperature affects type of free chlorine residual (HOCl or OCl-)
- Equilibrium impacts for free chlorine and monochloramine shown
- Increasing temperature increases auto-decomposition of chloramine residuals

Water temperature impacts

Water pH effects

- pH affects type of residual based on equilibrium
- Free chlorine (HOCl or OCl-)
- Monochloramine balance with ammonia and free chlorine
- Decay of system residuals dependent on pH level and type ot residual
- pH levels above 8 slow auto-decomposition of chloramine residuals
- pH levels above 8 predominantly OCI rather than HOCI

Water pH effects

Reducing substances

- Water quality parameters cause depletion of residual
- Iron, manganese, ammonia, sulfides, bromide, organic matter, nitrite, cyanide
- Reactions at pipe wall cause depletion of residual
- Pipe Deposits
- Corrosion Reactions
- Biofilms

Reducing substances - DOC

Free Chlorine Residual, mg/L

Reaction Time, hours

Water age / residence time

- Most significant effects on residual decay
- Exponent in first order reaction
- Longer residence time reduces residuals
- More reaction time with reducing substances
- More decay reaction based on time
- More reaction with pipe wall materials
- Water storage affects water age and residence times
- Affects water temperature variations in storage tanks
- Water temperature impacts given earlier
- Stagnant water conditions erode residual concentrations

S/V ratio

- Affects volume of water reacting with pipe wall or tank wall
- Smaller diameter increases bulk volume of water contacting pipe
- lacktriangle Increases residual decay $(oldsymbol{k}_w)$
- Affected by flow velocity
- ' Increased Reynolds number increases residual decay $(oldsymbol{k}_w)$
- Affects volume to surface area ratio in pipelines increasing decay

S/V ratio

Reaction Time, hours

Flow velocity effects

Experimental Data Collection

Experimental Data Collection

- Representative sample with known residual concentration
- Plant tap collected for experimental evaluation
- Single sample for entire test period
- May need to spike sample with disinfectant for evaluation
- Glass container, brown or amber
- Rinsed with chlorine and lab water to remove demand on container wall
- Dried prior to decay evaluation testing
- Stored in dark conditions
- Sample capped to simulate pipe conditions
- No evaporation or off gassing
- Maintained at room temperature or incubator controlled

Daily observations

- Time, temperature, residual concentration
- Record observations at nearly same time each day
- Conduct decay testing until maximum residence time achieved
- Estimate of water system residence time (8 days to 21 days common)
- OR -
- Until residual falls below 0.2 mg/L free chlorine or 1.0 mg/L total
- Record observations for evaluation and k determination

Data Evaluations

0.19	Day 8
0.24	Day 7
0.34	Day 6
0.42	Day 5
0.58	Day 4
0.76	Day 3
1.01	Day 2
1.37	Day 1
1.82	Day 0

- Free chlorine decay for 8 days (max residence time)
- Graph data in ExcelTM
- ' Select scatter graph
- Add trend line to data points
- Select exponential graph type
- Display equation and R² options
- Determine decay coefficient
 (k) from equation

$$C_t = C_o e^{(-kt)}$$

 $Temp = 21^{\circ}C$

 $Temp = 21^{\circ}C$

 $Temp = 21^{\circ}C$

Free Chlorine Remaining, mg/L

 $Temp = 21^{\circ}C$

<i>j</i>	1		
Day 5	2.45	Day 17	2.00
Day 7	2.38	Day 19	1.95
Day 9	2.30	2.30 Day 21	1.90

- Total chlorine decay for 21 days (depletion minimized)
- Graph data in ExcelTM
- ' Select scatter graph
- Add trend line to data points
- Select exponential graph type
- Display equation and R² options
- Determine decay coefficient
 (k) from equation

$$C_t = C_o e^{(-kt)}$$

Water System B Total Chlorine Remaining, mg/L

		2.1	Day 10
		2.3	Day 8
1.7	Day 18	2.6	Day 6
1.7	Day 16	2.9	Day 4
1.80	Day 14	3.3	Day 2
1.90	Day 12	3.6	Day 0

- Total chlorine decay for 19 days (depletion minimized)
- Graph data in ExcelTM
- Select scatter graph
- Add trend line to data points
- Select exponential graph type
- Display equation and R² options
- Determine decay coefficient (k) from equation

$$C_t = C_o e^{(-kt)}$$

		1.34	Day 8
		1.40	Day 6
1.07	Day 15	1.62	Day 4
1.08	Day 14	1.86	Day 2
1.12	Day 12	1.94	Day 1
1.23	Day 10	2.17	Day 0

- Free chlorine decay for 15 days (depletion minimized)
- Sample spiked with NaOCl
- Graph data in ExcelTM
- Select scatter graph
- Select exponential graph type Add trend line to data points
- Display equation and R² options
- Determine decay coefficient (k) from equation

$$C_t = C_o e^{(-kt)}$$

Temp - 21°C

Adjustment for Temperature Variations

Water temperature changes

- **k** changes by factor of 2 each 10°C change in temperature
- Each 1°C changes k about 10%
- Increasing temperature increases k
- Decreasing temperature decreases k
- Calculate **k** at various temperatures to bracket range of water temperatures experienced in distribution
- Initial experimental data SystemB
- $k = 0.0196 \text{ } \text{@}20^{\circ}\text{C}$
- 10°C 0.0098
- 20°C **0.0196**
- 30°C 0.0392

Water temperature changes

- **k** changes by factor of 2 each 10°C change in temperature
- Each 1°C changes k about 10%
- Increased temp increases k
- Decreased temp decreases k
- Calculate **k** at various temperatures to bracket range of water temperatures experienced in distribution system
- Initial experimental data SystemB
- $k = 0.0196 \text{ (a)} 20^{\circ}\text{C}$
- 10°C 0.0098
- 20°C **0.0196**
- **30°C 0.0392**

0.0225	22°C	0.0109	12°C
0.0215	21°C	0.0103	11°C
0.0196	20°C	0.0098	10°C
0.178	19°C	6800.0	O_{0}
0.163	18°C	0.0085	8°C
0.151	17°C	0.0082	7°C
0.140	16°C	0.0078	6°C
0.131	15°C	0.0075	5°C
0.122	14°C	0.0073	4°C
0.115	13°C	0.0070	3°C

Seasonal Decay Variations

Seasonal Variations Water System C Total Chlorine Remaining, mg/L 29°C

Water Age, days

Decay Model Development

Decay Model Development

- Using k values established decay calculations are made using first order equation
- ' k varies with temperature (vlookup function in Excel $^{
 m TM}$)
- Bracket water age 0 days to \underline{X} days
- Use typical initial residuals in plant effluent (t=0)
- Bracket residual concentration variations
- Insert equations for each residual and water age into table
- Table becomes decay model for individual water systems
- Known water age predicts residual at that location
- Known residual concentration predicts water age at that location
- Predict tap residuals needed to meet minimum system residuals
- Temperature variations often illustrate loss of residual due to decay reactions

Example Decay Model Table

Chlorine Decay Model

Temp, oC

21

0.284

							Res	idence T	Residence Time, Days	.ys						
mg/L Tap	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
2.8	2.43	2.11	1.83	1.59	1.38	1.19	1.04	0.90	87.0	89.0	0.59	0.51	0.44	0.38	0.33	0.29
2.7	2.34	2.03	1.76	1.53	1.33	1.15	1.00	0.87	0.75	0.65	0.57	0.49	0.43	0.37	0.32	0.28
2.6	2.26	1.96	1.70	1.47	1.28	1.11	0.96	0.83	0.72	0.63	0.55	0.47	0.41	0.36	0.31	0.27
2.5	2.17	1.88	1.63	1.42	1.23	1.07	0.93	0.80	0.70	0.60	0.52	0.45	0.39	0.34	0.30	0.26
2.4	2.08	1.81	1.57	1.36	1.18	1.02	0.89	0.77	0.67	0.58	0.50	0.44	0.38	0.33	0.29	0.25
2.3	2.00	1.73	1.50	1.30	1.13	86.0	0.85	0.74	0.64	0.56	0.48	0.42	0.36	0.32	0.27	0.24
2.1	1.82	1.58	1.37	1.19	1.03	0.90	0.78	0.67	0.59	0.51	0.44	0.38	0.33	0.29	0.25	0.22
2.0	1.74	1.51	1.31	1.13	0.98	0.85	0.74	0.64	0.56	0.48	0.42	0.36	0.32	0.27	0.24	0.21
1.9	1.65	1.43	1.24	1.08	0.93	0.81	0.70	0.61	0.53	0.46	0.40	0.35	0.30	0.26	0.23	0.20
1.8	1.56	1.35	1.18	1.02	0.88	0.77	0.67	0.58	0.50	0.44	0.38	0.33	0.28	0.25	0.21	0.19
1.7	1.47	1.28	1.11	0.96	0.84	0.73	0.63	0.55	0.47	0.41	0.36	0.31	0.27	0.23	0.20	0.18

Applications for Decay Evaluations

Applications for Decay Evaluations

- Define residuals in areas that are not monitored
- Evaluate seasonal impacts to meet system residual requirements
- Define problem areas in storage and pipelines where persistent low residuals exist
- Extended water age due to lack of mixing
- Discover water age issues within distribution system
- Match decay evaluations with hydraulic modeling
- Relate other water quality issues in distribution

Water Age Predictions

Water System A (Hydraulic Model)

Water System A (Hydraulic Model vs. Decay)

Water System B

- Northern most tank contributes significant water age
- Total chlorine depleted less than
 1.0 mg/L
- Study underway for tank mixing

Water System C

Water System D -Hydraulic Model vs. Decay

