

Magnetite Ballasted Technology to Meet Ultra-Low Phosphorus Limits in Wisconsin

CoMag® Pilot at the Fond du Lac WPCP

BioMag System

Activated Sludge Treatment

Ballasted
<u>Biological</u>
<u>Floc</u>

CoMag System Coagulation Flocculation Treatment

Ballasted <u>Inorganic</u> Floc

Magnetite Background / History

- Ballasted settling is not new
 - Bentonite
 - Microsand
 - Magnetite

3rd Generation Ballasted Flocculation Technologies

- Magnetite ballasted settling began in Cambridge, MA in 1999
 - CoMag
- BioMag followed a few years later

MAGNETITE

Biological & Chemical Flocs

MAGNETITE AROUND US

COAL FLOAT

TONER

COMPUTERS

BIO-COMPASS

Magnetite is mined and readily available

Magnetite: Fe₃O₄

- Fully oxidized iron ore
- Doesn't rust or degrade
- Completely inert
- Non-abrasive (10 30 microns)

Four compelling properties

- Density and weight: Spec. gravity: 5.2
- Hydrophobic: affinity to embed in floc
- Magnetically retrievable
- Inexpensive ~30¢/lb

WHAT'S THE PROBLEM?... CLARIFIER BOTTLENECK S.G. OF FLOCS IS BARELY > 1.0

CoMag[®] System Value Demonstration

Pilot Project Background

- In 2010, the WDNR
 established standards for TP
 levels in different types of
 water bodies
- Each community faces a different set of constraints and time frames affecting the available options to address the new TP rules
- Some facilities may need major upgrades to meet TP limits as low as 0.03 mg/l as a six-month average

Surface Water Phosphorus Criteria

•Rivers 0.100 mg/l

•Streams 0.075 mg/l

Reservoirs 0.02-0.04 mg/l

Inland Lakes 0.015-0.04 mg/l

•Great Lakes 0.005-0.007 mg/l

Fond du Lac

- Discharges into Lake Winnebago
- Surface Water Criteria: 0.04 mg/l P
- Water Quality Based Effluent Limit: 0.04
- Desktop Evaluation of Treatment Alternatives: Ballasted Clarification, Reactive Filtration, Discfilters
- Pilot CoMag System

CoMag® Pilot Program at FDL

- Verify performance to achieve <0.04 mg/l TP as tertiary treatment
- Test three different coagulants: Alum, FeCl₃ and PACl
- Stress test for high solids @ 100 mg/l TSS
- Stress test for high flow @ 2X flow

CoMag® evoqua Process Flow Diagram

MAGNETITE BALLASTED SETTLING IN ACTION

COMAG - EQUIPMENT

Reaction Tanks and Magnetite Recovery Drums

Charlton, MA CoMag

Page 15

COMAG - SHEAR MILL

MAGNETIC RECOVERY DRUM

Magnetic Properties High Recovery Rates

Magnetite Recovery

TERTIARY TREATMENT FOR ULTRA-LOW TP

Effluent Turbidity

UV Transmittance

CoMag® Pilot Program

- Nominal capacity of 50 GPM, with operating range of 25 to 100 GPM
- Evoqua operator for 40 hours per week for duration of pilot program (typically 4 weeks)
- Pilot plant fully equipped
- CoMag[®] trailer is approximately
 48' L x 8' W x 12' H
- Jar testing available for unique treatment / water sources

Process Flow Diagram

CoMag[®] Pilot Program at FDL from September 16 to October 15, 2013

copyright © 2014 Evoqua Water Technologies LLC, all rights reserved

CoMag[®] Pilot Program at FDL from September 16 to October 15, 2013

CoMag[®] Pilot Program at FDL Average Influent & Effluent Data

		Alum	Ferric Chloride	PACI	
TP (mg/l)	Inf	1.0	1.0	0.9	
ir (ilig/i)	Eff	0.039	0.025	0.036	
TSS (mg/l)	Inf	29	19	25	
	Eff	1.6	1.9	3.2	
Turbidity (NTU)	Inf	NM	NM	NM	
rurbialty (NTO)	Eff	0.24	0.29	0.17	
LIV/Transmittanes (9/)	Inf	68	65	69	
UV Transmittance (%)	Eff	76	75	79	

Notes:

- Average data include stress tests
- NM = not measured

CoMag® Pilot Program at FDL evoqua consumables

		Consumables	
	Alum	12 mg/l as Al	
Alum	Polymer	0.70 mg/l dry weight	
	Magnetite	7-10 lbs per MGD	
Ferric Chloride	FeCl ₃	24 mg/l as Fe	
	Polymer	0.80 mg/l dry weight	
	Magnetite	7-10 lbs per MGD	
	PACI	20 mg/l as Al	
PACI	Polymer	0.70 mg/l dry weight	
	Magnetite	7-10 lbs per MGD	

Notes:

•The alkalinity of the wastewater was high enough, and no caustic addition for pH adjustment was required for any of the three coagulants tested

CoMag[®] Pilot Program at FDL evoqua Stress Tests Stress Tests

			Alum	Ferric Chloride	PACI
	Flow (gpm)		50	50	50
est					
Solids ress Te	TSS (mg/l)	Inf	114	95	111
oli SS		Eff	1.3	1.5	1.5
Solids Stress Test		Inf			
St	TP (mg/l)		2.2	2.5	2.5
			0.044	0.028	0.047
	Flow (gpm)		100	100	100
c	101				
Hydraulic Stress Test	TSS (mg/l)	Inf	24	13	13
ra SS	5 (mg/1)		2.6	1.6	1.5
7 § 7					
St	TP (mg/l)	Inf	0.65	1.05	0.71
	ir (ilig/i)		0.029	0.020	0.033

CoMag[®] Pilot Program at FDL Additional Data

		Alum	Ferric Chloride	PACI
Lowest TP achieved (mg/l)		0.020	0.010	0.020
BOD removal		91%	74%	77%
Fecal Coliform Reduction		NM	99.7%	99.7%
Aluminium (μg/l)	Inf	NM	NM	1,379
Αιαιιιιιατί (με/ 1/	Eff	NM	NM	148
Iron (ug/l)	Inf	NM	NM	0.05
Iron (μg/l)	Eff	NM	NM	< 0.03

Notes:

•NM = not measured

CoMag® Pilot Program at FDL Conclusions

- Demonstrated ability to consistently meet ultra-low phosphorus limit of 0.04 mg/l TP with three coagulants
 - Performance easily dialed up or down
- Resilience against hydraulic and solids peak loads
- Higher effluent quality for disinfection:
 - Improved UV transmittance by 15%
 - Achieved 2 to 3 log removal of Fecal Coliforms
- Low magnetite consumption:
 - 7-10 lbs per MGD at ~\$0.3/lb
- Ability to remove heavy metals copyright © 2014 Evoqua Water Technologies LLC, all rights reserved

Promotes solids-contact

COMAG VALUE PROPOSITION

CoMag® **EVOQUA** WATER TECHNOLOGIES Ultra-Low TP Full Scale Performance

Location	Average TP
Sturbridge, MA	0.039 mg/l
Maynard, MA	0.026 mg/l
Charlton, MA	0.025 mg/l
Billerica, MA	0.036 mg/l
Concord, MA	0.045 mg/l

EVOQUA DISC FILTERS - COMAG COMPARISON

Disc Filters

- Need secondary effluent with low TP
- Susceptible to fouling
- Limited response to peak flows

More Robust

CoMag Effluent Performance Tertiary Treatment

Parameter	Typical Performance
Aluminum	90% Removal
Arsenic	50% - 90% Removal
BOD	<2 mg/l
Copper	50% - 90% Removal
Fecal Coliform	98% Removal
Phosphorus (Total)	<0.05 mg/l
Total Suspended Solids	<5 mg/l
Turbidity	< 2 NTU

BioMag / CoMag Strong Foundation

- Developed in the US in the late 90s
- 21 Municipal Projects sold up to date
- 42 Pilots conducted

CoMag® Applications for Solids Removal

- Tertiary Treatment Ultra Low TP
- Primary Treatment CEPT
- Storm Flow
- Fixed Film Ballasted Clarification
- CSO Treatment
- Drinking Water
- Industrial: Mining, P&P, F&B, RO
 Pretreatment, Produced and Frac
 Water

Able to remove:

- Particulate (suspended) solids
- Colloidal suspensions, including emulsions
- Heavy metals
- Pathogens
- Phosphorus
- Color

BALLASTED HIGH RATE PRIMARY (PILOTS)

- Midwest CSO; 16.0 MGD Application
- Chemical Dosage: 4-7 mg/l Al; 1-1.5 mg/l Polymer
- TSS Removal: 139 mg/l in 27 mg/l out (80%r)
- BOD Removal: 138 mg/l in 48 mg/l out (65%r)
- UV Transmittance Improvement: 68% increase

Asheville, NC

- Design Flows: 23 MGD ADF; 40 MGD MMo; 80 MGD PHr
- RBC Secondary Process; No Primaries
- Upgrade Required: Future NH3-N Requires
 Stable Nitrification
- Economics Requires Minimum Expansion of Secondary Process
- Very Tight Site Constraints (Space / Footprint Limitation)

OBJECTIVE

Add Chemically Enhanced Primary Clarification

Extend Capacity of RBC Process (reduce load)

 Produce CEPC Effluent <100 mg/l BOD; >1.0 mg/I OP; >70% TSSr

Minimize Chemical Addition

CONCLUSIONS SUMMARY

- Optimum Alum Dose to Meet Objectives-55 ppmv (3.2 mg/l as Al)
- Polymer Dose-1.0 mg/l
- TSS Reduction at 55 ppmv or higher: 80%-90% (242 mg/l to 43 mg/l)
- Increasing Flow Had Little to No Impact on Performance
- Able to Achieve CBOD < 100 mg/l at 55 ppmv Alum (194 mg/l to 71 mg/l; 63%r)
- Achieved Soluble CBOD Reductions of 20%-60%

Overall TSS Results

	TSS			Volatile TSS			
	Influent	Effluent	Reduction	Influent	Effluent	Reduction	
	mg/L	mg/L	%	mg/L	mg/L	%	
Average	224	71	71%	198	54	74%	
Minimum	167	25	14%	156	19	9%	
Maximum	420	309	87%	376	171	89%	
Median	214	44	81%	190	35	83%	
Count	17	15	15	17	15	15	

evoqua Overall BOD Results

	CBOD			Soluble CBOD			
	Influent Effluent Reduction		Influent	Effluent Reduction			
	mg/L	mg/L	%	mg/L	mg/L	%	
Average	194	88	55%	61	48	20%	
Minimum	91	26	21%	18	9	-16%	
Maximum	260	167	78%	130	83	61%	
Median	202	89	56%	65	57	21%	
Count	17	17	17	17	17	17	

THANK YOU FOR YOUR ATTENTION

John Irwin Technical Sales Manager Evoqua Water Technologies

john.irwin@evoqua.com

Represented by HP Thompson

