### **Corrosion Control/Coupon Study**

## Corrosion Control/Coupon Study

**Dennis Thurston** 

**Russ Teders** 

Water Solutions Unlimite

#### Corrosion Control ...



Before





Water Solutions Unlimited

#### **ELECTROCHEMICAL REACTION**

#### **3 PARTS REQUIRED FOR REACTION TO TAKE PLACE**

The Corrosion Cell :



If any of the steps of Corrosion can be prevented, the corrosion will stop

#### **Corroding and Depositing**



#### More on the Building Blocks

| рН                                                                                                                                                      | Alkalinity                                                                                                                                                                                   | TDS                                                                                                                                              |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>pH</li> <li>&lt;7 – Acidic</li> <li>&gt;7 – Basic</li> <li>High pH, less likely to corrode</li> <li>Can influence ORP and phosphate</li> </ul> | <ul> <li>Alkalinity</li> <li>Capacity of Water to<br/>neutralize acid</li> <li>Mg/L as Calcium<br/>Carbonate</li> <li>High alkalinity waters<br/>tend to resist changes in<br/>pH</li> </ul> | <ul> <li>High TDS – lots of ions</li> <li>More ions increase ability to complete circuit</li> <li>Low TDS can want to steal back ions</li> </ul> |  |  |
| <ul> <li>Can influence ORP and<br/>phosphate<br/>effectiveness</li> </ul>                                                                               | <ul> <li>High alkalinity waters<br/>tend to resist changes in<br/>pH</li> <li>Low alkalinity waters less<br/>resistant to pH changes</li> </ul>                                              | <ul> <li>Low TDS can want<br/>to steal back ions</li> </ul>                                                                                      |  |  |
|                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                  |  |  |

#### More on the Building Blocks

#### DIC

- Sum of all dissolved inorganic carbon species
- Similar to alkalinity
- DIC increases, so does buffer capacity
- When low 3-6 mg C/L pH adjustments help
- When over 30 mg C/L pH adjustments not effective

#### Hardness

- Dissolved calcium and magnesium
- Would like some Calcium Carbonate
- Usually not an issue in Midwest
- Can be if stripped out by process such softening or Reverse Osmosis

#### **Buffer Intensity**

- Measure of resistance of water to pH changes
- If low, can impacted by uncovered storage, corrosion, nitrification.

#### How does Lead Get Into Drinking Water?

DC Water: From Source to Tap



\*A small fraction of homes have brass service lines that can also contribute low levels of lead.

#### Role of Oxidants

#### **Dissolved Oxygen**

#### Oxidant Type

#### Role of ORP

- Dissolved gas (CO<sub>2</sub>) potential increase corrosion
- DO reacts with Fe<sup>2+</sup> & converts to Fe<sup>3+</sup>
- May also increase pipe tubercle and copper pitting
- Adding Chlorine may increase copper corrosion

- Chlorine is shown to increase and decrease corrosion in soft waters
- Chlorine is a strong oxidant makes lead lose 4 electrons instead of 2
- Forms insoluble compound that protects pipe

- Drinking water ranges 400mV to 600 mV
- Low ORP weakens existing scale
- Switch from Chlorine to chloramine may reduce ORP

#### Ohio Environmental Protection Agency

- Corrosion Control Treatment Recommendation Form
- 1. Review present water quality.
- 1. Review water treatment options.
- 1. Project future water quality.

#### Directions for Making Treatment Determinations

| Step 1                                                                                                                                                         | Step 2                                                                                                                                                                                          | Step 3                                                                                                                          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <ul> <li>Examine Lead and<br/>Copper Data</li> <li>pH &gt;7.8 and Alkalinities<br/>between 30 -100<br/>CaCO<sub>3</sub>/L usually not<br/>corrosive</li> </ul> | <ul> <li>Collect background<br/>chemistry data</li> <li>See building blocks</li> <li><u>Check for radon and</u><br/><u>arsenic as their removal</u><br/><u>strategies may impact</u></li> </ul> | <ul> <li>Look up DIC</li> <li>Evaluate<br/>treatment<br/>options</li> <li>Evaluate your<br/>current<br/>treatment to</li> </ul> |  |  |  |
| <ul> <li>CaCO<sub>3</sub>/L &gt; 100<br/>frequently high copper</li> </ul>                                                                                     | <u>corrosion control</u><br>programs                                                                                                                                                            | <ul> <li>optimize cost and effectiveness</li> <li>Make changes when possible</li> </ul>                                         |  |  |  |

#### Decision Tree – Over Lead & Copper



#### Decision Tree – Over Lead Only



#### Decision Tree – Over Copper Only





#### Make your choice



Water Solutions Unlimited



#### **CORROSION CONTROL MECHANISM**

"Barrier Protection" How do Phosphates work?

#### **Phosphates** - How Proven are they?



Water Solutions Unlimited

# What is the Role of Phosphate in Drinking Water?

| <b>Corrosion Control</b>                              | Sequester                                                          |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| <ul> <li>Combine with Calcium<br/>Hardness</li> </ul> | <ul> <li>Secondary Standards</li> <li>Iron &gt; .3 mg/l</li> </ul> |  |  |  |  |
| • Form a Barrier OFTEN                                | - Both                                                             |  |  |  |  |
| <ul> <li>Prevent Corrosion</li> <li>Lead</li> </ul>   | • No Filter Plant                                                  |  |  |  |  |
| • Copper<br>• Steel                                   | <ul> <li>Breakthrough in Filter</li> </ul>                         |  |  |  |  |

#### What Happens when a Phosphate is Added?

The Corrosion Cell:



A "Coating" is laid down to shut down the process. Some phosphates are better at Anodic Corrosion and others better at Cathodic

#### **Good Scale vs Bad**





Formation of scale within the distribution system

Formation of protective scale layer: requires flowing water



Flowing water

## Anodic and Cathodic protection

#### Anodic "Phosphate"

- Corrosive "situation" occurs
- Ferrous Iron begins its transformation
- Phosphate "Blocks" Fe from leaching into water
- Corrosion stopped

#### Cathodic "Phosphate"

- Corrosive "situation" occurs
- Oxygen tries to penetrate into pipe wall
- Phosphate "Blocks" Oxygen from getting to pipe to continue the corrosion process

#### How do I choose Blend?

- Are you Groundwater or Surface Water?
- Primary need for phosphate?
  - Corrosion?
    - Copper, Steel, or Lead?
  - Sequester?
    - Iron Manganese?
- Which ranks higher?
- Do you have filter plant?
- Water Characteristics?

## Ortho Phosphate – Anodic Inhibitor



Di Potassium Phosphate

# Blended Phosphate – Anodic (& Cathodic) Inhibitor





#### **Other Factors to Consider**

- Injection point of phosphate in relation to chlorine
- Phosphate testing –run an ortho test
- Dosing
  - Factors change over time
- Aeration and Filtration
- Lower pH and higher temperature will cause faster reversion

#### Ortho – Poly Blends

- Provide Sequestering and Corrosion Control
- Effective over a broad ph range
- Good Copper control in high hardness waters
- Modest galvanic control

#### Issues with Feeding Phosphates?

#### Can feed too much

• Polyphosphate can scour lines

#### Can feed too little

- Breakthrough of discoloration
- Weak scale formed

Too much chlorine can breakdown phosphate

#### How Do You Measure Success?

#### **Sequestering Application**

- "Cleaner" Water
- Better Flushes
- No breakdown of Phosphate
  - No increase in ortho reading

#### **Corrosion Application**

- Better Coupon results
- Better Flushes
- Few line breaks
- Fewer pinhole copper leaks
- Compliance with lead and copper

## **Corrosion Coupon Study**

- University of Washington Coupon Study Guidelines
- 90 day time period
- Steel, Copper, Lead, and Deposition
   Coupons
- 1 to 1.5 gallons per minute continuous flow

#### **Corrosion Coupon Rack**





#### **Corrosion Coupon Information**

#### **Coupon Calculations**

<u>Weight loss in grams x K-factor</u> Metal Density x Metal Area in Square inches x Time in hours Equals Mils per Year Reading

Copper K-factor 534810, Lead K-factor 551041, Mild Steel K-factor 535298 Copper density 8.89 Lead density 11.35 Steel density 7.87 Copper Surface Area One hole coupon 3.382 Copper Surface Area Two hole coupon 3.24 Lead Surface Area 3.4130 Steel Surface Area 3.3833 Flow rate for coupon rack 2 gallon per minutes/7.48 = 0.27 cubic feet per minute/60 = 0.0045 feet per sec  $0.083 \ge 0.75 = 0.0625$  $0.0625 \ge 0.785 \ge 0.003$ 0.0045/0.003 = 1.5 ft per sec

#### **Corrosion Coupon Information Cont.**

#### **Corrosion Rate Scale**

Mild Steel C1010

0.0 to 2.0 Mils per YearCorrosion2.0 to 5.0 mils per year5.0 to 10.0 Mils per yearCorrosionGreater that 10 Mils per year

#### Minimal

Mild corrosion Moderate

Severe Corrosion

#### Copper CDA110/ Lead

0.0 to 0.2 Mils per year Corrosion 0.2 to 0.5 Mils per year 0.5 to 1.0 Mils per year Corrosion Greater that 1.0 Corrosion Minimal

Mild Corrosion Moderate

Severe

#### **Actual Coupons**

#### **Before Program**

#### **After Program**





#### **Coupon progression after program starts**











## Corrosion rates are always changing



#### LCR Lead Compliance Data



| Coupon<br>Serial<br>No. | Date<br>Installed | Date<br>Removed | Original<br>Weight<br>(g) | Final<br>Weight<br>(g) | Exposure | Weight<br>Loss (g) | Exposure<br>(hours) |        | Mils per Year |       |
|-------------------------|-------------------|-----------------|---------------------------|------------------------|----------|--------------------|---------------------|--------|---------------|-------|
|                         | 29-Aug-           | 17-Oct-         |                           |                        |          |                    |                     |        |               |       |
| A 77694                 | 12                | 12              | 11.820                    | 11.409                 | 49 days  | 0.411              | 1176                | 7.04   |               |       |
|                         | 29-Aug-           | 17-Oct-         |                           |                        |          |                    |                     |        |               |       |
| A 77695                 | 12                | 12              | 11.660                    | 12.257                 | 49 days  | -0.597             | 1176                | -10.23 | 3             |       |
|                         | 17-Oct-           | 15-Nov-         |                           |                        |          |                    |                     |        |               |       |
| A 82201                 | 12                | 12              | 10.980                    | 10.274                 | 29 days  | 0.706              | 696                 | 20.44  |               |       |
|                         | 17-Oct-           |                 |                           |                        |          |                    |                     |        |               |       |
| A 82200                 | 12                | 8-Jan-13        | 11.047                    | 9.650                  | 83 days  | 1.397              | 1992                |        |               | 14.13 |
|                         | 15-Nov-           |                 |                           |                        |          |                    |                     |        |               |       |
| A 82203                 | 12                | 8-Jan-13        | 11.035                    | 10.965                 | 54 days  | 0.07               | 1296                |        | 1.09          |       |
| A 82206                 | 8-Jan-13          | 1-Apr-13        | 11.111                    | 10.844                 | 83 days  | 0.267              | 1992                |        |               | 2.70  |
| A 82207                 | 8-Jan-13          | 1-Apr-13        | 11.036                    | 10.679                 | 83 days  | 0.357              | 1992                |        |               | 3.61  |
|                         |                   |                 |                           |                        |          |                    |                     |        |               |       |
| A82211                  | 1-Apr-13          | 17-Jun-13       | 11.008                    | 10.798                 | 77 days  | 0.21               | 1848                |        |               | 2.29  |
|                         |                   |                 |                           |                        |          |                    |                     |        |               |       |
| A82210                  | 1-Apr-13          | 17-Jun-13       | 10.767                    | 10.705                 | 77 days  | 0.062              | 1848                |        |               | 0.68  |





#### **Copper Coupon Information**



#### **Steel Coupon Information**



#### Lead Coupon Information



43

# Lead and Copper exceed recommended limits – What Next?

- Implement an approved program.
- Alter the parameters that are approved.

## **Decision Tree – Over Lead & Copper**



### **Decision Tree – Over Lead & Copper**



## Pipe Rig Loop

- 1. The disadvantage of coupon rack it uses finished water as it flows out to distribution system.
- 2. EPA is recommending a Pipe Rig Loop using finished water through piping from your system that you alter with your purposed treatment prior to pumping into your distribution system.

## All Done – Questions?

Dennis Thurston (765)-967-0355 <u>emddennis@frontier.com</u> Russ Teders (419)-615-3441 rteders@getwsu.com