Crafting a Predictive TOC Treatability Model by Combining Multiple Removal Strategies

Marvin Gnagy, P.E., Owner PMG Consulting, Inc.

OTCO Water Workshop – Quest Conference Center May 5, 2024

Agenda

- What we knew about organics removal in water
- What we've learned about organic removal in water
- Crafting a predictive TOC treatability model
- Case study to verify predicted TOC removal in full-scale treatment applications
- Questions

Organic character

- Consists generally of humic acids, fulvic acids, transphilic acids, and other hydrophilic matter (NOM)
- SUVA values commonly used to depict TOC removal capability
 - > 3 L/mg-m suggests easier TOC removal
 - < 3 L/mg-m more difficult TOC removal</p>
- SUVA values suggest general TOC treatability based on organic characterization

- Low SUVA values(up to 2.5 L/mg-m) suggest hydrophilic matter and transphilic acid (THPA) content
 - 20% to 40% TOC removal expected

- Low SUVA values(up to 2.5 L/mg-m) suggest hydrophilic matter and transphilic acid (THPA) content
 - 20% to 40% TOC removal expected
- Moderate SUVA values (2.5 L/mg-m to 4.2 L/mg-m) suggest fulvic acid presence
 - 40% to 60% TOC removal expected

- Low SUVA values(up to 2.5 L/mg-m) suggest hydrophilic matter and transphilic acid (THPA) content
 - 20% to 40% TOC removal expected
- Moderate SUVA values (2.5 L/mg-m to 4.2 L/mg-m) suggest fulvic acid presence
 - 40% to 60% TOC removal expected
- High SUVA values (greater than 4.2 L/mgm) suggest humic acid presence
 - 60% to 95% TOC removal expected

Organic Matter	SUVA Range, L/mg-m	Chlorine Demand mg/L
Humic acids	4.2 and greater	3.0 ±0.2
Fulvic Acids	3.1 to 4.5	1.4 ±0.12
Transphilic acids	2.0 to 2.7	1.2 ± 0.2
Other hydrophilics	1.2 to 1.8	0.3 ± 0.1

- Jar testing can predict mixing conditions and coagulant dosing to optimize TOC reductions in water
 - Optimal mixing intensity for floc development and settleability
 - Most effective coagulant type and dosage
 - Enhanced coagulation dosing
 - TOC removal capability from chemical treatments
 - Oxidative conditioning strategy to enhance TOC reductions
 - TOC reduction capabilities from PAC treatment

- Increased coagulant dosage can improve TOC removal
- High coagulant dosages consume significant amounts of alkalinity
 - Check OCCT needs
- Enhanced coagulation may not remove sufficient TOC for DBP control
 - Depending on organic character and treatability

- UV absorbance monitoring is very useful for organics removals and process control
 - Simple test procedure
 - UVA is more sensitive to changes than TOC testing
 - UVA can be correlated to TOC for individual treatment plants
 - UVA can be used to predict relative TOC in water

TOC removal treatments

- Coagulation can remove significant amounts of TOC, but limitations exist
 - Different coagulants behave differently
 - Some untreatable TOC remains
- Enhanced coagulation has limitations in TOC removal
 - Coagulation pH important to TOC reductions (lower is better)
- Enhanced softening has limitations in TOC removal
 - Magnesium removal enhances TOC removal
 - Saponification can occur at high pH levels

 More recent information obtained and learned by close working relationship with Chris Miller, PhD and the Fontus Blue team

- Tambo & Kamei February 1989 American Chemical Society (ACS) article
- "Evaluation of Extent of Humic-Substance Removal by Coagulation"
 - Increased coagulant dosing improves DOC reductions
 - Non-treatable portion of DOC exists
 - DOC treatability model from coagulation
 - Primarily for high SUVA conditions

10.0%

treatability based on source water SUVA

- Marc Edwards, PhD May 1997
 AWWA Journal Article
- "Predicting DOC Removal During Enhanced Coagulation"
 - SUVA, coagulation pH, initial DOC, several constants, applied dosage
 - DOC removal sensitive to coagulant type and pH
 - $\approx 8.0 \text{ pH}$ solubility issues
 - Estimate non-sorbable DOC from SUVA

$$\frac{[1 - SUVAK1 - K2]DOCi - Ceq}{M} =$$

$$\frac{(x3pH^3 + x2pH^2 + x1pH)bCeq}{1 + bCeq}$$

solve for Ceq and final DOC

DOCf = Ceq + (K1SUVA + K2)DOCi

- Kathyrn Kalscheur November 2006 AWWA Journal article
- "Enhanced Softening: Effects of Source Water Quality on NOM Removal..."
 - Introduced lime ratio and relationships to DOC removal in softening
 - Lime ratio is actual dosage divided by required dosage to minimize calcium
 - Calcium removal enhances DOC removal
 - Magnesium removal enhances DOC removal

- Optimum coagulant type found in jar testing
 - Dosage and TOC reduction produced
- Optimum coagulant varies with source water
 - SUVA and organic character suggest TOC treatability
- All coagulants exhibit limitations on TOC removal
 - THPA and hydrophilic matter are difficult to remove (low SUVA conditions)

- Limitations exist in TOC removal by coagulation
 - Treatability predictions useful for chemical optimization
- Oxidative conditioning techniques and carbon adsorption treatments can enhance TOC removals
- Enhanced softening can simulate TOC removals
 - Saponification impacts due to high pH levels in softening hinder TOC removals
- Predictive model estimating TOC treatability from SUVA values can improve process control
 - Predictive model needs to be verified for accuracy and variability

- Reviewed 100's jar test simulations for water quality (1990's to 2023)
 - Recorded source water SUVA values
 - Ranged from 1.30 to more than 7.30
 - Assessed actual TOC removal capability of coagulants, precipitative softening, carbon treatments
 - Developed table of SUVA versus TOC treatability from available data
 - Developed predictive TOC treatability curve from data sources
 - Checked other jar test data against predicted TOC treatability (initial verification)

• Oberlin, Ohio

- 2.25 mgd surface water plant
- 0.8 mgd average production
- NaMnO₄, alum and polymer, lime, CO₂, PO₄, F⁻, Cl₂
- Conventional treatment prior to filtration
- DBP concerns
 - OEL's Oct. 2022 & Jan. 2023
- Targeted split (two-stage) treatment alternative after water quality reviews

- NaMnO₄ dosing variable
- Alum and lime added together in first basins
 - TOC removal not optimum
 - Optimize alum dosing (maximize TOC reductions at lower pH)
 - Optimize lime softening for additional TOC removal
 - Improve TOC removal before October 2023 THM monitoring

- Initiated split treatment in August 2023
 - NaMnO₄ raw water ($\approx 0.3 \text{ mg/L}$)
 - Alum in first stage basins (50 mg/L continued)
 - Lime in second stage basins (140 mg/L continued)
 - Optimized mixing to produce enhanced floc settleability
 - Daily process-based water quality monitoring implemented

- Alum dosage increased in mid-August
 - NaMnO₄ remained 0.3 mg/L
 - Alum in first stage basins (60 mg/L)
 - Lime in second stage basins (maintaining 140 mg/L)
 - Daily water quality monitoring continued

- NaMnO₄ dosage increased in early September along with alum
 - NaMnO₄ (1.3 mg/L)
 - Alum in first stage basins (65 mg/L)
 - Lime in second stage basins (maintaining 140 mg/L)
 - Daily water quality monitoring continued

- Carbon feed initiated late
 September due to T&O event
 - NaMnO₄ (1.3 mg/L)
 - Carbon fed to first stage basins (13 mg/L)
 - Alum in first stage basins (maintaining 65 mg/L)
 - Lime in second stage basins (reduced to 70 mg/L)
 - Daily water quality monitoring continued

Temporary carbon feed system

- Carbon increased in October due to T&O event
 - NaMnO₄ (1.3 mg/L)
 - Carbon fed to first stage basins (23 mg/L)
 - Alum in first stage basins (maintaining 65 mg/L)
 - Lime in second stage basins (maintaining 70 mg/L)
 - Daily water quality monitoring continued

Summary

- Model curve appears to predict TOC removal close to full-scale treatment (94% confidence level)
 - Aligns with Edwards model at lower SUVA values
 - Aligns with Tambo & Kamei model at higher SUVA values
 - Predicts TOC more precisely (case study proven)

Summary

- Treatability ratio (TR) appears to be useful for process control and optimal chemical dosing
- TR useful in operations
 - Measures oxidative conditioning enhancements
 - Optimizes coagulation/softening dosages to avoid overfeeding
 - Defines other technologies for TOC/DBP control (nonsorbable DOC removal)

