Cyanotoxin Assessments and Mitigation Plans - Part 2

Marvin Gnagy, P.E. President PMG Consulting, Inc.

OTCO Water Workshop March 8, 2017

Agenda

- Mitigation Plans
- Cyanobacteria and Cyanotoxin Monitoring
- Treatment Using Permanganate Oxidation
- Treatment Using Chlorine Oxidation
- Treatment Using Ozone Oxidation

Agenda

- Treatment Using PAC Adsorption
- Treatment Using GAC Adsorption
- Cyanotoxin Mitigation Strategies
 - No time to cover more complex removal processes
 - Membranes
 - UV/combined oxidants
 - AOP

Mitigation Plans

- Readiness to treat organisms and/or toxins
 - Effective monitoring and detection methods
 - Effective removal processes
 - Effective treatment chemicals and sequencing
 - Effective implementable treatment strategies
 - Capital improvement needs
 - Close gaps found from assessments
 - Effective barriers to exposure
 - Multiple barriers throughout the facilities
 - Nimble self assessment and plan revisions

Mitigation Plans

- Comprehensive knowledge of cyanobacteria and cyanotoxins needed
 - Detection
 - Source water treatment
 - Cell lysing and toxin release
 - Toxin removal chemistries
 - Treatment sequencing and verification techniques
 - Multi-barrier strategies to minimize exposure
 - Regulatory requirements
 - Monitoring
 - Reporting
 - Recordkeeping

Source water

- Water temperature and pH
- Bloom observations
 - Masses, oils slicks, scum, green/blue-green/red coloration
- Chlorophyll-a
- Dissolved oxygen (DO)
- Phycocyanin
- Population identification and counts
- Quantitative polymerase chain reaction (qPCR)
 - Cyanotoxin production genes, type and potential toxins
- Nutrients
 - Phosphorus, ammonia, nitrogen

Source water

Grab samples and/or data sondes

Grab samples provide instantaneous monitoring one time

- Grab samples
 - Laboratory cyanobacteria detection and counting methods
 - Training available Stone Labs
 - ELISA test kits
 - Microcystin monitoring (some Ohio WTP labs approved)
 - Contract labs
 - Algal toxin monitoring
 - EPA methods 544, 545, 546
 - ELISA (546 total microcystin/nodularin)
 - LC/MS/MS (544 microcystins/nodularin)
 - LC/ESI-MS/MS (545 cylindrospermopsin/anatoxin-a)
 - HPLC-PDA (microcystins, not EPA method list)

- Solar powered
 - No external power availability
- Multiple parameter sondes
 - What you can afford and work with
- Transmitting capabilities
- Located near intake
 - Monitor surface conditions only
 - Severe weather operability
 - Accessible for calibration/maintenance

- Generally effective for microcystin and anatoxin-a
- Potassium-based or sodium-based products
 - Manganese dioxide byproducts requires post-coagulation
 - Likely raw water intake feed point
- Dosages as low as 1 mg/L can stress cyanobacteria cells
 - Lysing or not strategies
 - Oxidation dosages may need to be 5 mg/L or greater
 - USEPA data suggested 25 minutes reaction time necessary
 - 1 mg/L, 2.5 mg/L, 5 mg/L dosing

- Published reaction rates with permanganate
 - Anatoxin-a, 25,000 M⁻¹s⁻¹
 - Microcystin, 375 M⁻¹s⁻¹
 - Cylindrospermopsin, 0.45 M⁻¹s⁻¹
- Reaction times may vary with dosage
 - Higher dosages reduce reaction time for oxidation
 - Up to 99% reduction found
 - Oxidation to non-toxic metabolites
 - Competition from other sources
 - Iron, manganese, NOM, etc.

Treatment costs could range from \$79 per MG to \$213 per MG depending on target level of toxins and type of permanganate

- Chlorine addition to raw water not used due to DBPs
- Chlorine application post filtration likely best location
 - Can increase DBP formation depending on pH, dose, and toxin levels
 - CT concept shown to be effective reduction method
 - Likely attacks double bonds resulting in non-toxic metabolites
 - Amino acids from microcystin
 - 5-chloro-cylindrospermopsin or cylindrospermopsic acid
 - Published reaction rates
 - 1,265 M⁻¹s⁻¹ cylindrospermopsin
 - 91.5 M⁻¹s⁻¹ microcystin

- CT concept well known and practiced
 - Added barrier following other treatments
 - Oxidation favors lower pH levels (5 to 8)
 - Competing reactions with iron, manganese, NOM, etc.
- CT values published for microcystin
 - Predict contact time necessary
 - Predict free chlorine residuals needed

50 μg/L Microcystin-LR			10 μg/L Microcystin-LR						
pН	10°C	15°C	20°C	25°C	pН	10°C	15°C	20°C	25°C
6	46.6	40.2	34.8	30.3	6	27.4	23.6	20.5	17.8
7	67.7	58.4	50.6	44.0	7	39.8	34.4	29.8	25.9
8	187.1	161.3	139.8	121.8	8	110.3	94.9	8.23	71.7
9	617.2	526.0	458.6	399.1	9	363.3	309.6	269.8	234.9

50 μg/L Microcys	stin-LR	10 μg/L Microcystin-LR		
Water pH	7	Water pH	7	
Temp, °C	20	Temp, °C	20	
Baffling factor	0.5	Baffling factor	0.5	
Free chlorine, mg/L	1.5	Free chlorine, mg/L	1.5	
CT req, mg/L-min	50.6	CT req, mg/L-min	29.8	
Dt, minutes	67.5	Dt, minutes	39.7	

Treatment costs could range from \$3.60 per MG to \$9.25 per MG depending on target level of toxins

- Capital-cost intensive treatment process
 - Most powerful oxidant
 - Raw, intermediate, post-filter applications
 - Competing reactions from inorganics, NOM, etc.
 - Other considerations
 - Ozone decay
 - Ozone residuals and quenching
 - Bromate formation
 - Biologically active filtration (BAF) impacts

- Ozonation attacks C=O and C=C bonds breaking cyanotoxins into smaller components
 - Degrade generally to aldehydes, ketones, and carboxylic acids
 - I mg/L ozone can reduce toxins to very low levels
 - Contact time less than 10 minutes
- Published reaction rates
 - Anatoxin-a, 640,000 M⁻¹s⁻¹
 - Microcystin, 410,000 M⁻¹s⁻¹
 - Cylindrospermopsin, 340,000 M⁻¹s⁻¹
 - Not effective for saxitoxin

- Biologically active filtration (BAF)
 - Fits well into intermediate ozonation scheme
 - Ozone creates small molecular weight organics (food)
 - GAC substrate for sustainable bacteria growth
 - Bacteria consume organics (food)
 - Some cyanotoxins may be consumed by BAF (microcystin, cylindrospermopsin, anatoxin-a)
 - Reported microcystin reductions up to 90%, long run times required

Treatment costs could range from \$1.70 per MG to \$3.00 per MG depending on target level of toxins

- Effective for removal of cyanotoxins
- Contact times up to 90 minutes might be needed
- Dosing based on isotherms for carbon products
 - 20 mg/L or greater may be needed
 - Wood-based
 - Bituminous-based
 - Coconut-based

- Carbon consists of pore structures with activated sites
 - Micropores < 2 nm</p>
 - Mesopores >2 nm to <50 nm
 - Macropores >50 nm
 - Related to molecular sizes that will penetrate the pore structure for adsorption at activated sites

Generic carbon structure

- Adsorption isotherm data from literature defined for some activated carbons
 - K and 1/n values published for general carbon forms
 - Predict carbon dosing based on toxin levels removed and carbon adsorption data

$q = K C_f^{1/n}$

 $q = \text{toxin adsorption, } \mu g/g$ K = adsorptive capacity, $(\mu g/g)(L/\mu g)^{1/n}$ $C_f = \text{final toxin level, } \mu g/L$ 1/n = adsorption intensity

$$C_i - C_f / q = dosage$$

Generic carbon structure

Isotherm data from research for select PAC products

"K" and *"1/n"* estimates shown

	Microcystin	
	K _f	1/n
Wood PAC	6,309	0.56
Bituminous PAC	3,630	0.9
Coconut PAC	1,259	1.0

- Assuming no organic matter interferences
 - Same carbon different microcystin target levels

Wood PAC	K _f - 6309
Initial microcystin, μg/L	50
Final microcystin, µg/L	1.6
1/n	0.56
q, µg/g	8,209
Dosage, mg/L	5.9

Wood PAC	K _f - 6309
Initial microcystin, µg/L	50
Final microcystin, µg/L	1.0
1/n	0.56
q, µg/g	6,309
Dosage, mg/L	7.8

Wood PAC	K _f - 6309
Initial microcystin, μg/L	50
Final microcystin, μg/L	0.3
1/n	0.56
q, µg/g	3,215
Dosage, mg/L	15.5

Treatment costs could range from \$30 per MG to \$118 per MG depending on target level of toxins

Generic carbon structure

- Effective for removal of cyanotoxins
- EBCT of 10 minutes most common
 - 20 minutes for TOC removals
- Dosing based on isotherms for carbon products
 - Wood-based
 - Bituminous-based
 - Coconut-based
- Pore size distribution important for cyanotoxins
 - Mesopores remove most of toxin materials
- Disinfectant interferences

- Adsorption isotherm data from literature defined for some activated carbons
 - K and 1/n values published for general carbon forms
 - Predict carbon dosing based on toxin levels removed and carbon adsorption data

$q = K C_f^{1/n}$

 $q = \text{toxin adsorption, } \mu g/g$ K = adsorptive capacity, $(\mu g/g)(L/\mu g)^{1/n}$ $C_f = \text{final toxin level, } \mu g/L$ 1/n = adsorption intensity

$$C_i - C_f / q = dosage$$

Isotherm data from research for select PAC products

"K" and *"1/n"* estimates shown

	Microcystins	
	K _f	1/n
Wood GAC	501.2	0.36
Bituminous GAC	512.9	0.36
Coconut GAC	331.1	0.44
Non-activated GC	2.1	1.3

- Assuming no organic matter interferences
 - Same carbon different microcystin target levels

Bituminous GAC	K _f - 513
Initial microcystin, µg/L	50
Final microcystin, µg/L	1.6
1/n	0.36
q, µg/g	608
Dosage, mg/L	79.7

Bituminous GAC	K _f - 513
Initial microcystin, µg/L	50
Final microcystin, µg/L	1.0
1/n	0.36
q, µg/g	513
Dosage, mg/L	95.5

Bituminous GAC	K _f - 513
Initial microcystin, μg/L	50
Final microcystin, µg/L	0.3
1/n	0.36
q, µg/g	195
Dosage, mg/L	149

Cyanotoxin Mitigation Strategies

- Assessments provide current facility capabilities
 - Fill gaps in monitoring or treatment with new technologies or larger dosing capabilities
 - Be mindful of sequencing
 - Avoid interactions between chemicals (-MnO₂ and PAC, PAC and Cl₂)
 - Permanganates form MnO₂ that must be coagulated
 - Intermediate ozonation likely best ozonation method
 - Chlorination of filtered water most likely method to avoid DBP formations
 - Capital improvements need budgeting/scheduling
 - New equipment or technologies may require OEPA demonstration and/or approval
 - Financing of design/construction/start-up necessary

Cyanotoxin Mitigation Strategies

- Rely on multiple barriers to cyanotoxins
 - Process removals are not 100%, synergy needed to reach very low toxin levels
 - Multi-barrier approach should be paramount
- Optimization of existing processes
 - Removing intact cells encouraged by OEPA
 - Increase coagulant dose
 - Optimize PAC dosing
 - More frequent basin cleaning
 - More frequent filter backwash
 - Avoid recycle streams
 - Lower pH in clearwell for CT
 - Increased residuals for CT
 - Reduce plant production rates

Cyanotoxin Mitigation Strategies

- Treatment Optimization Protocol required under OAC 3745-90-05
 - If microcystin detected in raw or finished water
 - Avoid lysing cells, optimizations to remove intact cells
- Cyanotoxin General Plan required under OAC 3745-90-05
 - If microcystin detected in finished water or system
 - If microcystin found >1.6 μg/L in raw water
 - Outline short-term and long-term mitigation plans to prevent microcystin exceedances

Capital Improvement Potential

Capital Improvement Potential

Capital Improvement Potential

Cyanotoxin Assessments and Mitigation Plans

Questions

Marvin Gnagy pmgconsulting@bex.net (419) 450-2931