STEPS TO DMR-QA SUCCESS

BY: Marcy Bolek

marcy@alloway.com

Presentation Overview

- Purpose of DMR-QA
- Preparation
- DMR-QA Ethics
- Analysis
 - Ammonia
 - BOD
 - Residual Chlorine
 - pH
 - TSS
- Quality Control
- Reporting

What is **DMR-QA**?

- Discharge Monitoring Report Quality Assurance
 - A study program for NPDES Permittees and laboratories performing testing for NPDES Permittees.
 - Designed to evaluate a lab's ability to analyze and report results within defined acceptance limits.
 - Designed to evaluate a Permittee's ability to report laboratory results to state DMR-QA coordinator for each lab performing analyses to meet NPDES compliance requirements.
 - All major NPDES Permittees are required to participate
 - A select few minor NPDES Permittees are required to participate
 - How do I know if I need to participate?
 - Facilities receive a mailed packet with instructions, deadlines and analyte check lists

HOW TO GET FROM HERE

Demand (PT-DEM-DMRQA) Lot #: 8527-07

Analyte	Method Code	Units	True Value	Result	Acceptance Limits	Evaluation
BOD	SM 5210B	mg/L	181	210	61.2-199	Not Acceptable
CBOD	SM 5210B	mg/L	181	201	48.0-199	Not Acceptable

Solids (PT-SOL-DMRQA) Lot #: 8527-09

Analyte	Method Code	Units	True Value	Result	Acceptance Limits	Evaluation
TSS	SM 2540D	mg/L	92.3	70.0	76.1-102	Not Acceptable

TO HERE

Demand (PT-DEM-DMRQA) Lot #: 8527-07

Analyte	Method Code	Units	True Value	Result	Acceptance Limits	Evaluation
BOD	SM 5210B	mg/L	181	189	61.2-199	Acceptable
CBOD	SM 5210B	mg/L	181	175	48.0-199	Acceptable

Solids (PT-SOL-DMRQA) Lot #: 8527-09

Analyte	Method Code	Units	True Value	Result	Acceptance Limits	Evaluation
TSS	SM 2540D	mg/L	92.3	90.8	76.1-102	Acceptable

How to Prepare for a DMR-QA Study?

- Follow the instructions included in the packet.
 - Complete acknowledgement of receipt
 - Notification of Lab(s)
 - Complete checklist(s) for each lab testing NPDES analytes
 - The Study includes chemistry, microbiology and WET (Whole Effluent Toxicity)
 - Check the tests the lab routinely performs
 - Note: Not all tests listed in a NPDES permit are included in the study
- If your facility laboratory performs testing for the NPDES permit order standards for the tests your laboratory analyzes.
 - Be sure to order from an approved Provider.
 - Approved Providers are included in the packet

What to Order?

- Obtain Quotes from Approved Providers and select a Provider
- Evaluate the types of standards supplied by each Provider
 - Whole volume samples
 - Does the provider sell samples already prepared?
 - Reduces the risk of preparing the standards incorrectly
 - Simulates real world samples
 - Standard Concentrates (Vials/Ampules)
 - Laboratory needs to prepare standards based on instructions received by Provider
 - Increases time to prepare the sample and then analyze
 - Increases risk of contamination from:
 - Volumetric pipets, volumetric flasks

Receipt of PT Standards

- Follow instructions received from the Proficiency Testing (PT) Provider
 - Immediately Upon Receipt Store According to PT Provider recommendations until analysis is performed
 - Refrigeration may be required
- Inform laboratory staff
- Review instructions for each test to be analyzed
- Evaluate laboratory supplies
 - Class A glassware
 - Laboratory Water
 - Supplies for each test

DMR-QA Ethics

- DMR-QA standards are to be analyzed and reported following the same procedures used for NPDES plant samples.
 - DMR-QA standards must be reported from a single determination
 - An average of several determinations must not be reported
- The primary analyst for each test should analyze the DMR-QA standard
- Consulting with other labs who used same PT provider to compare final results before the study is closed is not permitted.

DMR-QA Requirements

- Analyze DMR-QA standards with a normal batch of plant samples
 - This ensures all quality control requirements are performed for the DMR-QA standard
 - Calibration
 - Method Blanks
 - Duplicates
 - Matrix Spike/Matrix Spike Duplicate
 - Laboratory Control Standard (LCS) or (QC) Standard

- Follow PT Provider instructions
- General Guidance
 - Warm the NH_3 -N PT standard to room temperature
 - If the standard is a whole volume sample dilution is not required
 - ANALYZE THE SAME DAY THE STANDARD IS OPENED.
 - If the standard is a concentrate dilution is required
 - Use clean Class A glassware to prepare dilutions
 - Use NH₃-N free reagent water to prepare dilutions
 - MIX THE SOLUTION VIGOROUSLY 3-5 TIMES (INVERT AND SHAKE)
 - IMMEDIATELY ANALYZE DILUTED STANDARD

- Calibrate NH₃-N meter following SOP
 - Verify calibration standards are within expiration date
- Verify calibration meets requirements
 - Point to Point Calibration (i.e. 1 mg/L and 10 mg/L standards) slope must be between -54 to -60
 - 5 Point linear curve $R \ge 0.995$ (correlation coefficient)
- Use a 2nd source NH₃-N standard to verify calibration standards
 - Must fall within laboratory limits
 - Generally 90-110% Recovery

$$- \%R = \frac{Obtained\ value\ mg/L}{True\ Value\ mg/L} \times 100$$

- Perform method blank
 - 100 mLs of NH₃-N free reagent water
- Analyze routine plant samples
- Perform Matrix Spike/Matrix Spike Duplicate on one of the plant samples
 - The results of the Matrix Spike and Matrix Spike Duplicate must fall within laboratory acceptance limits

- The results of the Matrix Spike and Matrix Spike Duplicate must fall within laboratory acceptance limits

■ Generally 90-110%R

■ Relative Percent Difference 30% or less

$$\blacksquare RPD = \frac{|(Result \ 1 - Result \ 2)|}{Average \ of \ Result \ 1, Result \ 2} \times 100$$

- Analyze the DMR-QA standard
 - The result must be bracketed by the calibration standards
 - If result is greater than highest calibration standard the DMQ-QA standard must be diluted.
 - Use Class A glassware to prepare dilution
 - Prepare dilution to obtain result that falls mid-range of calibration standards
 - Example: 1 mg/L and 10 mg/L calibration standards were used
 - DMR-QA result on the prepared sample read 20 mg/L
 - Take 25 mLs of prepared DMR-QA standard and dilute volumetrically to a final volume of 100 mLs.
 - This is equivalent to a 1:4 dilution and should yield a result around 5 mg/L
 - The obtained result must be multiplied by the dilution factor
 - Use the following equation when the prepared sample is diluted:
 - DMR-QA NH₃-N mg/L = obtained value mg/L x $\frac{Final\ volume\ mLs}{Initial\ Volume\ mLs}$

- Example:
- 1 mg/L and 10 mg/L calibration standards were used for calibration
 - DMR-QA result on the prepared sample read 20 mg/L
 - Take 25 mLs of prepared DMR-QA standard and dilute volumetrically to a final volume of 100 mLs.
 - This is equivalent to a 1:4 dilution and should yield a result around 5 mg/L
 - The obtained result must be multiplied by the dilution factor
 - Use the following equation when the prepared sample is diluted:
 - DMR-QA NH₃-N mg/L = obtained value mg/L x $\frac{Final\ volume\ mLs}{Initial\ Volume\ mLs}$
 - DMR-QA NH₃-N mg/L = obtained value mg/L x $\frac{100 \, mLs}{25 mLs}$

- After every 10th sample analyzed read the 2nd source standard to verify calibration is still holding
- After the last sample analyzed read the 2nd source standard to ensure calibration is still holding.
- All samples must be bracketed by acceptable 2nd source standard results.
- Verify that the final reported result for the DMR-QA standard falls within the concentration range specified by the PT Provider.
- Report results down to the Proficiency Testing Reporting Level (PTRL)

- BOD/CBOD concentrates are typically preserved with acid by the PT Provider.
- Follow PT Provider instructions
- General Guidance
 - Warm the BOD/CBOD PT standard to room temperature
 - If the standard is a whole volume sample:
 - ANALYZE THE SAME DAY THE STANDARD IS OPENED.
 - If the standard is a concentrate dilution is required
 - Use clean Class A glassware to prepare dilutions
 - Use demand free reagent water to prepare dilutions
 - MIX THE SOLUTION BY INVERTING 3-5 TIMES AND SWIRLING
 - IMMEDIATELY ANALYZE DILUTED STANDARD PER SOP

- Temperature of DMR-QA prepared sample or whole volume sample must be 17-23°C
- Check pH of the DMR-QA prepared sample or whole volume sample
 - pH must be 6.0 8.0
 - If not, adjust to 7.0 7.2
 - Use a dilute solution of NaOH to raise the pH
 - Use a dilute solution of H_2SO_4 to lower the pH
 - Perform slowly
 - Do not dilute DMR-QA more than 0.5%
- Check DMR-QA for residual chlorine

- The DMR-QA for BOD and/or CBOD must be seeded
- Perform a series of dilutions to obtain at least one bottle that depletes at least 2 mg/L and has a Final D.O. \geq 1 mg/L.
- Review the paper work from the Provider
 - Ranges will be provided for expected concentration of the DMR-QA
 - Prepare dilutions according to the range provided

- What dilutions should I use?
 - Use dilutions that have overlapping useable ranges that fall within entire concentration range.
- For example: BOD or CBOD expected concentration range is 18.0 - 230 mg/L
- Use dilutions of 100, 30, 10 & 3 mLs

Sample Volume	Useable
mLs	Range mg/L
300	2.0 - 7.0
200	3.0 - 10.5
100	6.0 - 21.0
60	10.0 - 35.0
50	12.0 - 42.0
40	15.0 - 52.5
30	20.0 - 70.0
25	24.0 - 84.0
20	30.0 - 105.
15	40.0 - 140.
10	60.0 - 210.
5	120. – 420.
4	150. – 525.
3	200. – 700.
2	300. – 1050.
1	600. – 2100.

BOD

- Analyze the DMR-QA with regular batch of plant samples
- Follow SOP for preparation of BOD water, Seed and GGA standard
- Aliquot QC samples, plant samples and DMR-QA to BOD bottles
- Blank contains only BOD dilution water
- Seed Control 5, 10 & 15 mLs of seed + dilution water
- GGA contains GGA + seed + dilution water
- Samples sample + seed + dilution water
- Duplicate a plant sample
- Calibrate D.O. meter
- Measure Initial D.O.
- Incubate 5 days at 20 ± 1°C
- Calibrate D.O. meter
- Measure Final D.O.

CBOD

- Analyze the DMR-QA with regular batch of plant samples
- Follow SOP for preparation of BOD water, Seed and GGA standard
- Aliquot QC samples, plant samples and DMR-QA to BOD bottles
- Blank contains only BOD dilution water
- Seed Control 5, 10 & 15 mLs of seed + nitrification inhibitor + dilution water
- GGA contains GGA + seed + nitrification inhibitor + dilution water
- Samples sample + seed + nitrification inhibitor + dilution water
- Duplicate a plant sample sample + seed + nitrification inhibitor + dilution water
- Calibrate D.O. meter
- Measure Initial D.O.
- Incubate 5 days at 20 ± 1°C
- Calibrate D.O. meter
- Measure Final D.O.

Add Additional Nutrient Pillow for bottles containing 200 mLs or more of sample.

- Calculate the final result using all dilutions that meet the 2 mg/L depletion and have a final D.O. \geq 1 mg/L.
- Verify GGA standard falls within acceptance limits
 - BOD 198 \pm 30.5 mg/L
 - CBOD 198 ± 30.5 mg/L or within laboratory calculated limits
- Verify the Duplicate RPD ≤ 30%
- Verify that the final reported result for the DMR-QA standard falls within the concentration range specified by the PT Provider.
- Report results down to the Proficiency Testing Reporting Level (PTRL)

- Follow PT Provider instructions
- General Guidance
 - Warm the Residual Chlorine PT standard to room temperature
 - Generally the Residual Chlorine standard is a concentrate and dilution is required to prepare the sample for analysis.
 - Use clean Class A glassware to prepare dilutions
 - Use chlorine free reagent water to prepare dilutions
 - MIX THE SOLUTION, INVERT AND SWIRL 3-5 TIMES
 - IMMEDIATELY ANALYZE PREPARED STANDARD

- Calibrate chlorine meter or verify factory calibration following SOP
 - Verify calibration standards are within expiration date
- Verify calibration using 2nd source standards
 - Gel standards are acceptable
 - Follow instructions supplied by manufacturer
 - Verify result is within manufacturer limits stated on certificate

- Perform method blank
 - Use chlorine free reagent water
- Analyze routine plant samples
- Analyze a plant sample in duplicate
 - Verify RPD is ≤ 30%
- Analyze the DMR-QA standard
 - Result must be below the highest calibration standard concentration
 - If result is greater than highest calibration standard the DMQ-QA standard must be diluted.
 - Use Class A glassware to prepare dilution
 - Prepare dilution to obtain result that falls mid-range of calibration standards

- Result must be below the highest calibration standard concentration
 - If result is greater than highest calibration standard the DMQ-QA standard must be diluted.
 - Use Class A glassware to prepare dilution
 - Prepare dilution to obtain result that falls mid-range of calibration standards
- Calculate the final Residual Chlorine result
 - DMR-QA Residual Chlorine $mg/L = obtained\ value\ mg/L\ x\ \frac{Final\ volume\ mLs}{Initial\ Volume\ mLs}$
- Verify that the final reported result for the DMR-QA standard falls within the concentration range specified by the PT Provider.
- Report results down to the Proficiency Testing Reporting Level (PTRL)

- Follow PT Provider instructions
- General Guidance
 - Warm the pH PT standard to room temperature
 - Generally the pH standard is a whole volume sample ready for analysis
 - If it is a concentrate dilution is required to prepare the sample for analysis.
 - Use clean Class A glassware to prepare dilutions
 - Use reagent water to prepare dilutions
 - MIX THE SOLUTION, INVERT AND SWIRL 3-5 TIMES
 - IMMEDIATELY ANALYZE PREPARED STANDARD

- Calibrate pH meter
 - Use an ATC (Automatic Temperature Compensation meter and probe)
 - Slowly mix buffers and samples during measurement
 - Use 7, 4 and 10 pH buffers
 - Alternating use either 7 & 4 or 7 & 10 pH buffers
 - The pH of all samples including the DMR-QA standard must be bracketed by pH buffers used for calibration.
 - Performing a 3 point calibration eliminates the need to re-calibrate
- Document slope
 - Ensure slope falls within manufacturer's recommendations
 - Typically 95-105, but can vary

- Verify calibration using a 2nd source buffer
 - If using 7.00, 4.00 & 10.00 buffers for calibration use a 2nd source pH 7.00 buffer
 - If using 7.00 & 4.00 buffers for calibration use a 2nd source pH 5.00 or pH
 6.00 buffer
 - If using 7.00 & 10.00 buffers for calibration use a 2nd source pH 8.00 or pH
 9.00 buffer
 - Limits ± 0.10 standard units (s.u.)
 - Record results to two decimal places
- If slope and verification buffer meet limits proceed with analysis

- Analyze routine plant samples
 - Report to two decimal places
 - Results must be bracketed by pH calibration buffers
- Analyze a plant sample in duplicate
 - Duplicate results must be ± 0.10 s.u.
 - Report results to two decimal places
- Analyze the DMR-QA standard
 - Shake the bottle before removing a portion for analysis.
 - Result must be bracketed by pH calibration buffers or the meter will need to be recalibrated with buffers that bracket the sample
 - Report results to two decimal places
- Verify that the final reported result for the DMR-QA standard falls within the concentration range specified by the PT Provider.

Follow PT Provider instructions

General Guidance

- Warm the Total Non-Filterable (TSS) PT standard to room temperature
- If the standard is a whole volume sample dilution is not required
 - ANALYZE THE SAME DAY THE STANDARD IS OPENED.
- If the standard is a concentrate dilution is required
 - Use clean Class A glassware to prepare dilutions
 - Use reagent water to prepare dilutions
 - MIX THE SOLUTION VIGOROUSLY 3-5 TIMES (INVERT AND SHAKE)
 - IMMEDIATELY ANALYZE DILUTED STANDARD

- Perform method blank
 - 500 mLs or 1000 mLs of reagent water
- Analyze routine plant samples
- Perform Duplicate on one of the plant samples

The results of the Duplicate must fall within laboratory accontance limits

RPD ≤ 30%

- Analyze the DMR-QA standard
 - Shake sample vigorously immediately prior to measuring sample volume for filtration and pour directly to a Class A graduated cylinder
 - Filter enough sample volume to yield at least 0.0100 grams 0.2000 grams of dried residue
 - Dried Residue = Final filter weight (g) Initial filter weight (g)
 - Suggest using 250 mLs to 500 mLs of DMR-QA standard depending on the expected range listed by the PT Provider
 - Example: TSS range is 20 mg/L 100 mg/L
 - Maximum residue on filter per liter of sample filtered is 100 mg
 - If Lab uses 500 mLs of DMR-QA the maximum residue filtered would be 50 mg and the minimum residue would be 10 mg.

- Rinse the graduated cylinder 3 times with reagent water to ensure a complete transfer of solids to the filtration unit.
- Dry filters at 103-105°C for at least one hour
- Remove, desiccate at least one hour and weigh
- Repeat the heating, desiccating and weighing process to achieve constant weight.
- Verify that the final reported result for the DMR-QA standard falls within the concentration range specified by the PT Provider.
- Report results down to the Proficiency Testing Reporting Level (PTRL)

DMR-QA Reporting - NH₃-N

- Report results to 3 significant figures
 - NH_3 -N example:
 - **0.105**
 - **1.05**
 - **10.5**
 - **1**05.

- Report result down to the Proficiency Testing Reporting Level (PTRL)
- PT Provider includes PTRL for each analyte with DMR-QA standards

DMR-QA Reporting - NH₃-N

- PTRL example:
 - NH_3 -N PTRL = 0.600 mg/L
 - Laboratory needs to report down to 0.600 mg/L
 - Results below 0.600 should be reported as < 0.600 mg/L
 - Laboratory needs to calibrate NH_3 -N meter using a low calibration standard of at least 0.600 mg/L or lower.

DMR-QA Reporting – BOD/CBOD

- Report results to 3 significant figures
 - BOD/CBOD example:
 - **2.00**
 - **1**0.0
 - **100**.
 - **1**000.

- Report result down to the Proficiency Testing Reporting Level (PTRL)
- PT Provider includes PTRL for each analyte with DMR-QA standards

DMR-QA Reporting - BOD/CBOD

- PTRL example:
 - BOD PTRL = 4.90 mg/L
 - Laboratory needs to report down to 4.90 mg/L
 - Results below 4.90 should be reported as < 4.90 mg/L

DMR-QA Reporting – Residual Chlorine

- Report results to 3 significant figures
 - Residual Chlorine example:
 - **0.100**
 - **1.00**
 - **1**0.0
 - **100**.

- Report result down to the Proficiency Testing Reporting Level (PTRL)
- PT Provider includes PTRL for each analyte with DMR-QA standards

DMR-QA Reporting – Residual Chlorine

- PTRL example:
 - Residual Chlorine PTRL = 0.380 mg/L
 - Laboratory needs to report down to 0.380 mg/L
 - Results below 0.380 should be reported as < 0.380 mg/L

DMR-QA Reporting – pH

- Report results to two decimal places
 - pH example:
 - **4.10**
 - **7.00**
 - **8.85**
 - **9.00**

- Report result down to the lowest pH buffer concentration used for calibration
- PTRL is not applicable for pH DMR-QA standards

DMR-QA Reporting – TSS

- Report results to 3 significant figures
 - TSS example:
 - **12.0**
 - **100.**
 - **1**000.

- Report result down to the Proficiency Testing Reporting Level (PTRL)
- PT Provider includes PTRL for each analyte with DMR-QA standards

DMR-QA Reporting – TSS

- PTRL example:
 - TSS PTRL = 12.0 mg/L
 - Laboratory needs to report down to 12.0 mg/L
 - Results below 12.0 should be reported as < 12.0 mg/L

PTRL IMPORTANCE

- If a laboratory results a less than result for a parameter at a concentration higher than the PTRL the laboratory will receive a Not Acceptable Score
- Example
 - TSS PTRL = 12.0 mg/L
 - Laboratory reported < 20.0 mg/L
 - Laboratory needs to use sufficient volume of sample to achieve a reporting level of at least 12.0 mg/L.

3 Significant Figures Importance

Example:

- DMR-QA Residual Chlorine Acceptable Range was 0.994 1.250 mg/L
- Laboratory reported 0.99 mg/L
- The actual measurement from meter read 0.995 but lab rounded result.
- The rounding and reporting of 0.99 mg/L yields a Not Acceptable score
- If lab reported 0.995 mg/L an Acceptable Score is achieved

HOW TO GET FROM HERE

Demand (PT-DEM-DMRQA) Lot #: 8527-07

Analyte	Method Code	Units	True Value	Result	Acceptance Limits	Evaluation
BOD	SM 5210B	mg/L	181	210	61.2-199	Not Acceptable
CBOD	SM 5210B	mg/L	181	201	48.0-199	Not Acceptable

Solids (PT-SOL-DMRQA) Lot #: 8527-09

Analyte	Method Code	Units	True Value	Result	Acceptance Limits	Evaluation
TSS	SM 2540D	mg/L	92.3	70.0	76.1-102	Not Acceptable

TO HERE

Demand (PT-DEM-DMRQA) Lot #: 8527-07

Analyte	Method Code	Units	True Value	Result	Acceptance Limits	Evaluation
BOD	SM 5210B	mg/L	181	189	61.2-199	Acceptable
CBOD	SM 5210B	mg/L	181	175	48.0-199	Acceptable

Solids (PT-SOL-DMRQA) Lot #: 8527-09

Analyte	Method Code	Units	True Value	Result	Acceptance Limits	Evaluation
TSS	SM 2540D	mg/L	92.3	90.8	76.1-102	Acceptable

THANK YOU