Data Analytics and Water Treatment Process Optimization

CEO and President

The Operator Training Committee of Ohio 55th Annual Water Workshop

Formation Potential in a Full Scale Treatment Plant Utilizing a Multi-Coagulant Drinking Water Long-Term Comparison of Disinfection By-Product Ireatment Scheme

Andrew T. Skeriotis ^{1,*}, Nancy P. Sanchez ^{1,+}, Marla Kennedy ¹, David W. Johnstone ² and Christopher M. Miller ¹

- Department of Civil Engineering, University of Akron, 210 Auburn Science and Engineering Center, cmmiller@uakron.edu (C.M.M.) Akron, OH 44325, USA; nanmorcote@gmail.com (N.P.S.); kennedy.marla.j@gmail.com (M.K.);
- Department of Civil Engineering, Ohio Northern University, 107 Biggs Engineering Building Ada, OH 45810, USA; davidwjohnstone@gmail.com
- Correspondence: and rewske riotis@gmail.com; Tel:: +1-330-475-2238
- Houston, TX 77005, USA Current address: Department of Civil and Environmental Engineering, Rice University,

Skeriotis et al., 2016.

- 3 year study at the Akron water plant ("real" data)
- Measured DOC, THM, and HAA of raw and treated samples
- Compared alum vs. ACH performance

foreshadowed an increasing collaboration "Autopilot didn't put pilots out of a job; instead it between human and machine on complex tasks."

Lake Erie's toxic blob may be putting drinking water at risk

BY KAREN GRAHAM OCT 20, 2016 IN ENVIRONMENT

Cleveland - In what sounds like a Halloween horror story, a toxic blob of cancercausing chemicals in the sediment of Lake Erie might be spreading dangerously close to a water intake pipe that supplies drinking water to Cleveland.

News Briefs: Residents Launching Their Own Utility to Deal With Bad Water

Online Exclusives | March 1, 2017 | **F** Recommend 0

😪 Comment 📑 Share

In this week's water and wastewater news, a group of 500 citizens in New Mexico is looking at starting its own utility to solve water problems; and water testing near Atlanta uncovers nearly 50 schools with lead contamination.

LISTEN | PRINT

Residents near Bloomfield, New Mexico, are forming their own utility after dealing with bad water for the past nine months. The state hasn't been able to get the local water company to fix the problem.

Around 500 people have decided to form a domestic water users association to inherit the defunct water system.

Many challenges including:

- Increasing treatment complexity and compliance risk
- Budget-financial pressures
- Heightened public expectations

AWWA G100-11 Water Treatment Plant Operation and Management

Publisher: American Water Works Association Publication date: 2011 AWWA catalog no: 47100 Media Type: Softbound Number of pages: 32

The purpose of this standard is to describe critical requirements for the operation and management of water treatment plants, including maintaining water quality, system management programs, and operation and maintenance of facilities.

>

2016 Draft

AWWA G100-11 Water Treatment Plant Operation and Management

1

Number of pages: 32 Publisher: American Water Works Association Media Type: Softbound AWWA catalog no: 47100 Publication date: 2011

and management of water treatment plants, maintenance of facilities. management programs, and operation and including maintaining water quality, system describe critical requirements for the operation The purpose of this standard is to

part of managing public perception and acceptance

A HANDARD

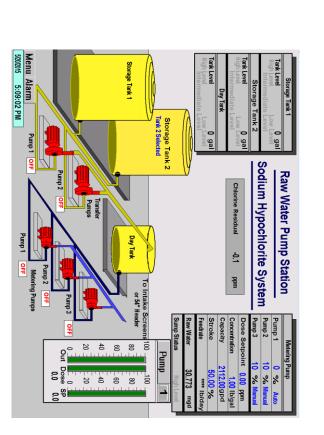
0

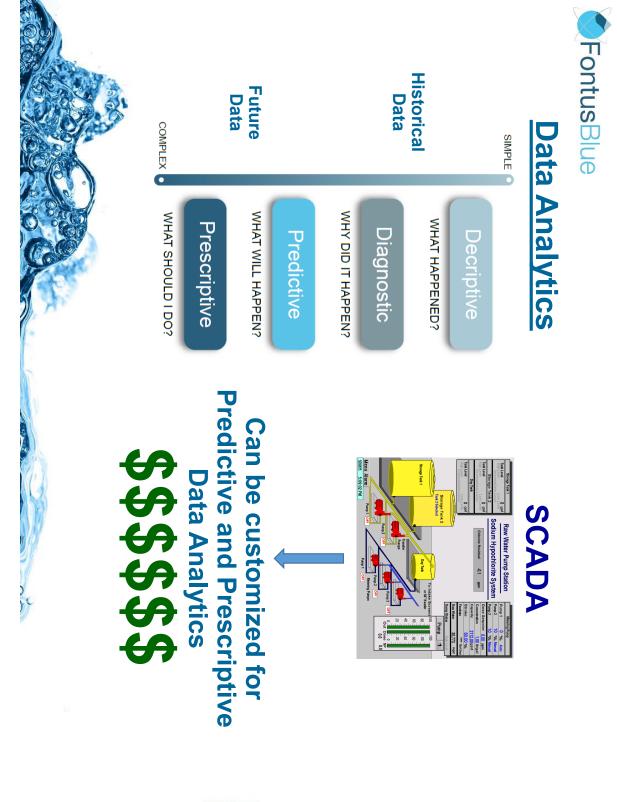
0 0

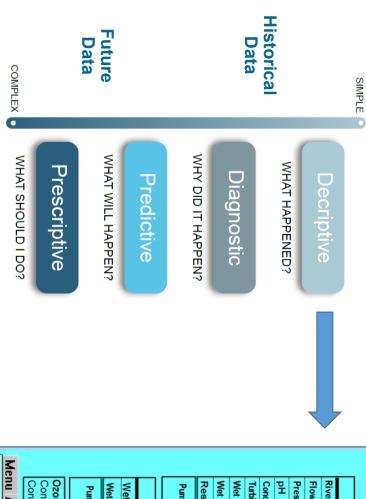
water demands and the quality of water to meet applicable regulatory should include plans for meeting challenges and returning to high quality water production component malfunctions may impact the ability required, as well as satisfying the aesthetic demands of customers show high quality drinking water on a regular basis 4.4.1 Performance goals. In order Drinking water treatment plants shall deliver the quantity of water sufficient to satisfy normal The goals of each treatment plant should include the reliable provision of While source water changes or treatment plant continuously provide high quality water. d be considered as an important requirements. While not POALS

Optimization satisfy many of the requirements of this standard. Surface water plants that are optimized overall plant performance. The procedures of the Partnership for Safe Water (International Water Treatment Alliance) described in Self-Assessment Guide for Surface Water Treatment Plant disinfection, relies onleverages the optimized performance of each major unit process to achieve The plant shall adopt a multiple-barrier philosophy that, with regard to particulate removal and

SCLB 32-16 Draft Feb2016_G100.doc







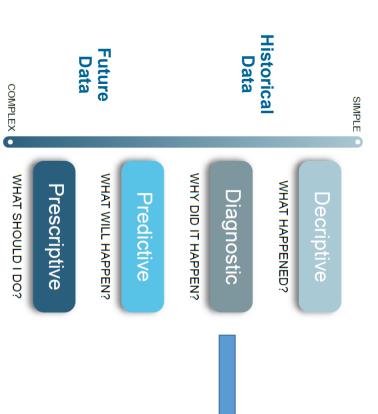
Data Analytics

5

Menu Alarm	Ozone Contactor #1 Contactor #2		Pumps	Wet Well 2 Level	Wet Well 1 Level			Pumps	Reservoir Level	Wet Well 2 Level	Wet Well 1	Turbidity	Conductivity	ΡH	Pressure	Flow	River Level		P
	きき	g	-	Level	Leve	Гov	0FF	L I	Leve	Level	Level							Raw	lant
	Chamber 0.36 0.32	윆	2			Low Lift Summary	ę	2	[Raw Water Summary	
	mber A 0.36 0.32	위	ω			iumma	업	з										r Sum	Summai
		g	4	16.3	16.3	Ψ	ę	4	17.8	22.7	22.6	14.0	228	7.1	21.8	29.420	5.7	mary	nm
	Chamber 0.11 0.01		თ	ώ	ω			თ											ar
	91 er B		6	₽	Ħ			6	₽	≠	₽	NTU	uS/cm	РH	psi	mgd	Ħ		7

Pumps	High	High Service		High Service	Turbidity	Chlorine Residual		Clearwell 2	Clearwell 1	Combined Filter Turbidity	Filtered Water Flow	Water Temperature	Influent Channel Level		Chlorine Residua		Potassium I	Turbidity		Streaming Current	PН	Pr	Flow 3	PH	Potassium F		
P	-	ice	Distribution	ice Flow		dual	Ę	Level	Level	ter Turb	r Flow	rature	nel Leve		dual	Po	Perm. F			irrent		Pre-treatment	33.361	7.0	Perm. R		Ope
ð	N		ution Pr	WC		0.86	Finished Water			idity			<u></u>	Filters	1.00	Post-treatment	Residual		Settled Water			lent	Turt	Tei	Residual	Plant Inlet	Operations
OFF	ω		Pressure			ppm	later							ers	.00 ppm	nent	-		Water	36	"	Train	Turbidity	Temperature		Inlet	s Building
OFF	4					모									먼					36.65	ω			ture			ding
ð	თ	100.9		29.049	0.0596	7.1		10.5	10.5	0.049	31.55	71.71	6.3		7.2		0.01	0.3598		12.35	8.7	Train 2	28.20	71.8	-0.499		
OFF	ი) psi) mgd	UTN (5 ft	; #		mgd	-	₹				ppm	UTN		Nu.			UTN (f	9 ppm		

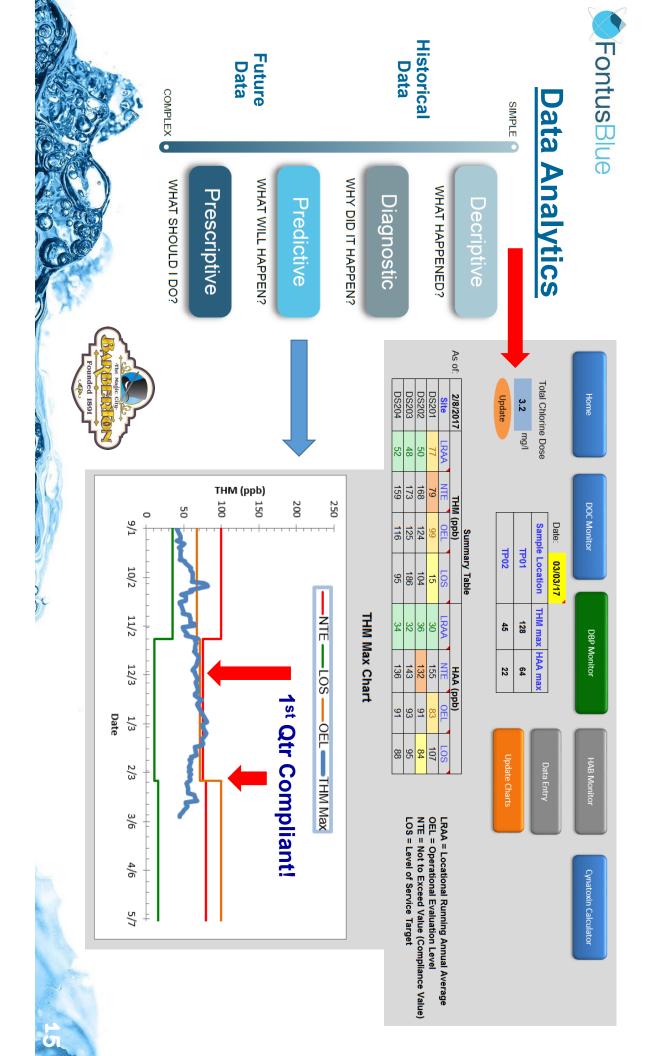
AMERICAN WATER


2

0

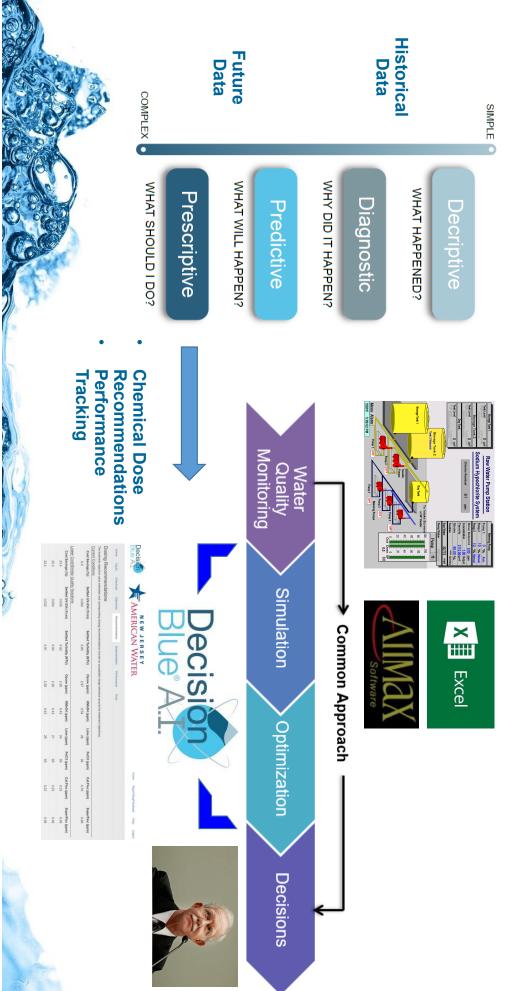
- 6 ×

Data Analytics



0

2


AMERICAN WATER

Menu Al	Combined F	Influent Channel	Total Filte		Filter 8	Filter 7	Filter 6	Filter 5	Filter 4	Filter 3	Filter 2	Filter 1		
Alarm 5:23:42 PM	Combined Filter Turbidity	Influent Channel Level	Total Filter Effluent	System Data	Normal	Mode								
	0.049 NTU	6.30	31.82)ata	Automatic	Filter Control								
	NT2	≠ ≠	31.82 mgd		3.5	8.4	6.5	6.3	4.2	0.5	1.8	4.7	Headloss (ft)	Filte
					15.4	33.6	45.1	39.5	29.2	1.8	9.9	25.4	Runtime (hrs)	Filter Overview
		Enter 0 t	Ent		0.04	0.03	0.03	0.04	0.04	0.05	0.04	0.05	Effluent Turbidity (N TU)	rview
Filter 2 0 Filter 3 0 Filter 4 0	Clearw	Enter 0 to clear inhibit of turbidity alarm	Enter 1 to inhibit turbidity alarm		33	59	50	49	37	40	44	42	Effluent Valve (% open)	
	망	ibit of tur	bit turbidi		3.990	3.980	3.946	3.988	3.947	4.055	3.976	3.953	Effluent Flow (Mgd)	
Filter 6 0 Filter 7 0 Filter 8 0	Filter 5 0	bidity aları	ty alarm		3.990	3.980	3.946	3.988	3.947	4.055	3.976	3.953	Effluent Flow Sp. (Mgd)	
		3			Level	Level	Level	Level	Level	Level	Leve	Level	Effluent Control	

Data Analytics

Water Treatment Process Optimization

"Autopilot didn't put pilots out of a job; machine on complex tasks." collaboration between human and instead it foreshadowed an increasing

ŝ,

Ł

٤

Ł

FontusBlue

...

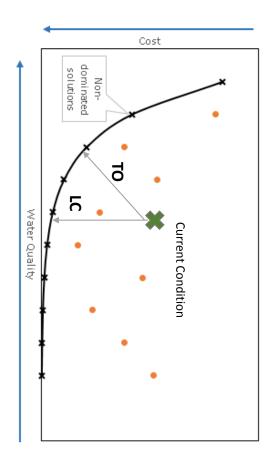
ഗ

Water Treatment Objectives Overview

Core Treatment Objectives:

- 1. Minimize settled and/or filter turbidity
- 2. Comply with the TOC removal targets based on water quality and disinfection byproduct limits
- 3. Provide "high" quality water at low cost

How does a water plant simultaneously meet all three objectives under "normal" conditions? Other challenging scenarios ("Large" rain event)?


Multi-objective Optimization!		Source W	Source Water Alkalinity (mg/L as CaCO3)	s CaCO3)
	Raw Water TOC (mg/L)	0-60	60 - 120	120+
	TOC ≤ 2	No Action	No Action	No Action
1 TA	2 < TOC ≤ 4	35%	23%	15%
	4 < TOC ≤ 8	45%	35%	25%
	TOC > 8	50%	40%	30%
		c		

Multi-Objective Optimization Basics

- The goal is to find chemical dose combinations that minimize cost and minimize water quality measures (e.g. settled turbidity)
- The Current Condition (CC) is not the optimum condition
- DB-AI provides optimum solutions for two other conditions:
- (a) Lower Cost Similar Water Quality (LC)
- (b) Treatment Objective Lowest Cost (TO)
- Solutions are chemical dose recommendations

And as the source water quality changes, the current condition and optimum solutions will also change

Decision Blue A.I. (DB-AI) Introduction

- Decision Support with Modeling and Multi-Objective Optimization (i.e. Artificial Intelligence) as Foundation
- Benefits
- Incorporates Water Plant Experience and Expertise in the Decision Making Process
- **Chemical Cost Savings**
- ယ Operational Cost Savings (e.g. improved filter performance and reduced sludge production, reduced labor costs associated with jar or other testing)
- 4 Enhanced Water Quality: > 10% reduction in average filter effluent turbidity and > 30% DBP reduction
- Customized for the current water plant chemical use, water quality data sources, and treatment objectives without any additional equipment requirements
- Operators and supervisors can receive valuable chemical dose recommendations for changing water quality and treatment conditions

Treatment Optimization Proficiency

1. Scenario Based Multi-objective Optimization

- How can chemical application be optimized under various treatment scenarios?
- High Turbidity
- ώŅ Taste and Odor Event
- High DOC or DBP Concerns
- Chemical spill or specific chemical of concern (e.g. atrazine)

2. Daily Multi-Objective Optimization

Optimal chemical doses for "routine" operations made on a daily basis

3. Real-Time Multi-Objective Optimization

Dose recommendations can be made in real-time with automated data collection (SCADA) and daily lab results

