Data Analytics and Water Treatment Process Optimization

Christopher Miller, PhD, P.E.

CEO and President

The Operator Training Committee of Ohio 55th Annual Water Workshop

March 8, 2017

Norwalk, Ohio

Formation Potential in a Full Scale Treatment Plant Utilizing a Multi-Coagulant Drinking Water Long-Term Comparison of Disinfection By-Product Ireatment Scheme

Andrew T. Skeriotis 1,*, Nancy P. Sanchez 1,†, Marla Kennedy 1, David W. Johnstone 2 and Christopher M. Miller 1

- Department of Civil Engineering, University of Akron, 210 Auburn Science and Engineering Center, cmmiller@uakron.edu (C.M.M.) Akron, OH 44325, USA; nanmorcote@gmail.com (N.P.S.); kennedy.marla.j@gmail.com (M.K.);
- Department of Civil Engineering, Ohio Northern University, 107 Biggs Engineering Building Ada, OH 45810, USA; davidwjohnstone@gmail.com
- Correspondence: andrewskeriotis@gmail.com; Tel.: +1-330-475-2238
- Current address: Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA.

Skeriotis et al., 2016.

- 3 year study at the Akron water plant ("real" data)
- Measured DOC, THM, and HAA of raw and treated samples
- Compared alum vs. ACH performance

SOURCE: Chris McGrath/Getty Images News/Getty Images

foreshadowed an increasing collaboration "Autopilot didn't put pilots out of a job; instead it between human and machine on complex tasks."

Lake Erie's toxic blob may be putting drinking water at risk

BY KAREN GRAHAM OCT 20, 2016 IN ENVIRONMENT

LISTEN | PRI

Cleveland - In what sounds like a Halloween horror story, a toxic blob of cancercausing chemicals in the sediment of Lake Erie might be spreading dangerously close to a water intake pipe that supplies drinking water to Cleveland.

News Briefs: Residents Launching Their Own Utility to Deal With Bad Water

Share

In this week's water and wastewater news, a group of 500 citizens in New Mexico is looking at starting its own utility to solve water problems; and water testing near Atlanta uncovers nearly 50 schools with lead contamination.

Residents near Bloomfield, New Mexico, are forming their own utility after dealing with bad water for the past nine months. The state hasn't been able to get the local water company to fix the problem.

Around 500 people have decided to form a domestic water users association to inherit the defunct water system.

Many challenges including:

- Increasing treatment complexity and compliance risk
- Budget-financial pressures
- Heightened public expectations

AWWA G100-11 Water Treatment Plant Operation and Management

Publisher: American Water Works Association

Publication date: 2011

AWWA catalog no: 47100

Media Type: Softbound Number of pages: 32

The purpose of this standard is to describe critical requirements for the operation and management of water treatment plants, including maintaining water quality, system management programs, and operation and maintenance of facilities.

2016 Draft

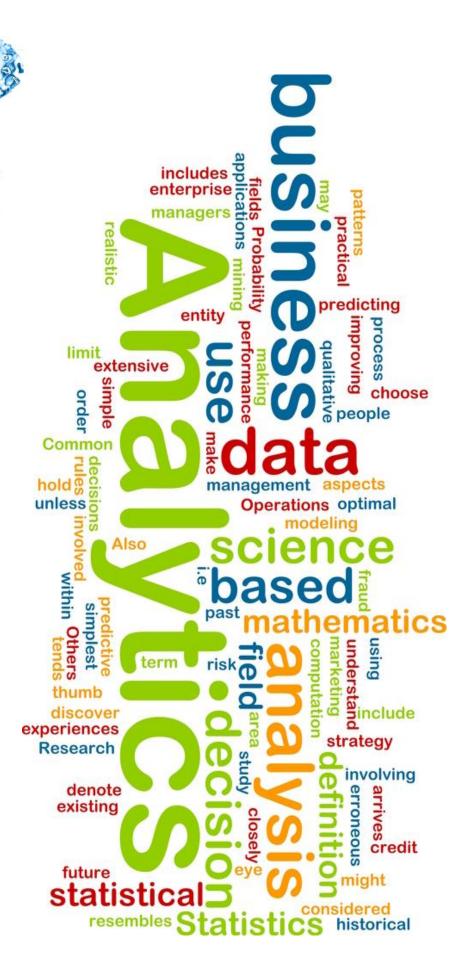
AWWA G100-11 Water Treatment Plant Operation and Management

Publisher: American Water Works Association
Publication date: 2011
AWWA catalog no: 47100
Media Type: Softbound
Number of pages: 32

The purpose of this standard is to describe critical requirements for the operation and management of water treatment plants, including maintaining water quality, system management programs, and operation and maintenance of facilities.

should include plans for meeting challenges and returning to high quality water production component malfunctions may impact the ability <u>nigh quality drinking water on a regular basis</u> 4.4.1 Performance goals. In order The goals of each treatment plant should include the reliable provision of While source water changes or treatment plant continuously provide high quality water.

water demands and the quality of water to meet applicable regulatory required, as well as satisfying the aesthetic demands of customers show part of managing public perception and acceptance Drinking water treatment plants shall deliver the quantity of water sufficient to satisfy normal d be considered as an important xequirements. While not


Optimization satisfy many of the requirements of this standard. Surface water plants that are optimized overall plant performance. The procedures of the Partnership for Safe Water (International Water Treatment Alliance) described in Self-Assessment Guide for Surface Water Treatment Plant disinfection, relies onleverages the optimized performance of each major unit process to achieve The plant shall adopt a multiple-barrier philosophy that, with regard to particulate removal and

SCLB 32-16 Draft Feb2016_G100.doc

1 - Quantitative and qualitative water sources condition forecasting

RESOURCE MANAGEMENT

2 - Water demand forecasting

3 - Water loss reduction and leakage detection

> maintenance according to reliability and risk analysis

4 - Predictive

NETWORKS

5 - Field operations simulation and optimization

WORKS AND INTERVENTIONS

ASSET MANAGEMENT

10 top priorities of Data Analytics applied to Water Industry

(www.danicardelus.com)

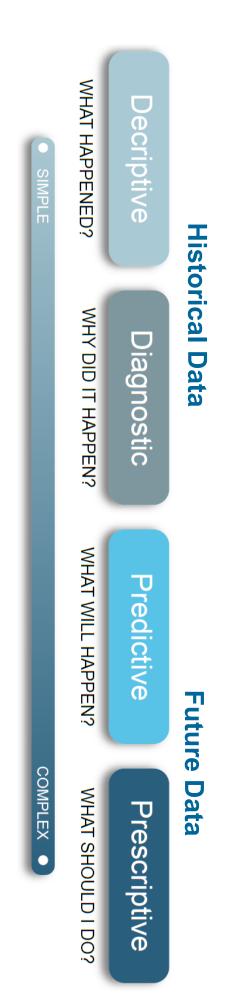
6 - Capital investment prioritization

ESTIÓN DE PROYECTOS E INVERSIONE

7 - Billing period forecasting

8 - Anomalous consumption and fraud detection

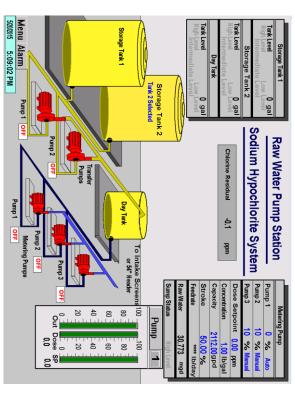
FACTURACIÓN


9 – IoT sensors location strategy optimization according to water consumption analysis

MEDICION

10 - Customer satisfaction analysis

ENCIÓN AL CLIENTE



How do we apply Data Analytics to Water Treatment Process Optimization?

Decriptive

WHAT HAPPENED?

Historical

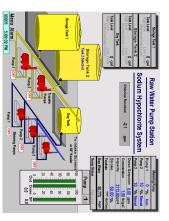
Data

Diagnostic

WHY DID IT HAPPEN?

Predictive

WHAT WILL HAPPEN?


Future Data

Prescriptive

WHAT SHOULD I DO?

COMPLEX

SCADA

Predictive and Prescriptive Data Analytics
\$\$\$\$\$\$\$ Can be customized for

SIMPLE

WHAT HAPPENED?

Decriptive

Historical

Data

Future Data

COMPLEX

Diagnostic

WHY DID IT HAPPEN?

Predictive

WHAT WILL HAPPEN?

Prescriptive

WHAT SHOULD I DO?

Menu Alarm 5/20/2015 5:13:41 PM

Plant Summary

	Pumps	Reservoir Level	Wet Well 2 Level	Wet Well 1 Level	Turbidity	Conductivity	Hd	Pressure	Flow	River Level	
OFF	_	Level	Level	Level							Raw
ON	2										Wate
OFF	ω										Raw Water Summary
_Q	4	17.8	22.7	22.6	14.0	228	7.1	21.8	29.420	5.7	mary
	Ŋ	ľ		, 					120		
	თ	≠	Ħ	Ħ	JEN	uS/cm	рH	psi	mgd	Ħ	

_	_	$\overline{}$	$\overline{}$	_			_
Contactor #2	Contactor #1	Ozone		Pumps	Wet Well 2 Level	Wet Well 1 Level	
12	77		2	_	Level	Level	Lov
0	0	Cham	OFF OFF	2			/Lift S
0.32	.36	Chamber A	OFF	ω			Low Lift Summary
			9	4	16.3	16.3	Ŋ
0.01	o.11	Chamber B		თ	ω	ω	
3	Ξ	e B		6	#	≠	

High Service Pumps	High Service		High Service	Turbidity	Chlorine Residual		Clearwell 2 Level	Clearwell 1 Level	Combined Filter Turbidity	Filtered Water Flow	Water Temperature	Influent Channel Level		Chlorine Residua		Potassium Perm. Residual	Turbidity		Streaming Current	Hd	ld.	Flow 3	Hd	Potassium I		
<u> </u>	ice	Distrib	rice Flow		idual	퍔	Level	Level	lter Turbi	r Flow	rature	mel Leve		dual	Po	Perm. R			ırrent		Pre-treatment	33.361	7.0	Perm. R		Ope
<u>9</u> ~		Distribution Pressure	W		0.86	Finished Water			dity			_	Filters	1.00 ppm	Post-treatment	esidua		Settled Water			ent	Turbidity	Ten	Residual	Plant Inlet	Operations
윩		ssure			ppm	ater							SJE	ppm	nent	Γ		Water	36.65	œ	Train	idity	Гетреrature		Inlet	s Building
4					모									PH						ω	Ľ.		ture			ling
<mark>9</mark> თ	100.9		29.049	0.0596	7.1		10.5	10.5	0.049	31.55	71.71	6.3		7.2		0.01	0.3598		12.35	8.7	Train 2	28.20	71.8	-0.499		
မှု) psi) mgd	Ī			i ft	Ħ		mgd	<u> </u>	#				ppm	T.		m۷) NTU		ppm		

SIMPLE

Decriptive

Historical

Data

Future Data

COMPLEX

WHAT HAPPENED?

Diagnostic

WHY DID IT HAPPEN?

Predictive

WHAT WILL HAPPEN?

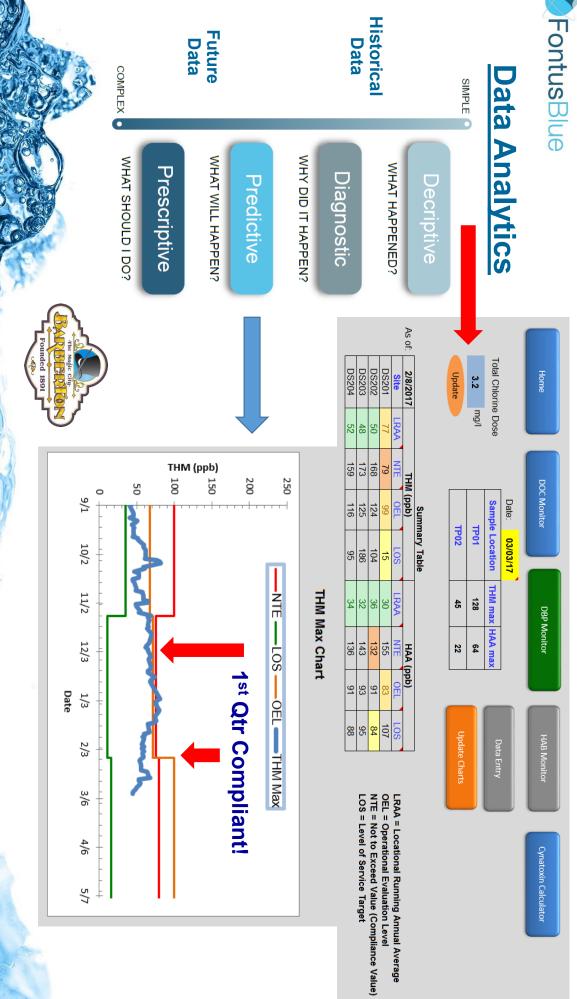
Prescriptive

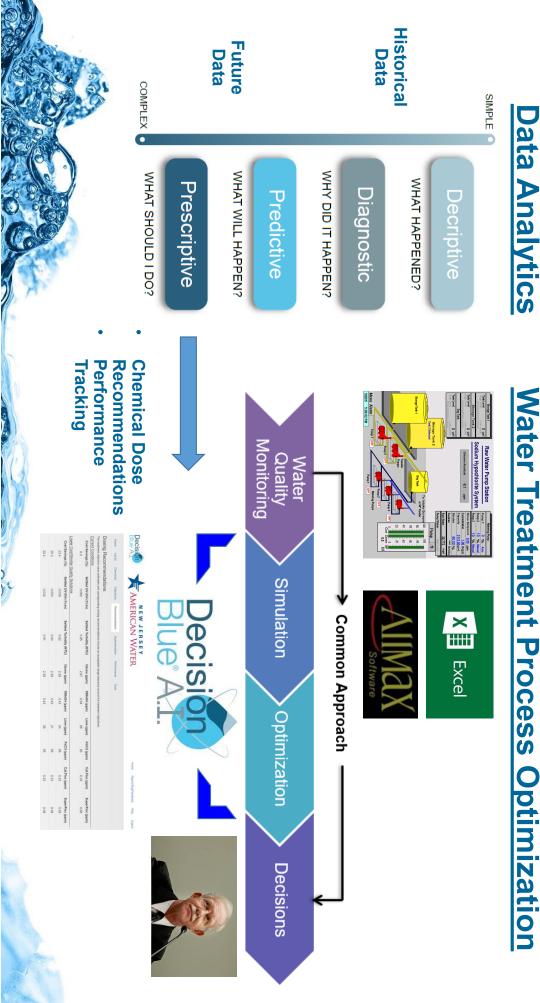
WHAT SHOULD I DO?

	Mode	Filter Control	Headloss (ft)	Runtime (hrs)	Effluent Turbidity (NTU)	Effluent Valve (% open)	Effluent Flow (Mgd)	Effluent Flow Sp. (Mgd)	Effluent Control
Filter 1	Normal	Automatic	4.7	25.4	0.05	42	3.953	3.953	Level
Filter 2		Automatic		9.9	0.04	44	3.976	3.976	Level
Filter 3		Automatic	0.5	1.8	0.05	40	4.055	4.055	Level
Filter 4	Normal	Automatic	4.2	29.2	0.04	37	3.947	3.947	Level
Filter 5	Normal	Automatic	6.3	39.5	0.04	49	3.988	3.988	Level
Filter 6	Normal	Automatic	6.5	45.1	0.03	50	3.946	3.946	Level
Filter 7	Normal	Automatic	8.4	33.6	0.03	59	3.980	3.980	Level
Filter 8	Normal	Automatic	္ဌာ	15.4	0.04	ಜ	3.990	3.990	Level

System Data		
Total Filter Effluent	31.82 mgd	mgd !
Influent Channel Level	6.30 ft	#
Influent Channel Setpoint	6.30	Ħ
Combined Filter Turbidity	0.049 NTU	PE

Enter 1 to inhibit turbidity alarm Enter 0 to clear inhibit of turbidity alarm


Clearwell Turbidity


Menu Alarm 5/20/2015 5:23:42 PM

"Autopilot didn't put pilots out of a job; instead it foreshadowed an increasing collaboration between human and machine on complex tasks."

Laurent Haug

Thank You!

support@fontusblue.com

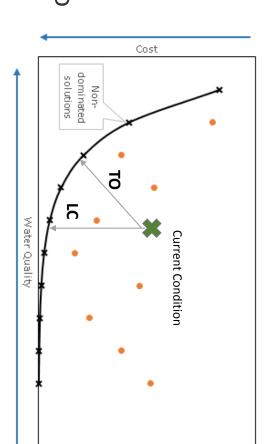
Water Treatment Objectives Overview

Core Treatment Objectives:

- 1. Minimize settled and/or filter turbidity
- 2. Comply with the TOC removal targets based on water quality and disinfection byproduct limits
- 3. Provide "high" quality water at low cost

How does a water plant simultaneously meet all three objectives under "normal" conditions? Other challenging scenarios ("Large" rain event)?

Multi-objective Optimization!


	Source W	Source Water Alkalinity (mg/L as CaCO3	s CaCO3)
(mg/L)	0-60	60 - 120	120+
TOC ≤ 2	No Action	No Action	No Action
2 < TOC ≤ 4	35%	23%	15%
4 < TOC ≤ 8	45%	35%	25%
TOC > 8	50%	40%	30%

Multi-Objective Optimization Basics

- The goal is to find chemical dose combinations that minimize cost and minimize water quality measures (e.g. settled turbidity)
- The Current Condition (CC) is not the optimum condition
- DB-AI provides optimum solutions for two other conditions:
- (a) Lower Cost Similar Water Quality (LC)
- (b) Treatment Objective Lowest Cost (TO)
- Solutions are chemical dose recommendations

And as the source water quality changes, the current condition and optimum solutions will also change

Decision Blue A.I. (DB-AI) Introduction

- Decision Support with Modeling and Multi-Objective Optimization (i.e. Artificial Intelligence) as Foundation
- Benefits
- Incorporates Water Plant Experience and Expertise in the Decision Making Process
- 2. Chemical Cost Savings
- Operational Cost Savings (e.g. improved filter performance and reduced sludge production, reduced labor costs associated with jar or other testing)
- Enhanced Water Quality: > 10% reduction in average filter effluent turbidity and > 30% DBP
- Customized for the current water plant chemical use, water quality data sources, and treatment objectives without any additional equipment requirements.
- Operators and supervisors can receive valuable chemical dose recommendations for changing water quality and treatment conditions

Source Water Quality + Chemical Dosing

Treatment Optimization Proficiency

1. Scenario Based Multi-objective Optimization

- How can chemical application be optimized under various treatment scenarios?
- High Turbidity
- Taste and Odor Event
- 3. High DOC or DBP Concerns
- Chemical spill or specific chemical of concern (e.g. atrazine)

2. Daily Multi-Objective Optimization

Optimal chemical doses for "routine" operations made on a daily basis

3. Real-Time Multi-Objective Optimization

Dose recommendations can be made in real-time with automated data collection (SCADA) and daily lab results

