# BUILDING A WORLD OF DIFFERENCE

# Design Considerations for Dry Pit and Wet Pit Pumping Stations

OTCO - 7 March 2019

Larry Gaddis, P.E.

Senior Engineering Manager



BUILDING A WORLD OF DIFFERENCE®



# **PRESENTATION FOCUS**

- Wastewater
- Collection System Applications
- General Aspects All Situations are Unique

# TOPICS

- Characteristics and Features
  - Types of Pumping Equipment
  - Station Descriptions
- Considerations for Proper Design
- Summarize Advantages and Disadvantages

# TERMINOLOGY

#### WET PIT

- Single chamber (wetwell)
- Pump bodies in contact with pumped fluid
  - Fully or partially submerged

### **DRY PIT**

- Two chambers, wetwell and pump pit (drywell)
- Pump bodies not in contact with pumped fluid

Many similar characteristics due to both types having wetwells

General Descriptions and Features

# WET PIT PUMPS

#### **SUBMERSIBLE**

- Typically less than 15 mgd capacity
- Motor and pump provided as single unit from one manufacturer
- Designed for easy removal
- Connects to base discharge elbow



Most common type for wet pit applications

## WET PIT PUMPS

**VERTICAL TURBINE SOLIDS HANDLING** 

- Supported from wetwell top slab
- Non-proprietary motor
- Capable of high capacity (40 mgd +)
- Limited head range (max 120 ft +/-)
- Depending on size, can pass 3" to 8" solids





Pentair

# WET PIT PUMPS

#### **AXIAL FLOW (PROPELLER)**

- Supported from wetwell top slab
- Non-proprietary motor
- High Capacity
- Not suitable for head conditions above 40 – 50 ft.
- May have difficulty with stringy solids



#### Also available in submersible styles

# **DRY PIT PUMPS**

#### **END SUCTION**

- "Non-clog" design
- Available in high capacities
- Non-proprietary motor
- Numerous manufacturers
- Vertical and horizontal configurations



#### Most common dry pit style

# **DRY PIT PUMPS**

### **DOUBLE SUCTION (SPLIT CASE)**

- Limited solids handling ability in smaller sizes
- Capable of extremely high capacity and head
- Non-proprietary motor
- Vertical or horizontal configurations

#### Primarily used in high flow applications



## **DRY PIT PUMPS**

### **IMMERSIBLE (DRY-PIT SUBMERSIBLE)**

- Same characteristics as submersible
- Requires cooling system for motor jacket
- Capable of immersion service, if properly installed

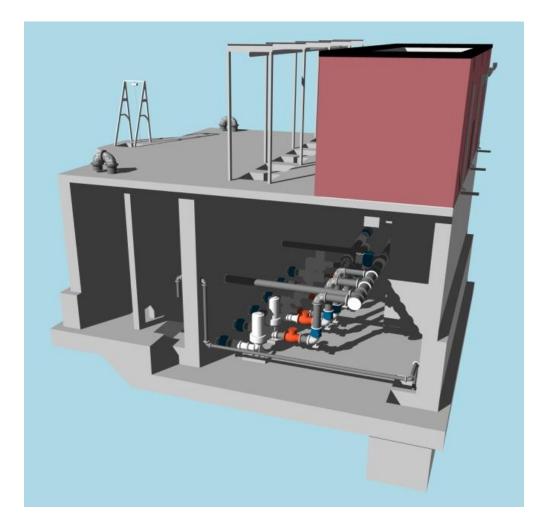


# Typical Installations



- Circular or rectangular
- Precast or cast-in-place concrete construction
- Package systems available
- Adjacent above-grade electrical building or enclosure
- May have separate valve vault
- Less visible facility

### WET PIT






#### Submersible Pump Installation

- Guide rails
- Control and power cables
- Lifting chain
- Access hatches or other openings

## **DRY PIT**



- More complex design and construction
- Wet well can be separate or attached
- Electrical gear typically housed above grade
- Pump chamber usually set slightly below wet well

### **DRY PIT**



- Isolation valves on pump suction
- May require seal water systems
- Pump pit considered as occupied space
  - Ingress / egress provisions
  - Lighting
  - Ventilation

# Design Considerations





# WET PIT CONSIDERATIONS

- Confined spaces
- Restricted equipment access
- Location of electrical equipment and controls
- Potential Submersible pump issues
  - Cable handling and removal
  - Uplift during reverse operation
  - Erosion of sealing surfaces
  - High pressure at base connection



# **DRY PIT CONSIDERATIONS**

- Confined space access (wetwell)
- Additional valving for pump isolation
- HVAC and lighting
- Leakage / flooding provisions
- Noise
- Headroom





#### CONSIDERATIONS COMMON TO BOTH TYPES

- Equipment removal provisions
  - Permanent hoists or cranes
  - Temporary hoist systems, boom trucks, or mobile cranes
  - Access openings, hatches, removable skylights
- Odor control
  - Tributary sewershed characteristics
  - Detention time in upstream sewers and wetwell
  - Turbulence at wetwell discharge



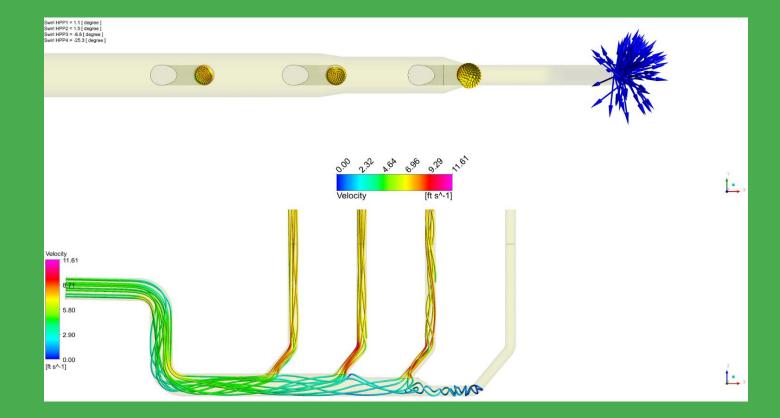


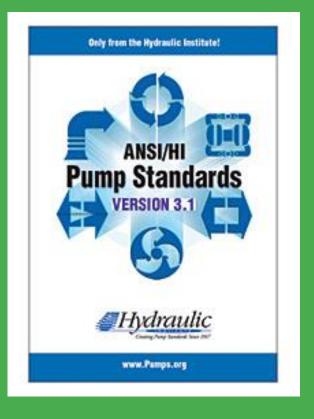
#### CONSIDERATIONS COMMON TO BOTH TYPES

- Materials of construction, particularly in wetwells (H<sub>2</sub>S exposure)
- Solids, Debris, Rags, Grit
  - Bar racks
  - Basket screens
  - Screening equipment

# CONSIDERATIONS COMMON TO BOTH TYPES

# Flow profiles and patterns


- Pump Suction / Inlet
  - Noise
  - Vibration
  - Wear of bearings and seals
  - Cavitation and impeller wear
  - Shaft failure
- Solids / Grit Deposition
  - Loss of wetwell volume
  - Flushing during high flow




**Pumps and Systems** 

# **DESIGN TOOLS**

- Hydraulic Institute Standards
- Computational Fluid Dynamic (CFD) Modeling





# **DESIGN TOOLS**

#### • Physical Modeling

- Flow profiles
- Solids transport and deposition







# **OTHER IMPORTANT DESIGN ITEMS**

- Suction head (NPSHA and NPSHR)
- Proper wetwell sizing
  - Consider min and max flow conditions
  - Pump capacity and wetwell volume are interrelated
  - Minimize detention time and number of pump starts
- Head conditions may determine pump type
- NFPA 820 Standard for Fire Protection in Wastewater Treatment and Collection Facilities
  - First issued 1990, became required standard 1995
  - Hazard Classifications
  - Requirements for electrical equipment, ventilation, building spaces, construction materials, etc.

| 600 |    |       |          | _     |          |      |   |
|-----|----|-------|----------|-------|----------|------|---|
|     |    |       | <u> </u> | -     | <u> </u> |      | - |
|     |    |       | l. N     | (FP)  | 1 62     | 0    |   |
|     |    |       | Stan     | dar   | rd fe    | x.   |   |
|     |    |       | e Pr     |       |          |      |   |
|     |    | in    | Was      | stev  | wate     | er - |   |
|     |    | Th    | eatn     | nen   | t an     | σĽ   |   |
|     | Co | llect | ion I    | ac    | ilitie   | 8    |   |
|     |    |       | 2016     | i Ec  | litio    | 1    |   |
|     |    |       |          |       |          |      |   |
| _   |    |       |          |       |          |      |   |
|     |    |       |          |       |          |      |   |
|     |    |       |          |       |          |      |   |
| _   |    |       |          |       |          |      |   |
|     |    |       |          |       |          |      |   |
|     |    |       |          |       |          | ¢Ε   |   |
|     |    |       | -        | 10.11 | n cui    |      |   |
|     |    |       | _        |       |          |      |   |

Summary of Advantages and Disadvantages

# WET PIT ADVANTAGES AND DISADVANTAGES

| Wet Pit                                  |                                               |  |  |  |  |
|------------------------------------------|-----------------------------------------------|--|--|--|--|
| <u>Advantages</u>                        | <u>Disadvantages</u>                          |  |  |  |  |
| Cheaper construction and operating costs | Cable handling for deep submersible pumps     |  |  |  |  |
| Requires less land area                  | Shorter pump service life                     |  |  |  |  |
| Suction isolation valves not required    | Grit accumulation can impact pump operation   |  |  |  |  |
|                                          | Must remove pump for maintenance              |  |  |  |  |
|                                          | Proprietary motors (submersible pumps)        |  |  |  |  |
|                                          | Pump connection at discharge base is critical |  |  |  |  |
|                                          | Restricted equipment access                   |  |  |  |  |

# DRY PIT ADVANTAGES AND DISADVANTAGES

| Dry Pit                                             |                                     |  |  |  |  |
|-----------------------------------------------------|-------------------------------------|--|--|--|--|
| <u>Advantages</u>                                   | <u>Disadvantages</u>                |  |  |  |  |
| Ease of pump access and maintenance                 | Higher capital and operating costs  |  |  |  |  |
| Less issues with pump suction flow profile          | More land area needed               |  |  |  |  |
| Typically longer pump service life                  | Need for sump and/or flood pumps    |  |  |  |  |
| Non-proprietary motors (split case and end suction) | HVAC systems required               |  |  |  |  |
| Motor can be disassembled from pump                 | Pump suction valves                 |  |  |  |  |
|                                                     | Seal water systems may be necessary |  |  |  |  |
|                                                     | Noise in pump chamber               |  |  |  |  |

# BUILDING A WORLD OF DIFFERENCE



# Larry Gaddis, P.E.

Senior Engineering Manager +1 513-936-5107 gaddislr@bv.com

BUILDING A WORLD OF DIFFERENCE\*

7 March 2019

