Ionic Copper: A More Rational Use of Copper

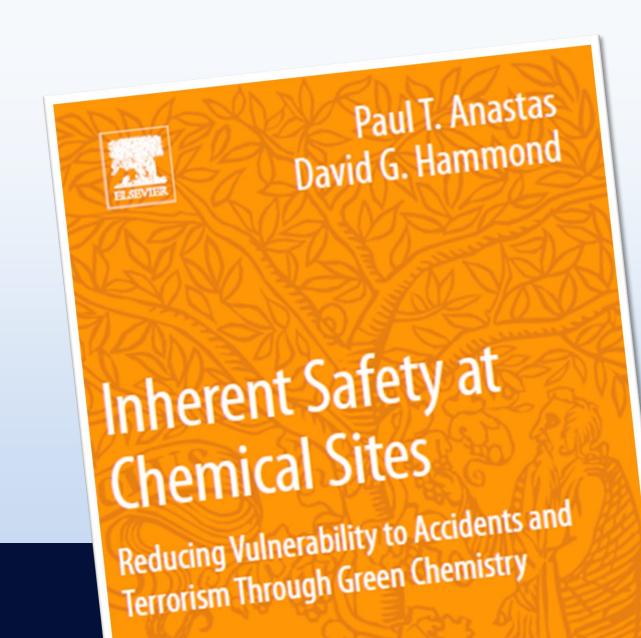
Ohio Operator's Training, OTCO 4/22/2021

Outline

- 1. What differentiates ionic copper from other coppers
- 2. Uses of ionic copper: target pests
 - 1. Algae control
 - 2. Mussel control
 - 3. Hydroids and bryozoans
- 3. Ancillary benefits
 - Reduction of TOC
 - Reduction of DBPs
 - Reduction of T&O
- 4. Cost Optimization Cost Adjusted Performance

Regulatory Status of Ionic Copper (as EarthTec and QZ)

- EPA Labeled as an Algaecide/Bactericide, Molluscicide
- Registered in All 50 States as Algaecide/Bactericide, in 30+ States as Molluscicide
- Certified to NSF Standard 60
- Most uses require no special permitting


Introduction What is ionic copper?

= cupric ion = Cu^{++}

Examples of some benefits:

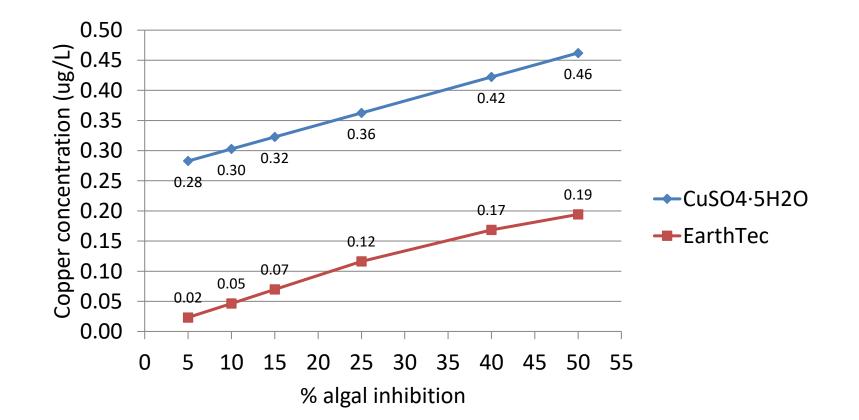
- Effective pre-treatment of drinking water
- Results and performance at lower dose
- Add less chemical to the environment
- Conserve time, labor and money

Green Chemistry

Green Chemistry

- 1. Prevent waste
- 2. Maximize atom economy
- 3. Design less hazardous chemical syntheses
- 4. Design safer chemicals and products
- 5. Use safer solvents and reaction conditions
- 6. Increase energy efficiency
- 7. Use renewable feedstocks
- 8. Avoid chemical derivatives
- 9. Use catalysts, not stoichiometric reagents
- 10. Design chemicals and products to degrade after use
- 11. Analyze in real time to prevent pollution
- 12. Minimize the potential for accidents

Source: Paul Anastas, PhD

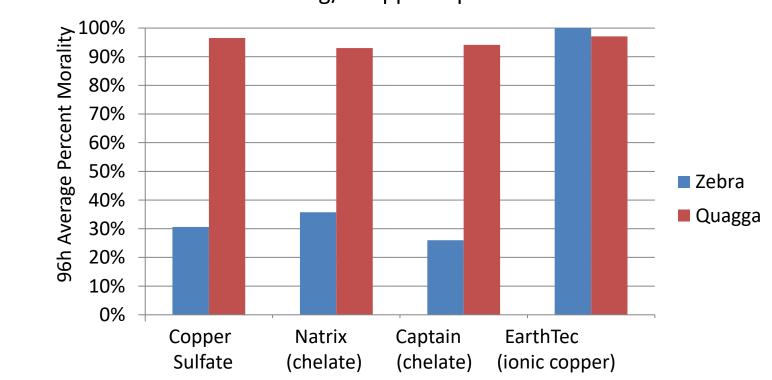

EarthTec is an example of Green Chemistry:

- More efficient formulation
- Desired benefits at lower doses
- Less waste
- Safer

Copper Sulfate vs Ionic Copper

% Inhibition of Algal Growth after 96h of exposure to copper delivered as conventional copper sulfate vs EarthTec

The copper dose required to achieve a given % inhibition of algae is much lower if applied as EarthTec than if applied as copper sulfate



Copper Sulfate vs Chelated and Ionic Coppers

Average percent mortality after 96h of exposure to copper-based algaecides at 0.5 mg/L copper equivalent

Even at equivalent doses of active ingredient, EarthTec is more effective that other coppers.

And we now know that much lower doses than these are effective against mussels.

0.5 mg/L copper equivalent

Product Comparison

Copper Sulfate vs EarthTec

Norwalk, OH (2012 vs 2013)

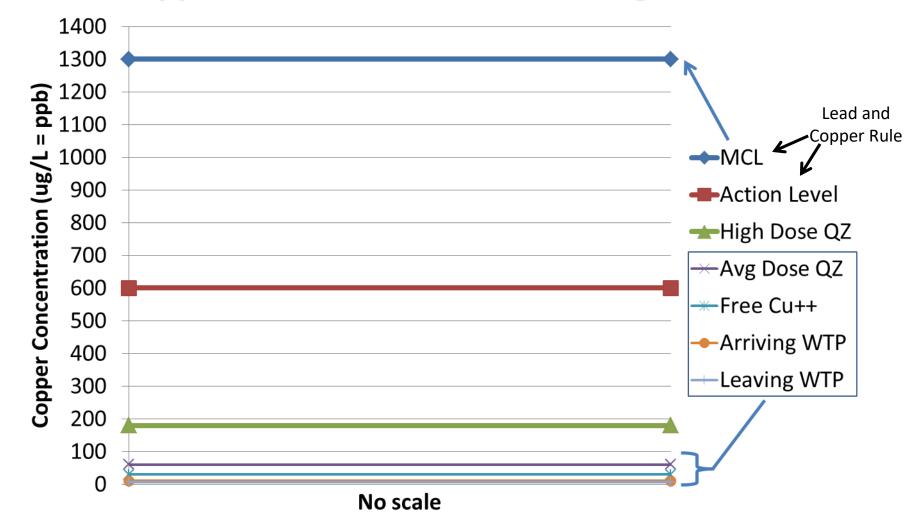
C	opper sulfate	Ionic Copper		
	2012	2013		
	108treatments per year		treatments per year	
	500	60	lbs or gallons per treatment	
		10	lbs, weight per gal of EarthTec	
	5,000	4,800	lbs per year	
	25%	5%	fraction that is elemental copper	
	1,250	240	elemental copper applied, lbs	
100%		19.20%	total copper applied, %	

When Norwalk switched from copper sulfate to EarthTec, they had fewer total applications per year and applied <20% of the elemental copper used in previous years, even though their treatment season spanned a longer portion of the year.

Main message

There is a new generation of liquid copper products that

- deliver copper entirely as cupric ions, Cu⁺⁺
- are highly bioavailable,
- are effective at low doses

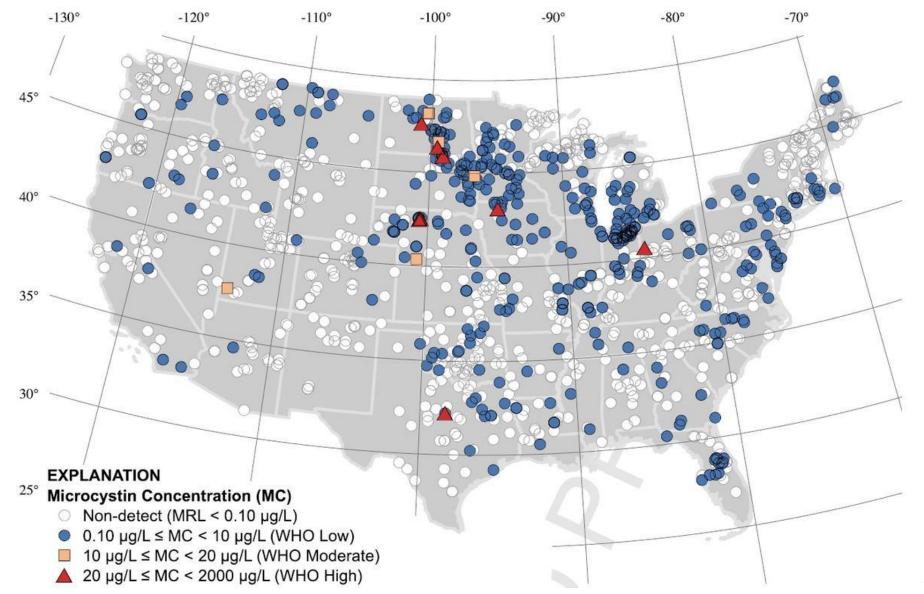


Recommended Dose of EarthTec according to Severity of Cyanobacterial Bloom

	μL/L	ppm, as	ppb, as
Algal bloom conditions	(as EarthTec)	copper	copper
Preventative dose	0.5	0.030	30
Mild bloom	1	0.060	60
Full bloom	2	0.120	120
Severe bloom	3	0.180	180

EPA max for copper algaecides is 1 mg/L as copper = 1,000 ppb as copper (Granulated copper requires 5x to 15x more active ingredient)

Copper Concentrations in Drinking Water



The copper residual concentration arriving at a WTP is approximately 1/100th of the Lead and Copper Rule standard

Harmful Algal Blooms (HABs) in the News

HABs are occurring nationwide

Source: USGS.gov

Drinking Water Treatment Problems Associated with Harmful Algal Blooms

Increased Organic Load

- Total Organic Carbon (TOC)
- Dissolved Organic Carbon (DOC)

Taste and Odor (T&O)

Geosmin, MIB

Aesthetic concerns

Cyanotoxins

Hepatotoxins, neurotoxins, stomach, skin

Can and do algaecides help?

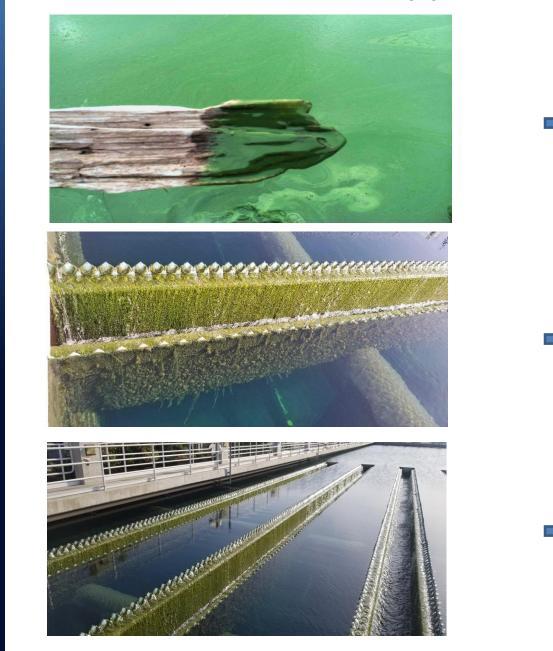
Badger 10/4 9am

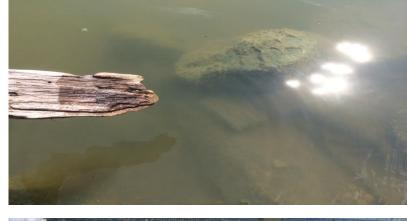
Badger 10/5 @9am

Badger 10/6 @9am

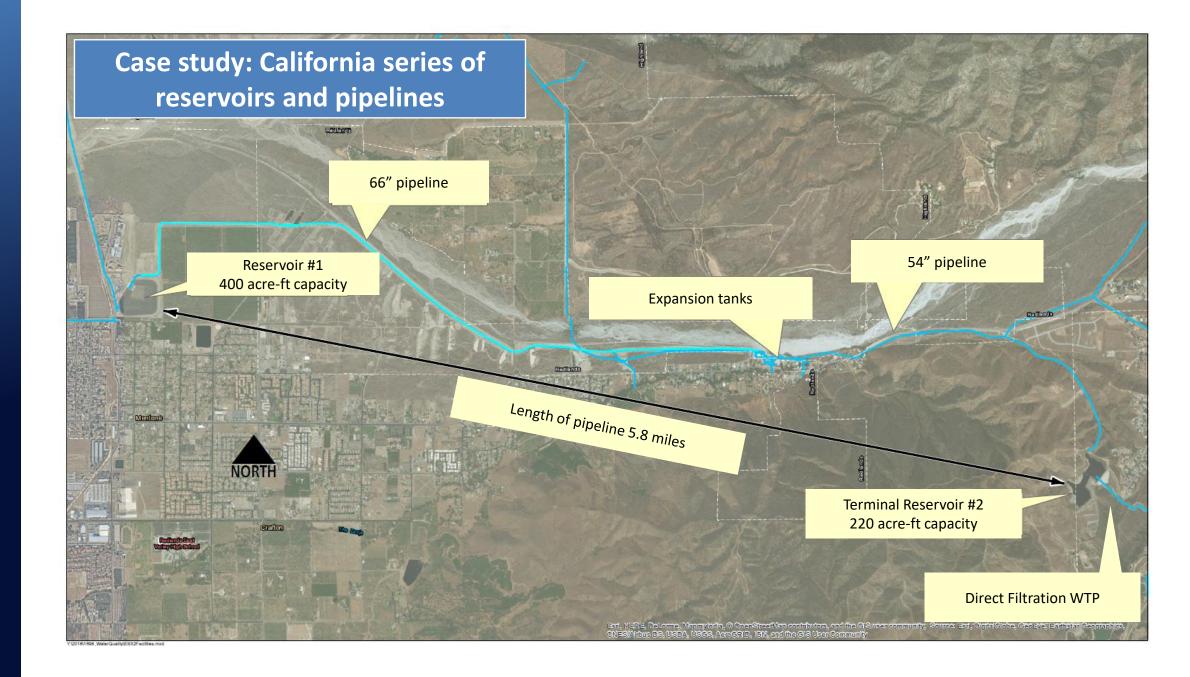
Badger 10/9

Microcystin non-detect (<0.15 ug/L)





Ionic copper for algae control in WTPs



EARTHTEC

SARTHTEG

Case study: California series of reservoirs and pipelines

Case study: California series of reservoirs and pipelines

Before Treatment

EarthTec liquid ionic copper, typically dosed with metering pumps. Mobile dosing trailer can be deployed for emergency or trial applications.

Case study: California series of reservoirs and pipelines

Dosing hoses from trailer to dosing point

Case study: California series of reservoirs and pipelines

After Treatment

Harmful Algal Blooms and microcystins HAB in Norwalk, OH 2014

Monday morning Microcystin = 12 -22 ug/L Treated with EarthTec Monday afternoon Wednesday morning 36 h post-treatment. Microcystin <1 ug/L by Friday

Ohio EPA commended Norwalk on their appropriate management of the bloom.

Harmful Algal Blooms and microcystins HAB in Norwalk, OH 2014

Tuesday morning

Thursday morning

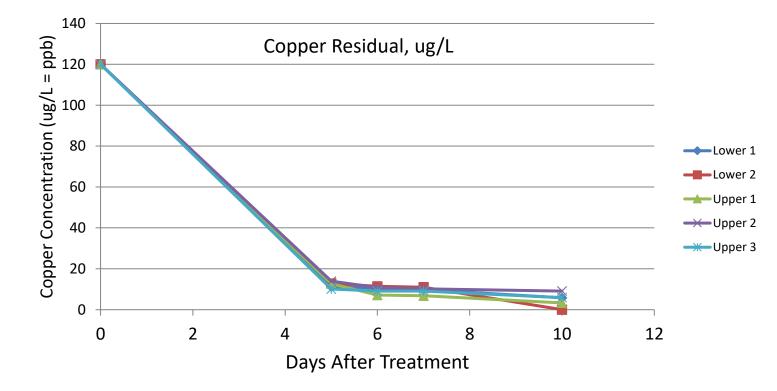
Harmful Algal Blooms and microcystins HAB in Herriman, Utah in Aug, 2015

Herriman responded by immediately applying 0.24 mg/L EarthTec and two weeks later a follow-up dose of 0.12 mg/L

Harmful Algal Blooms and microcystins

Herriman city officials say Blackridge Reservoir again safe for swimming

By Tori Jorgensen For the Deseret News Published: Wednesday, Sept. 2 2015 5:45 p.m. MDT Print Font [+] [-] Leave a comment »


View 12 photos »

The Blackridge Reservoir was closed due to an algae bloom in Herriman on Friday, Aug. 7, 2015. Stacie Scott, Deseret News

Summary

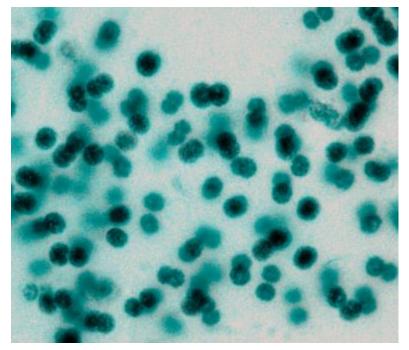
Herriman city officials say Blackridge Reservoir is now safe HERRIMAN - City officials say Blackridge Reservoir is now safe for swimming after chemical algaecide treatment decreased contamination levels.

Copper residual concentration following treatment of algal bloom July 1, 2016 using EarthTec

Copper residuals do not persist

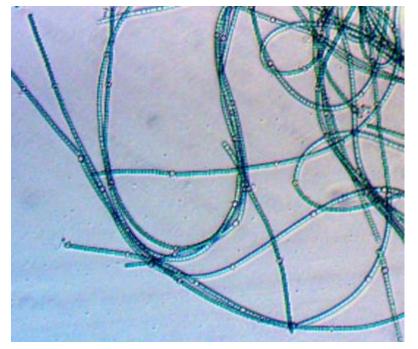
Figure: Residual free copper in the days following algaecide application by boat of 2 gallons EarthTec per surface acre on two different reservoirs of the Norwalk, Ohio WTP, Upper and Lower. Samples taken at 6" depth at different locations around the reservoir shoreline.

Study using EarthTec against a severe cyanobacterial bloom in Florida Fred Singleton, Ph.D.

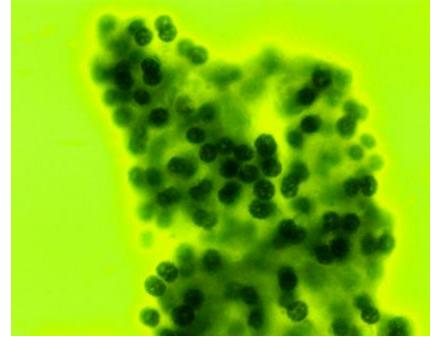


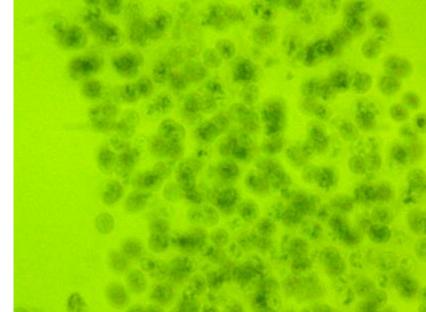
Location: Central Marine Stuart, Stuart, FL (July 2016) Severity: Significant – Biomass mat was ca. 8" thick. Primarily Microcystis.

Understanding a model-of-action model begins with an understanding of the morphology of the target organisms


Non-Filamentous

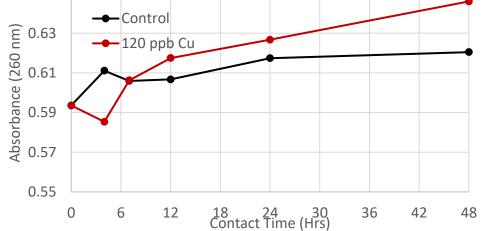
Microcystis sp. (400X Mag.)




Filamentous

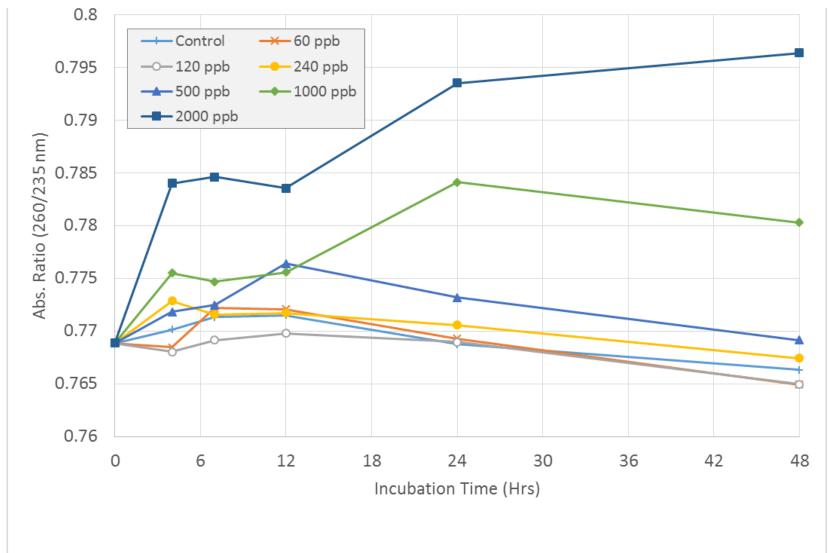
Anabaena sp. (125X Mag.)

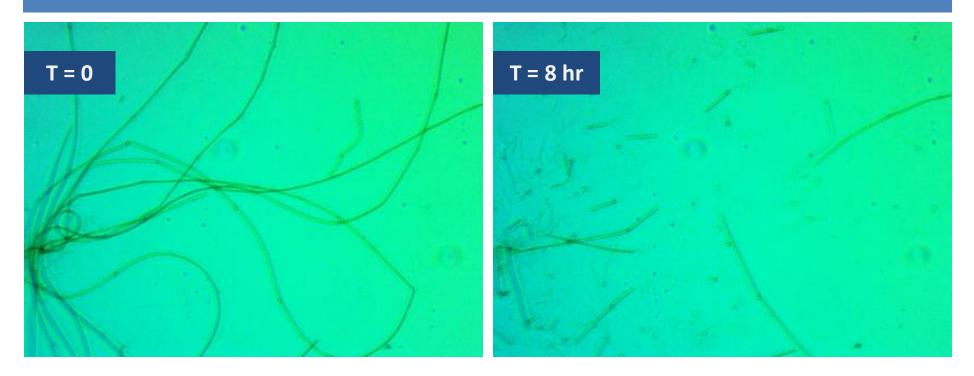
Microcystis sp. + 120 ppb Cu (as EarthTec), T = 0 *Microcystis* sp. + 120 ppb Cu (as EarthTec), T = 24 hr



OBSERVATIONS

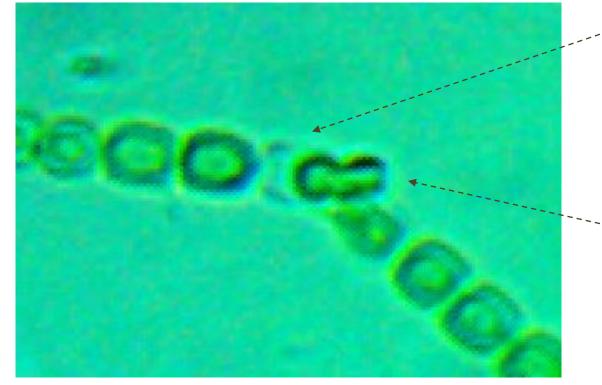
- Mass of cell clusters greatly reduced
- Ionic copper (as EarthTec) does NOT cause immediate or extensive lysis of Microcystis cells
- Ionic copper treatment results in cells slowly leaking their cytoplasmic materials into the surrounding water
- Ionic copper does NOT inhibit non-target microorganisms that consume leaked cytoplasmic materials


Membrane Leakage of Organics from Microcystis sp. in Marina Water -- (260 nm = abs. maximum for nucleic acids) 0.65


Source: Fred Singleton, Ph.D., Earth Science Labs, Inc.

Change in relative concentrations of dissolved organics in marina water (collected during a heavy *Microcysitis* bloom) treated with various concentrations of Cu (as EarthTec). Wavelengths = 260 and 235 nm as indices of nucleic acids and carbohydrates, respectively.

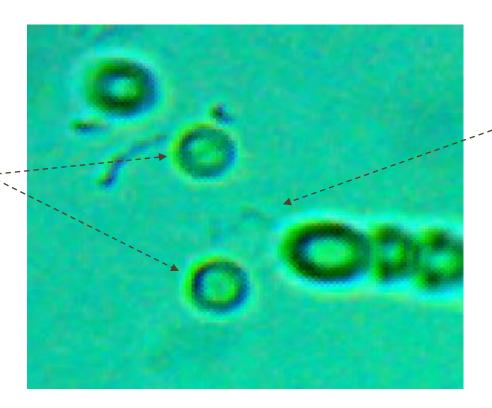
Significant changes occur only at doses of 500 ppb and higher.



Anabaena, 120 ppb Cu (as EarthTec)

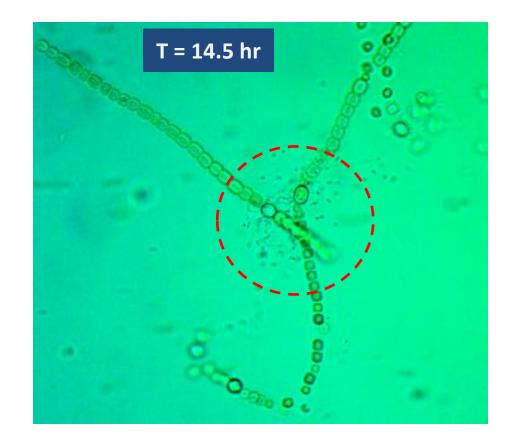
- Release of cells from filaments during 8 hr contact
- Many of the photosynthetic cells remained structurally intact
- Heterocysts remained structurally intact

Filamentous Anabaena treated with 120 ppb Cu (as EarthTec)


Remnant of sheath/gelatinous layer

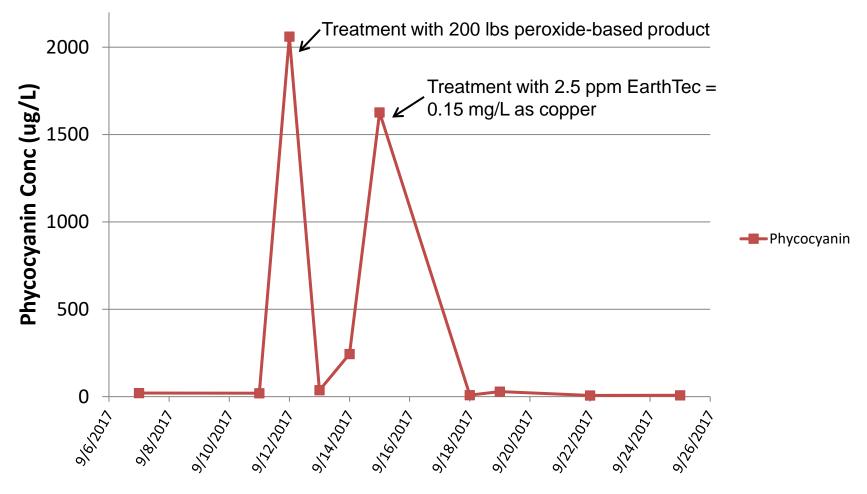
Cell being released from filament –

Cell is intact (no lysis)


Anabaena, 120 ppb Cu

Cells immediately after separation from filament

Remnant of sheath/gelatinous layer


Anabaena, 120 ppb Cu, T = 14.5 hr

- Heterotrophic bacteria feeding on materials released from cyanobacterial cells –
- Illustrates non-target organisms are not affected by low doses of ionic copper
- Most of the photosynthetic cells remained structurally intact
- Heterocysts remained structurally intact

Ohio WTP – Severe HAB in Source Water Reservoir

Effects of peroxide-based algaecides are often short-lived

Video of liquid ionic copper added to cyanobacterial culture, T = 0 to 46 hrs

Microcystis treated with ionic copper don't lyse, they decompose over a period of 2-3 days

Risk-based Analysis of Cyanotoxins

Cyanotoxins:

- No good level to have
- EPA candidate contaminate list drinking water
- WHO guidelines in recreational water
- WHO possible carcinogen list
- Accumulates through time
- ALS, PDS, Alzheimer's link
- Has caused deaths of cows, elk, dogs, birds, fish, people, etc.

Copper:

- Essential nutrient
 - Hemocyanin
 - Suggested Daily Intake (1 mg/day)
- High affinity to algae
- 26th element in earth's crust
- Does not bio-accumulate
- Transfers to less available sediment forms
 through time
- No swimming/ drinking/irrigation restrictions
 on label

We're still learning about cyanotoxins....

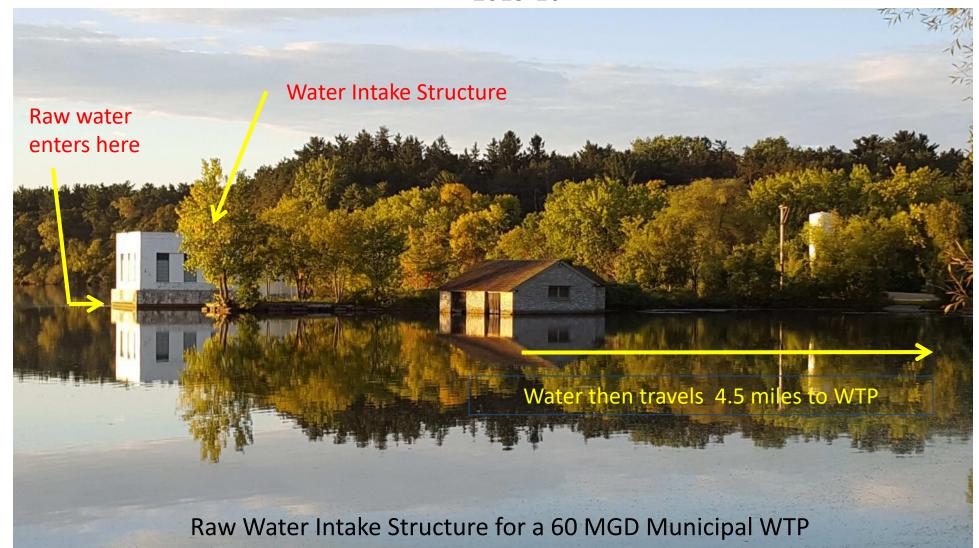
- Toxin production is intermittent
- Instances where toxicity is present but no known toxin isolated yet
- New toxins still being discovered

Control of Invasive Quagga and Zebra Mussels using

SEARTHEC QZ

Cost Optimization Considerations and Strategies: 3-for-1

What is a 3-for-1? Multiple benefits from one chemical e.g., ancillary benefits of pre-treating with ionic copper algaecide


Pre-Treatment Objectives

- Algae Control (in water and on basin walls)
- Control of zebra mussels and other biofouling
- Reduce TOC
- Reduce DBPs
- Reduce Taste and Odor (e.g., geosmin)
- Reduce Carbon and Ozone Consumption
- Improve Coagulation Performance
- Aid in disinfection without DBPs
- Extend Filters Runs
- Apply at Pipeline Intake to Extend Contact Time

Priority Sites for Mussel Control

- Flowing Waters (pipelines, aqueducts)
- Open Waters (lakes)
 - Rapid Response
 - ➢ Full Lake
 - > Fish Hatcheries

Zebra mussels have historically infested the intake structure of a major municipal WTP in the Midwest 2015-16

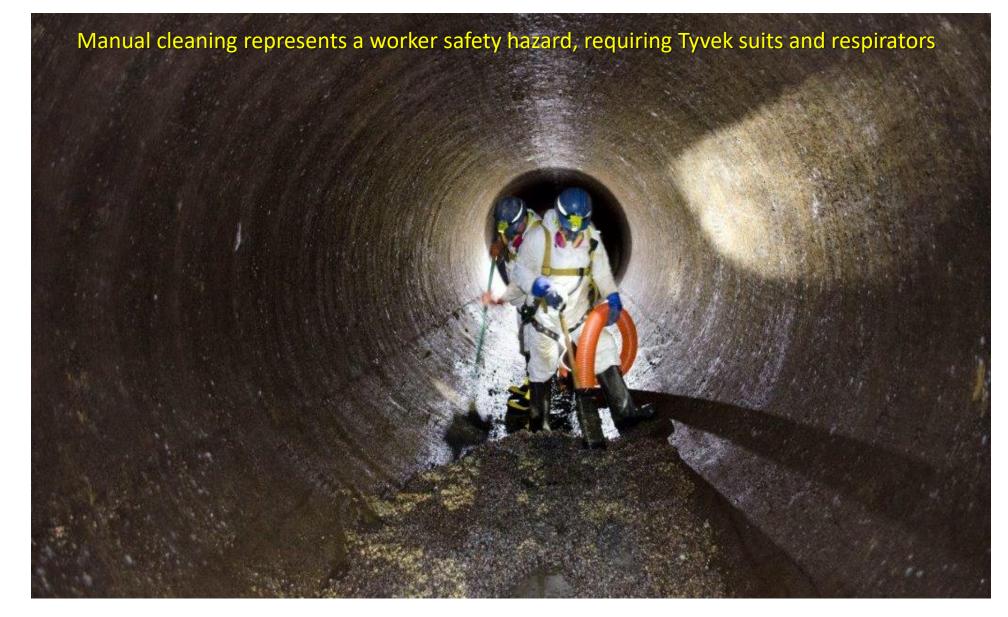
Zebra mussels historically fouled the intake screens of the WTP 2015

Screen fouled with zebra mussels, 2015

Zebra mussels historically fouled the intake screens of the WTP

Zebra mussels historically fouled the intake screens of the WTP

EARTHTEC QZ


Zebra Mussels Infesting the 90" Raw Water Pipeline 2015

Zebra Mussels Infesting the 90" Raw Water Pipeline 2015

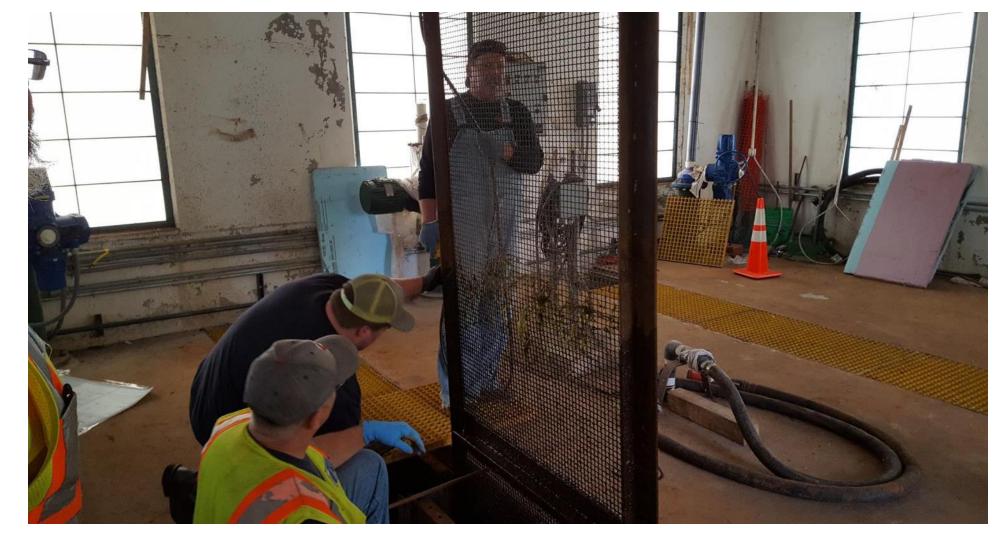
Zebra mussels being removed from the raw water pipeline 2015

Zebra mussels removed from the pipeline and screens

Mussels are removed by the dumpster load

Metering pump and wall skid

Turnkey Dosing Systems


Supply side

Delivery side

Results of treatment with 1ppm QZ: Ensured intake screens free of zebra mussels during height of the mussel season

September, 2016

Treatment with 60 ppb EarthTec ensured intake screens are free of zebra mussels

September, 2016

EarthTec QZ successfully prevented biofouling in Summer-Fall of 2016

1 ppm dose as QZ = 60 ug/L as copper sufficient to achieve complete control

Treatment with 60 ug/L as copper ensured intake gates remained free of zebra mussels

September, 2016

EarthTec QZ successfully prevented biofouling in Summer-Fall of 2016

SEARTHTEC QZ

Treatment with 60 ug/L ensured intake gates remained free of zebra mussels

September, 2016

Ionic copper successfully prevented biofouling in Summer-Fall of 2016

1 ppm dose as QZ = 60 ug/L as copper sufficient to achieve complete control

Note that mussels were only able to colonize a few spots within eddies of unmixed water, such as the feed line itself.

Treatment with 1ppm QZ ensured pipeline remained free of zebra mussels

September, 2016

SEARTHTEC QZ

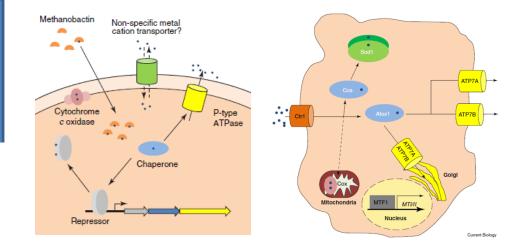
Zebra Mussel Control at City of St Paul, Minnesota Copper Concentration (ug/L = ppb) in treated water reaching the St Paul WTP, summer of 2016

	Date	WTP	
	6/14/2016	0	
Doce applied at	6/23/2016	2	
Dose applied at pipeline intake	6/30/2016	0	
1 ppm as QZ	7/7/2016	3	
= 60 ug/L as copper	7/14/2016	4	
	7/21/2016	1	
	7/28/2016	0	
	8/11/2016	0	
	8/18/2016	1	
	8/25/2016	0	
	8/31/2016	0	
	9/15/2016	0	
	Average:	0.92	

Copper is consumed by background demand in the pipeline

Current Biology

2011, Vol 21, Issue 21


Department of Pharmacology and Cancer Biology, Duke University School of Medicine,

Primer

Copper: An essential metal in biology

Richard A. Festa and Dennis J. Thiele*

Life on Earth has evolved within a complex mixture of organic and inorganic compounds. While organic molecules such as amino acids, carbohydrates and nucleotides form the backbone of proteins and genetic material, these fundamental components of macromolecules are enzymatically synthesized and ultimately degraded. Inorganic elements, such as copper (Cu), iron and zinc, once solubilized from the

Table 1. Examples of Cu-dependent proteins and Cu homeostasis proteins.

Protein	Function	Bacteria	Fungi	Animals	Plants
Transcriptional regulators					
Ace1	Transcriptional activation in high Cu conditions		x		
CopY	Bacterial Cu metalloregulatory repressor	х			
CsoR	Bacterial Cu metalloregulatory repressor	x			
Mac1	Transcriptional activator in low Cu conditions		х		
CueR	Bacterial Cu metalloregulatory repressor	x			
Mtf1	Metalloregulatory transcription factor			x	
Spl7	Transcriptional activator responding to Cu deficiency				x
Chaperones/storage					
Atox1	Metallochaperone delivering Cu to P-type ATPases		х	x	х
Ccs	Delivers Cu to the Cu/Zn SOD1		x	x	x
CopZ	Bacterial Cu chaperone	x			
Metallothionein	Low molecular weight, cysteine-rich metal-binding and detoxification	x	x	x	x
Cell surface/secretory compartment	transporters and receptors				
P1B-type ATPases	Cut-exporting proteins	x	х	x	X
Ctr	Cu*-importing proteins		x	x	x
Ethylene receptor	Uses Cu as a cofactor for ethylene signaling				X
Oxidoreductases	, , ,				
Ascorbate oxidase	Reduction of L-ascorbate			x	
Dopamine-monooxygenase	Tyrosine metabolism			x	
Galactose oxidase	Reduction of galactose		x		
Amine oxidase	Oxidation of diamines	x	х	x	х
Electron transfer/energy production	/blue Cu proteins				
Cytochrome c oxidase	Necessary for the last step of respiration	x	х	x	х
Plastocyanin	Electron transfer during photosynthesis	x			x
NADH dehydrogenase	Electron transfer from NADH to coenzyme Q	x	x	x	x
Nitrite reductase	Reduces nitrite to nitric oxide	x			
Amicyanin	Electron-accepting intermediate in the conversion of	x			
,,	methylamine to formaldehyde and ammonia				
Free radical scavenging	inconfiguration to to include on you and animonia				
Cu/Zn SOD	Free radical scavenging	x	х	х	х
Oxidase					
Laccase	Melanine production	x	х	х	х
Lysyl oxidase	Catalyzes the formation of collagen and elastin precur-			x	
	sors. extracellular				
Ceruloplasmin	MultiCu oxidase			х	
Hephaestin	Transmembrane ferroxidase, transports iron from the			x	
	intestine to the circulatory system				
Multicopper ferroxidase	Cu-dependent iron uptake		х	х	х
Monooxygenase					
Methane monooxygenase	Oxidizes C–H bond in methane	x			
Phenylalanine hydrolase	Hydroxylation of the aromatic side chain of phenyl-	~		х	
i nongialatine nyurolabe	alanine to generate tyrosine			•	
Tyrosinase	Monophenol monooxygenase, catalyzes the oxidation	x	х	х	х
.,	of phenols, melanin synthesis	~	~	~	~

Current Biology

2011, Vol 21, Issue 21

Department of Pharmacology and Cancer Biology, Duke University School of Medicine,

Primer

Copper: An essential metal in biology

Richard A. Festa and Dennis J. Thiele*

Life on Earth has evolved within a complex mixture of organic and inorganic compounds. While organic molecules such as amino acids, carbohydrates and nucleotides form the backbone of proteins and genetic material, these fundamental components of macromolecules are enzymatically synthesized and ultimately degraded. Inorganic elements, such as copper (Cu), iron and zinc, once solubilized from the Copper is an essential micronutrient across all kingdoms and phyla, and participates in:

P-type ATPase

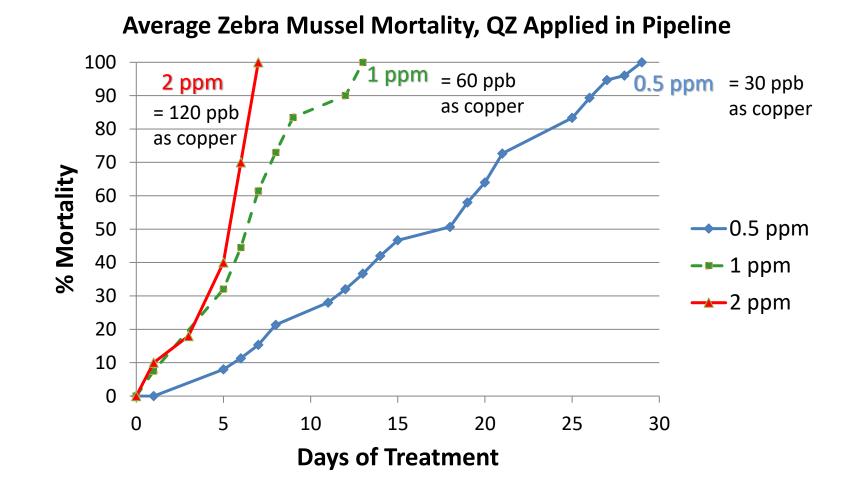
- Photosynthesis
- **Respiration**

Methanobactin

Cytochrom

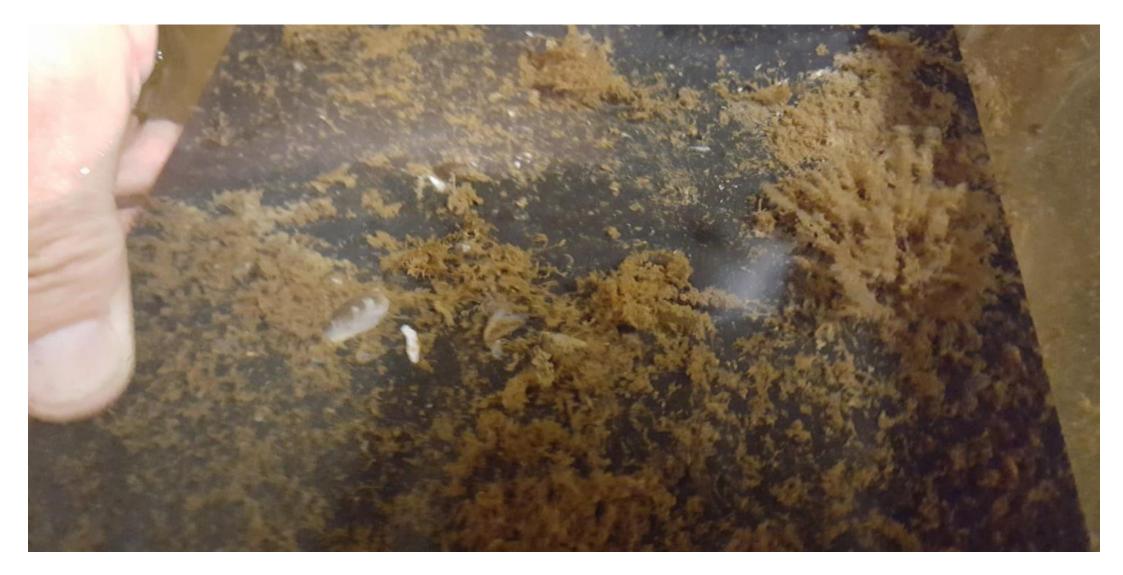
c oxida:

Non-specific metal cation transporter?


- Electron transport
- ATP synthesis
- Membrane transport
- Enzymatic activity
- Others

Hephaestin	Transmembrane ferroxidase, transports iron from the intestine to the circulatory system			x	
Multicopper ferroxidase	Cu-dependent iron uptake		х	x	x
Monooxygenase					
Methane monooxygenase	Oxidizes C-H bond in methane	х			
Phenylalanine hydrolase	Hydroxylation of the aromatic side chain of phenyl- alanine to generate tyrosine			x	
Tyrosinase	Monophenol monooxygenase, catalyzes the oxidation of phenols, melanin synthesis	x	x	x	x

Partial list of EarthTec QZ pipeline customers – municipal water


<u>Location</u>	Approx length (mi)	MGD
St Paul, MN	4.5	60
Burlington, VT	1	5
Moon, PA	0.2	2
Beaver Falls, PA	0.5	8
Waurika Lake, OK	30	25
Tulsa, OK	30	100
Lakeway, TX	1	5
Toledo, OH	15	100
Bell County, TX	0.5	50
Fargo, ND	0.5	30
Georgetown, TX	0.3	25
Central Arizona Project	0.2	13
Bucyrus, OH	1	2
Norwalk, OH	1	2
Austin, TX (Handcox)	1	30
Austin, TX (Ullrich)	0.5	120
Sherman, TX	0.1	9
Brushy Creek, TX	15	4
Marble Falls, TX	0.3	1.5
Snyder, TX	1	6
Canadian River MWA, TX	41	40

Ohio WTP

100% mortality in 6 days at 2 ppm, in 12 days at 1 ppm, in 28 days at 0.5 ppm

Quagga Mussel and Colonial Hydroid Control in Colorado River Water Sept, 2016

Colonial Hydroid

- Native to Caspian Sea
- Stinging tentacles to capture zooplankton
- Species: Cordylophora caspia
- Order: Hydroida
- Class: Hydrozoa

Quagga Mussel and Colonial Hydroid Control in Colorado River Water

Sept, 2016

Quagga Mussel and Colonial Hydroid Control in Colorado River Water Sept, 2016

Quagga Mussel and Colonial Hydroid Control in Colorado River Water Sept, 2016

Study Objective: To compare two strategies for protection against biofouling of the cooling system

VS

Sher-Release

Foul-Release Coating Silicone-based by Sherwin Williams

and no chemical treatment

Applied to Units 4 and 5 in July, 2016

EarthTec QZ

Liquid Ionic Copper, Cu⁺⁺ by Earth Science Labs

and no coating

Continuous dose into Unit 6

Borescope Observation of Unit 5 (top) and Unit 6 (bottom), Aug 23 2017

EARTHTEC QZ

////

Foul-Release Coating and no chemical treatment

Significant growth of colonial hydroid, but no quagga mussels

Treatment with EarthTec QZ at 0.75 ppm (= 45 ppb as copper)

No growth of colonial hydroid or quagga mussels, just a few strands of aquatic weeds that managed to get through the strainers

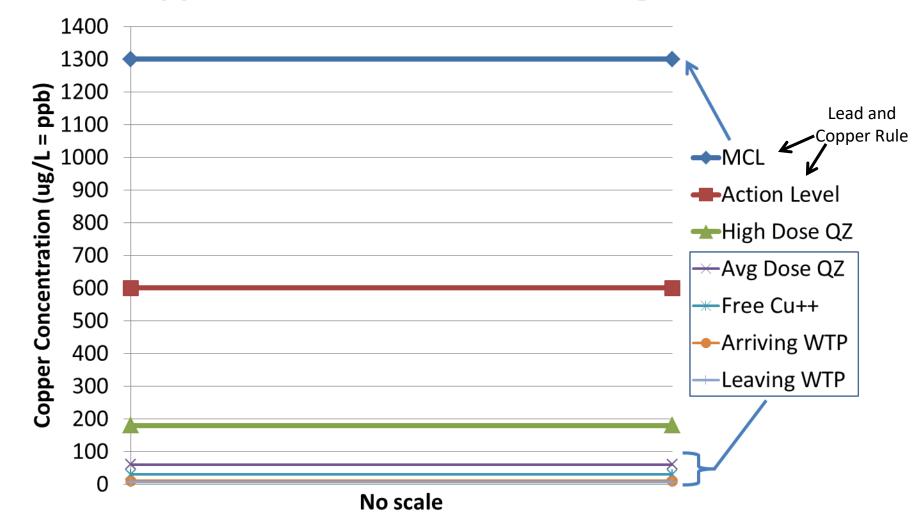


Photo: Scott Bryan, Biologist, CAP

Photo: Scott Bryan, Biologist, CAP

Copper Concentrations in Drinking Water

The copper residual concentration arriving at a WTP is approximately 1/100th of the Lead and Copper Rule standard

EARTHTEC QZ

FIFRA: Federal Insecticide, Rodenticide, and Fungicide Act

All pesticides must be registered with EPA

EarthTec QZ is registered in all states with zebras and quaggas

Includes Directions for Use, Use Sites, Environmental Hazards, etc.

Molluscicide For Control of Quagga and Zebra Mussels in Impounded Waters; Lakes; Ponds; Lagoons; Wastewater Lagoons; Reservoirs; Potable Water Supplies*; Canals; Ditches; Aqueducts; and Equipment/Structures that deliver water directly to publicly owned water treatment facilities to include pipes, intake structures, gatehouses, screens, pumping stations, weirs, and penstocks.

Bactericide* - Nonpublic Health Bacteria

Potable Water Supplies+ - Water Destined to Be Used as Drinking Water (this water must receive additional and separate potable water treatment)

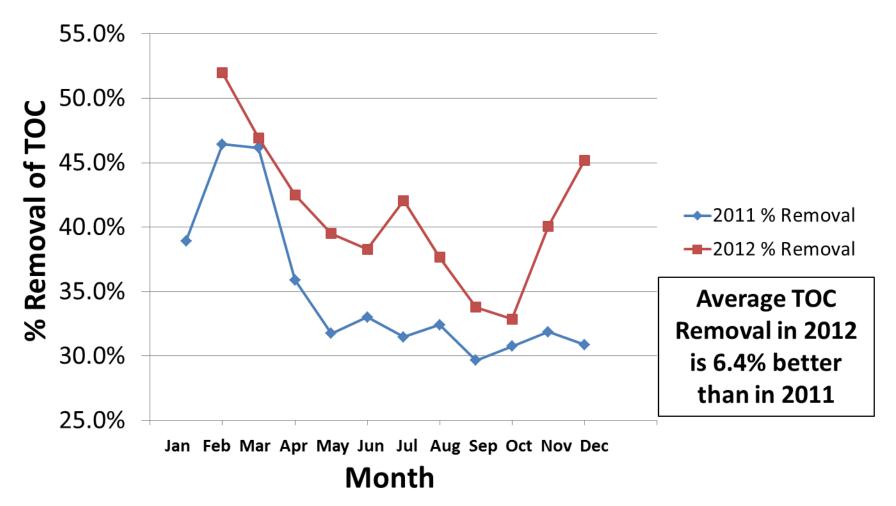
ACTIVE INGREDIENT	
Copper Sulfate Pentahydrate*(CAS No. 7758-99-8) 19.8	%
OTHER INGREDIENTS 80.2	%
Total	%
*Metallic Copper5	%

THIS PRODUCT WEIGHS 9.91 LB PER GALLON (1.188 kg/L) AND CONTAINS 0.493 LBS ELEMENTAL COPPER PER GALLON.

EPA REGISTRATION NO. EPA ESTABLISHMENT NO.	64962-1 64962-NE-001
NET CONTENTS:	
TWO AND ONE-HALF (2.5) U.S	. GALLONS (Commercial Use Only)
THIRTY (30) U.S. GALLONS	
FIFTY-FIVE (55) U.S. GALLONS	3

TWO HUNDRED SEVENTY-FIVE (275) U.S. GALLONS

Ancillary Benefits of Pre-Treating with EarthTec


WTP operators have reported the ancillary outcomes described here when using EarthTec

- Reduction of Total Organic Carbon (TOC)
- Reduction in Biofouling
- Reduction of Taste and Odor (T&O) Compounds
- Coagulation Performance
- Disinfection
- Labeled for use in WTPs few copper products are

Treatment Example

Texas WTP, 50 MGD

Average TOC Removal without (2011) and with (2012) EarthTec

Treatment Example

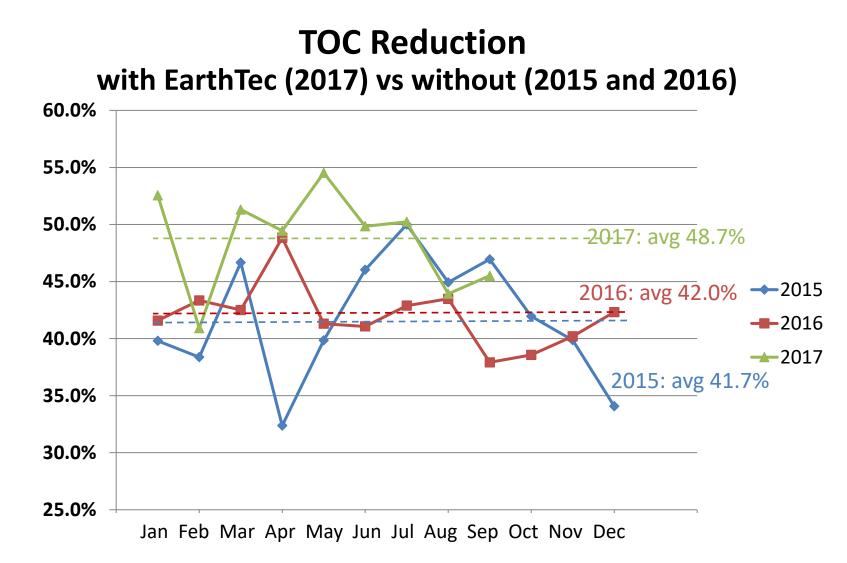
Texas, 50 MGD

COST-BENEFIT ASSESSMENT

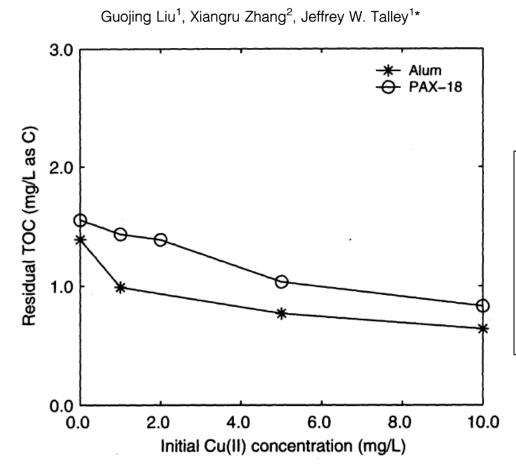
- Before ionic copper:
 - PAC at 12ppm, \$0.90/lb x 5,000 lbs/d = \$4,500/d
 - Copper sulfate at \$1.50/lb x 100 lbs/d = \$150/d
 - Total treatment for 50 MGD € \$4,650/d
- With ionic copper:
 - PAC at <3ppm as needed, \$0.90/lb x 1,250 lbs/d = \$1,125/d
 - No copper sulfate
 - EarthTec = \$750/d
 - Total for 50 MGD **\$1,875/d**
- Ionic copper saving them \$2,775/d during season

A 2-3 ppm reduction in consumption of PAC (Powdered Activated Carbon) offsets the cost of 1 ppm as EarthTec

Treatment Example


Texas, 50 MGD

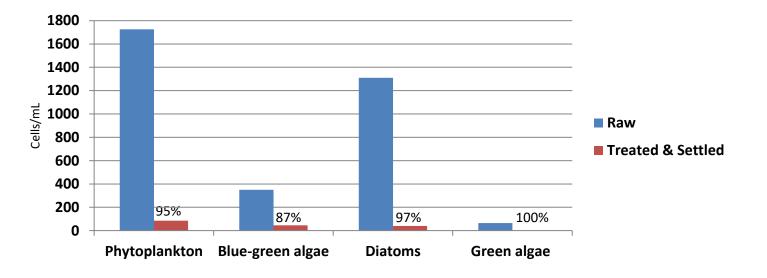
COST-BENEFIT ASSESSMENT


PAC	lonic copper
3 mg/L, dose of PAC	1 ppm, uL/L, dose of EarthTec
1 MGD	1 MGD
24.981 lbs/day, dose of PAC	1 gals/day, dose of EarthTec
\$0.90 cost per lb of PAC	\$20.00 cost per gallon of EarthTec
\$22.48 cost per day for PAC	\$20.00 cost per day for EarthTec

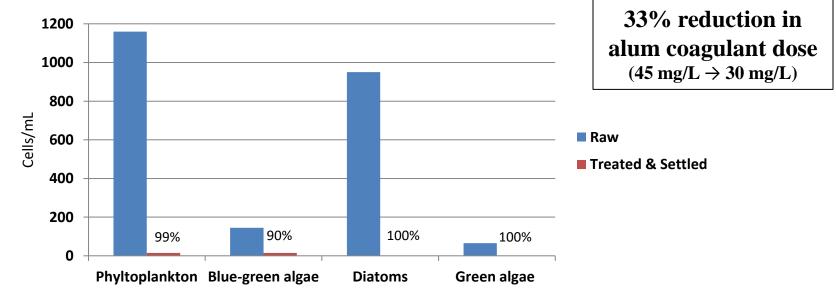
A 3 ppm reduction in consumption of PAC (Powdered Activated Carbon) offsets the cost of 1 ppm as EarthTec Treatment Example - Pennsylvania WTP

TOC reduction improved by 6-7% with the addition of 60 ug/L copper as EarthTec

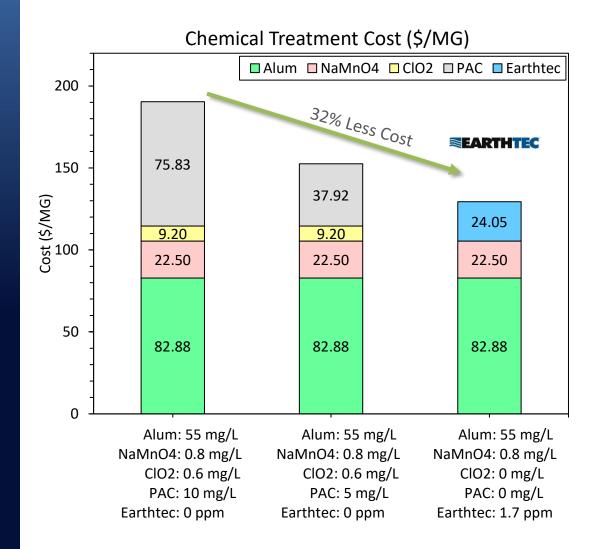
Effect of Copper(II) on Natural Organic Matter Removal During Drinking Water Coagulation Using Aluminum-Based Coagulants

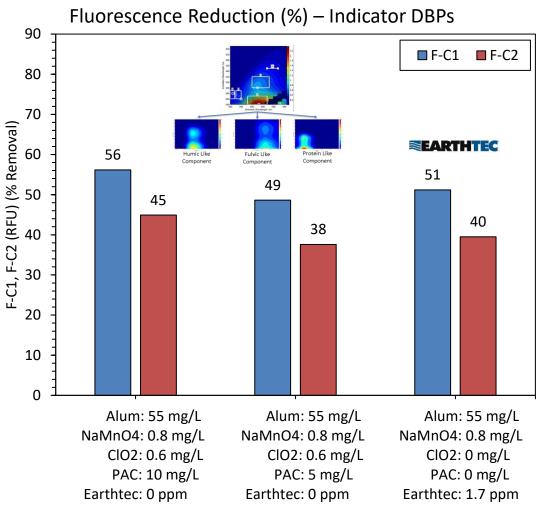

Source: Water Environment Research, Vol 79, No. 6 (June 2007), pp 593-599.

Publically funded research supports that Cu²⁺ can enhance the performance of certain coagulants.


Figure 2—Effect of copper(II) on TOC removal by coagulation using alum or PAX-18.

EarthTec fed (1 ppm) at intake of two Calif WTPs, 2017


Contra Costa - Bollman WTP



Contra Costa - Randall-Bold WTP

Cost Optimization with EarthTec comparison with PAC at an Ohio WTP

Cost Optimization: 3-for-1

	Water Treatment Plant			
How Much is Not UsingEarthTec* Costing You?				
TREATED WATER V	OLUME			
Annualized Average Plant MGD:				
	Select disinfection timeframe Per Day Per Month Per Year			
What do you use for disinfection? (Fil	l in all that apply)			
Chlorine per day	GAL LBS Cost \$ /gal			
Chlorine dioxide per day (lbs)	Cost \$ //lbs			
Chloramine per day (lbs)	Cost \$ //lbs			
Gas Cl2/bleach per day	GAL LBS Cost \$ /gal			
Ozone per day	kWh MWh			
UV per day	kWh MWh			
How much do you use?	GAL LBS Per Day Per Month Per Year			
Cost per gallon?				
FLOCCULANT				
Which flocculant used?				
How much do you use?	GAL LBS Per Day Per Month Per Year			
Cost per gallon?				

ROI Calculator on use of EarthTec at a California Drinking Water Treatment Plant

Parameters (Cost and Dose)

- Disinfection
- Coagulant
- Flocculant
- Polymer
- TOC compliance
- pH adjustment
- Carbon
- Copper
- Electricity
- Filter Runs and Backwashing
- Sludge Disposal

Cost Optimization: 3-for-1

Your annual cost of not using EarthTec[®]: \$135,991

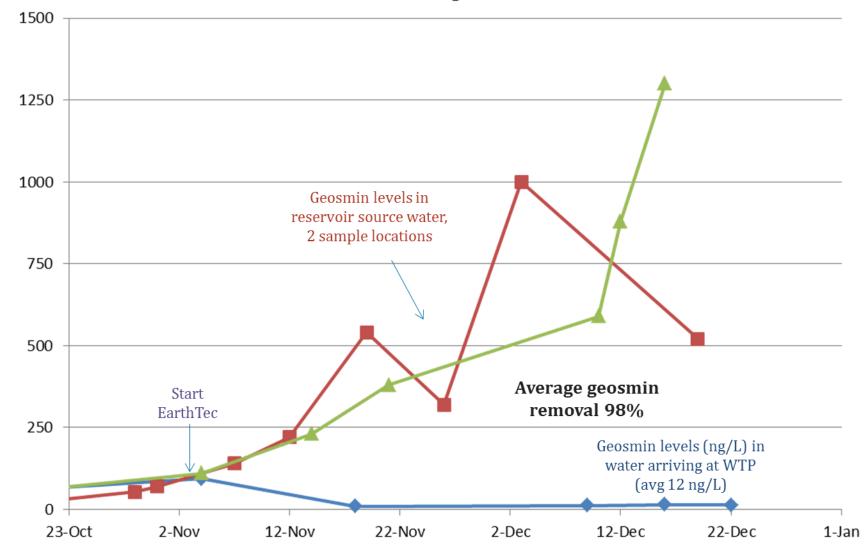
PH ADJUSTMENT SAVINGS (25%)		\$163,851
	Current Cost:	\$655,404
	After EarthTec:	\$491,553
COAGULANT SAVINGS (25%)		\$79,754
	Current Cost:	\$319,018
	After EarthTec:	\$239,263
SLUDGE HAULING SAVINGS (50	%)	\$67,500
	Current Cost:	\$135,000
	After EarthTec:	\$67,500
FLOCCULANT SAVINGS (25%)		\$20,564
	Current Cost:	\$82,255
	After EarthTec:	\$61,692
DISINFECTION SAVINGS (10%)		\$19,064
	Current Cost:	\$190,639
	After EarthTec:	\$171,575
TOC COSTS SAVINGS (100%)		\$10,000
	Current Cost:	\$10,000
	After EarthTec:	\$0
POLYMER SAVINGS (25%)		\$4,313
	Current Cost:	\$17,253
	After EarthTec:	\$12,940
-		÷,- ••
ELECTRICITY SAVINGS (0.15%)		\$895
	Current Cost:	\$581,184
	After EarthTec:	\$580,289
		+,200

ROI Calculator on use of EarthTec at a California Drinking Water Treatment Plant

ESTIMATED ANNUAL SAVINGS FOR YOUR WATER TREATMENT PLANT

Estimated Cost Reductions: \$365,941 Estimated Cost of EarthTec: \$229,950 Estimated Net Savings: \$135,991

Estimates based on using EarthTec year-round.

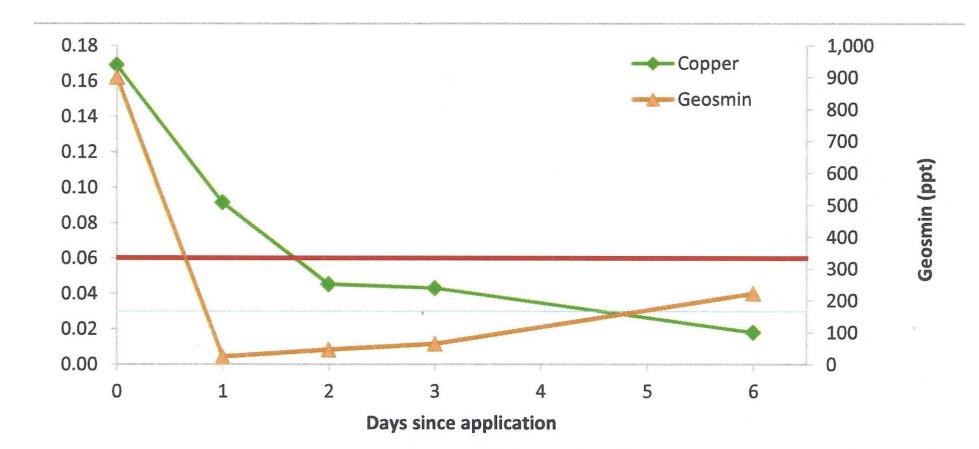

Burlington, Vermont

Burlington was experiencing high concentrations of Disinfection By-Products. The year they started using EarthTec for mussel control yielded their lowest DBP values on record.

Geosmin Reduction

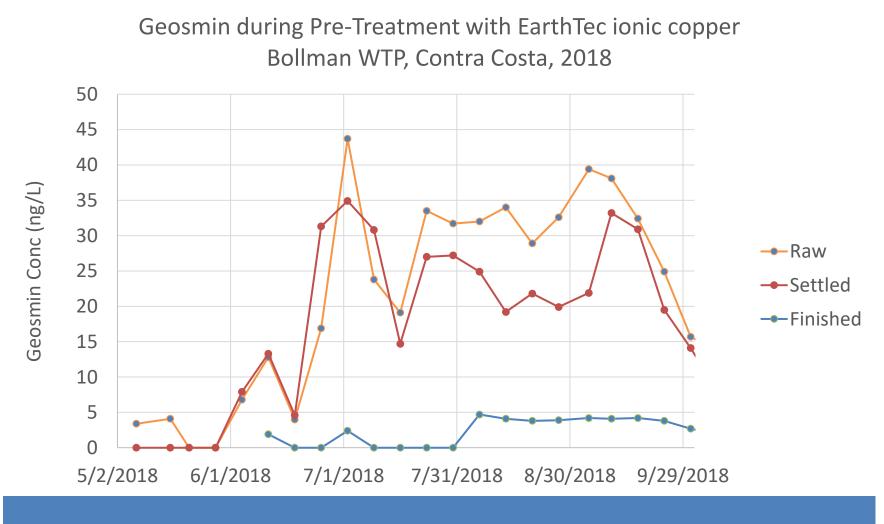
Geosmin removal from source water during fall of 2013.

Data from City of Tulsa, Oklahoma, Dec 2013


Treatment Example Geosmin Reduction

Tampa

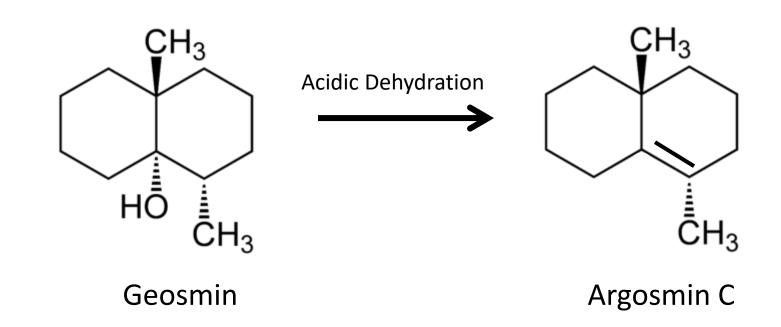
- Source water: Slow-moving river
- Geosmin at time of dose 900 ng/L
- Applied 1 ppm EarthTec at water surface
- Geosmin at 24 h <30 ng/L


Geosmin Reduction at Tampa using EarthTec

EarthTec quickly reduced geosmin concentration in municipal source water by >95%

Data from City of Tampa WTP, Florida, 2015

Geosmin Reduction, EarthTec fed at intake



First season in 15 years that CCWD received zero customer complaints

Data from Contra Costa Water District, California, 2018

EARTHTE

Proposed Mechanism for Destruction of Geosmin

trans-1,10-dimethyl-trans-9-decalol 182 g/mol. Boiling point: 270 °C 1, 10-dimethyl-l(9)-octalin 182 g/mol. Boiling point: 230 °C

Ionic Copper Chemistry (as EarthTec)

EarthTec is

- Liquid formulation containing 5% copper by volume
- Made from copper sulfate + proprietary carrier molecule (ET-3000)
- Unique features:
 - Copper is 99.99% cupric ion form (Cu⁺⁺) so it is readily bioavailable
 - Durational Control- prevents and controls for 14-30 days
 - Rapid-dispersing properties, so no need for mixing
 - Low pH- 0.2-0.3
 - Infinitely soluble in water, stays suspended, will not settle out
 - Low concentrations yield high performance: 30-120 ppb copper
 - 1 ppm EarthTec = 60 ppb copper
 - Most applications require 1-2 gallons/mgd depending on water quality
 - No immediate cell lysing

Chemical Compatibility

- Poly tanks and tubing
- Stainless steel also good
- Dose with diaphragm or peristaltic pumps
- Drums, totes, mini-bulk, bulk
- Do not use carbon steel, brass, aluminum

Summary of Ionic Copper Uses

EarthTec is a water pretreatment chemical

- Used in WTP reservoirs, intakes and pipelines
- Control algae and blue-green algae (cyanobacteria/HAB's)
- Reduce taste and odor compounds, especially geosmin
- Reduce Total Organic Carbon (TOC)
- No production of DBPs, THMs or HAA5's
- Reduce downstream consumption of:
 - activated carbon, ozone, oxidizer, coagulants, caustic
- Increase filter run times
- Reduce biofilm/slime on pipes (Improves pumping efficiency)
- Eliminate clogging in nozzles/sprinkler heads due to algae
- Control zebra mussels and quagga mussels: EarthTec QZ
- Reduce a wide range of bacteria (non-public health)
- Wastewater filter/reuse

Acknowledgements

Rick Schaffer, Norwalk and Wilmington, OH David Ackerman, Norwalk, OH Renata Claudi and Tom Prescott, RNT Consulting Hua Jiang, P.E., Tulsa Water Dawn Lei, Ph.D., Water Quality, Tampa Water Jim Bode, St Paul Regional Water Service Eric Fieldseth, Minnehaha Creek Watershed District, MN Patrick Selter, PLM Lake and Land Management, MN Steve Roy, P.E., Chief Operator, Burlington, VT John Parsons, Contra Costa Water District, CA Tracy Price, Beaver Falls Municipal Authority, PA Fred Singleton, Earth Science Labs Bob Martin, Parsons Fish Hatchery, OK Wen Huang, San Bernardino MWD

Thank you!

Paul Besenti Regional Manager, Midwest Cell: 216-399-1131 PaulBesenti@earthsciencelabs.com David Hammond, PhD VP of Applications Development Cell: 510 289-3310 dhammond@earthsciencelabs.com