THIOGUARD® TST

MAGNESIUM HYDROXIDE TECHNOLOGY AND APPLICATIONS IN WATER AND WASTEWATER

ANDREW RUPPRECHT, PREMIER MAGNESIA, LLC

Commentation and a state of the state of the

MAGNESIUM HYDROXIDE-WHAT?

MAGNESIUM HYDROXIDE

MILK OF MAGNESIA

Produced from an and treatment. Provide and from and treatment.

Thioguard is a registered trademark of Premier Chemicals and is patented for use in municipal collection systems under U.S. patent numbers: 5,718,944 - 5,833,864 - 5,554,355 - 5,834,075, 6,056,997

Mg(OH)₂

Reactive Magnesium Hydroxide Slurry Mg(OH)₂ Is Produced From Brine Mg(OH)₂

Cation exchange process \rightarrow Mg(OH)₂ + Brine

Milk of Magnesia

QUALITY STANDARDS

- The highest reactivity-CMA; Caustic Magnesia Activity
- The highest specific surface area (SSA)
- The greatest stability for transportation, storage and application
- The greatest dispersion and utile consumption rates
- Brucite, brucitic marble, and dolime are not the same nor equivalent to Premier magnesia and are not generally suitable for municipal, biological wastewater treatment

MAGNESIUM HYDROXIDE-HOW

TOTAL SYSTEM TREATMENT (TST) THE MAGNESIUM CYCLE

Aeration Basin Bio-Reactor

Bio-Solids Processing

Collection System

Recharge

Effluent

Forging Partnerships in Water and Wastewater Treatment

OUR

cleanwaterbaltimore www.cleanwaterbaltimore.org

Atlantic County Utilities Author

MAGNESIA, LLC

IMPACT OF MAGNESIUM HYDROXIDE

% REDUCTION		
75-100%		
75-100%		
20-30%		
20-30%		

FATS...OILS...GREASES

APPLICATION 1: FOG!

SAPONIFICATION- BREAK DOWN

 By raising the pH of the wastewater to 8 or higher, hydroxides break fats (FOG) down into a mild soap and glycerol. Glycerol is then consumed at the plant or in the collection system by the biology.

FATTY ACID GLYCEROL CARBOXYLATE SALTS - SOAP

WHAT TO EXPECT

2 Weeks, <u>No</u> treatment

After 2 Weeks with Treatment 2 Weeks with Treatment, after rinse

ODOR AND CORROSION

APPLICATION 2: CONVEYANCE SYSTEMS H2S - PH STUDY AND MODELING

39% of the pumping stations in the North Pinellas County Collection System has a surface pH below 4. RED $\leq 2 \text{ pH}$ YELLOW3-4 pHGREEN5-6 pHOUTLINE $\geq 7 \text{ pH}$

The WW Treatment Manageronal abse to 10An vas ear elf Sthe Norteduce the Alon Haissufface ppelemention

APPLICATION 2: CONVEYANCE SYSTEMS NITTANY VALLEY- 5 MILES TREATED FROM ONE LOCATION

- Session: 1 (OdaLog: OL45036022)

INST : Min (1 ppm) Max (81 ppm) Day Transition Average (16.6 ppm) Temperature

APPLICATION 2: CONVEYANCE SYSTEMS NO OTHER TREATMENT TECHNOLOGIES HAS BEEN SEEN YET TO IMPROVE SURFACE PH

WILLIAMSPORT, PA -ACIDIC @ BELOW FREEZING

ALKALINITY

ALKALINITY

When comparing unit cost of chemical some chemistries may appear much • cheaper than others, the chemical potency and impact on the overall system operational cost should also be taken into consideration.

LBS. ALKALINITY PER GALLON

GROWS LANDFILL, PA-CONSIDER TOTAL OPERATIONAL COST

			Thioguard	
Product	the design of the sec		Difference	Netes
Safety			Difference	notes
Chemical Formula	Ca(OH) ²	MgO		
MW	74	40.3		
Alk Equivalence	74	40.3	46%	
Typical Product Concentration	90%	93%	3%	
lbs of Alkalinity per dry lb	1.25	2.25	80%	
Annual Dry Tons used at GROWS	2,212	1,166		based on equivalence at typical product concentrations
Annual Truckloads Delivered	92	49	-47%	based on 24 ton deliveries
Cost Per Dry Ton	\$ 190.00	\$ 523.06		
Cost Per Dry Pound	\$ 0.10	\$ 0.26		
Cost Per Lbs of Alkalinity	\$ 0.08	\$ 0.11		based on equivalence at typical product concentrations
Annual Cost of pH/Alkalinity Product	\$ 420,280.00	\$ 609,773.49	45%	
Annual gallons of flash mix dilution water	6,630,695	1,165,784	-82%	based on 8 wt % soln of Lime and 3 lbs MgO per gallon
Annual Centrate Recycle (Inert Sludge), gal	25,461,871	2,012,864	-92%	this only examines the cost related to lime softening sludge and/or unreacted product components
Annual Water Treatment Chemical Costs	\$ 254,618.71	\$ 31,786.48	-88%	Based on \$0.01 treatment chemical cost per gallon of water through the treatment system
Annual Tons of Inert Sludge	4,424	350	-92%	sludge related to lime softening (based on EPA estimates of maximum 3 lbs per gallon for every lb of lime added) and/or unreactive product components
Inert Sludge Dewatering Costs	\$ 300,898.14	\$205,920.40	-32%	Based on the "EPA Handbook for Estimating Sludge Management Costs" circa 1985
Total Annual Cost of Product	\$975,797	\$847,480	-\$128,316	

BIOSOLIDS

MAGNESIUM HYDROXIDE CAN IMPROVE SLUDGE DEWATERING

When compared to calcium hydroxide (far left) and sodium hydroxide, magnesium hydroxide (far right) substantially reduces sludge volume as shown in this laboratory acid neutralization test.

LAMBERTVILLE, NJ ROLL-OFFS CUT IN HALF

Comparison of costs for identical periods. Unintert pted control of application was achieved on September of 2007.

DIGESTION-BIOGAS

SOUTH MONMOUTH-IMPROVED DIGESTION AND BIOGAS

- Methane is nearly insoluble in water. (GAS VOLUME DROP)
- Increasing water pH drives CO2 and H2S into solution. Ideal pH for methanogenisis as high as 8.2 standard units. [SPEECE 1996] (GREASE)
- Alkalinity to Volatile Acid ratios of 10-20 :1 are ideal for biogas digesters. (ALKALINITY)

PROOF

MY (mL CH4/g VS added) 8.50 -268.398 F E 302.071 7.75 -Initial pH 335.745 7.00 -6.25 -302.071 6.00 268.398 5.00 234.724 4.00 201.051 201.051 5.50 -1 NaHCO₃ to substrate ratio 2.00 3.00 4.00 5.00 6.00

NaHCO₃ to substrate ratio

SUMMARY

IMPACT OF MAGNESIUM HYDROXIDE

CHEMICAL	% REDUCTION			
Ferric Chloride FeCl ₃	75-100%			
Polymer	75-100%			
Chlorine Cl ₂	20-30%			
Sulfur Dioxide SO ₂	20-30%			

NOTE: Bioxide users see a 30-50% reduction in costs for odor control and complete elimination of grease management cost.

TOTAL SYSTEM TREATMENT (TST) THE MAGNESIUM CYCLE

Aeration Basin Bio-Reactor

Bio-Solids Processing

Collection System

Recharge

Effluent