Emerging Water & Wastewater Treatment Technologies

Electrocoagulation (EC)

Deer Creek State Park Lodge & Convention Center Mount Sterling, Ohio

August 3, 2016

Electrocoagulation

Powell Water 50 GPM Unit

LC Cowell owell

Electrocoagulation Wastewater Applications

- Industrial Wastewater
 - Aquaculture
 - Cooling Tower
 - Food Processing
 - Production Water
 - Plating
 - Frac Flowback Water
- Agricultural Wastewater
 - Dairies
 - Slaughterhouses

- Mining Wastewater
 - Colloidal Material
 - Heavy Metals
- Municipal
 - Ammonia Removal
 - Phosphorus
 - Disinfection
 - Pharmaceuticals
 - Viruses

Electrocoagulation Water Applications

Powell Water Electrocoagulation System Components

Power Source

PLC

Intake

Lagoon Logistics, LLC

- **Plates** are placed vertically within the **patented** reaction chamber
- Direct current is applied to the first and last blade
- Untreated water is introduced into the bottom of the chamber
- Water is dispersed <u>evenly</u> as it <u>moves upward</u> through the blades
- Water conducts electricity throughout the chamber

Treated Water Sample

- Metal blades react to the current by releasing charged metal ions
- This electron flooded water neutralizes charged particles, making constituents coagulate and thus separable (precipitate)
- Electron flooded / treated water
 overflows to secondary
 separation such as lamella or other
 clarifiers

 Heavy metals precipitate into acid-resistant <u>oxide</u> sludge that passes the Toxic Classification Leaching Procedure (TCLP), making the sludge non-hazardous

Sludge Comparison Sludge from Powell Water EC:

- Is in the pH 6-7 range
- metals in non-hazardous form as oxides
- · does not leach at ambient landfill pH
- passes EPA TCLP and California Title 22 STLC and TTLC leach tests
- 83% less solids than lime softening per EPA
- <u>hydrophobic</u> 76% improvement infiltration rate

Sludge from Chemical Coagulation:

- · is in caustic pH range
- metals in form of hydroxides
- metals can become soluble in the neutral pH range leaching potential
- Large volumes
- Hydrophilic difficult to dewater

EC Handles <u>mixed waste streams</u> at the same time (colloids + metals + FOG + TSS, BOD, bacteria, viruses, endocrine disrupters, pharmaceuticals, cyanotoxins, etc.)

ELECTROCOAGULATION - EC

Removal Mechanisms

Fe (or Al) ions AND electrons are introduced into the aqueous solution

- Oxidation/reduction reactions
- Emulsion breaking FOG
- Halogen complexing Pesticides, Herbicides
- **Bleaching by oxygen ions** dyes, cyanides, bacteria, viruses, endocrine disruptors, biohazards, etc.
- **Seeding** Complex metal ions
- **Electron flooding** bacteria, cysts, and viruses

6 GPM EC Unit

Powell Water EC Optimization

Controlled by:

- Blade type
- Amperage density
- Voltage
- Flow rate
- Process time (residence)
- Conductivity of water
- pH
- Filtration technique

EC Does ...

- Efficiently remove constituents between 2nd and 17th column on periodic chart
- Not use a large quantity of electricity
 - Typically 2-7 kWh/1,000 gallons
- Not require clean power
 - Only low voltage PLC and computer requires uninterrupted power source (UPS)
 - o battery can be used
 - Easier to operate in countries with poor electric grid

Microsystin LR – Celina, OH

67.1 ug/l Raw Sample 2.2 ug/l EC Treated

Municipal Sewage from POTW Discharge Water:

(002-156)	Raw	<u>Treated</u>	% Removal
BOD (mg/l)	1,050	14	99% +
TSS (mg/l)	4,620	7	99% +
Bacteria (cfu)	110,000,000	2,700	99% +
<u>(002-187)</u>	Raw	<u>Treated</u>	<u>% Removal</u>
BOD (mg/l)	500	19	96%
TSS (mg / l)	3,245	14	99% +
(006-646)	Raw	<u>Treated</u>	<u>% Removal</u>
BOD (mg / l)	3,345	510	84%
TSS (mg / l)	16,500	165	99%
Volatile Solids	12,300	126	99%

<u>Vanderbilt Study</u> <u>Municipal Sewage from POTW Discharge Water:</u>

	Raw	Treated	<u>% Removal</u>
COD	490	26	94.7%
Suspended Solids	73	7	90.4%
Total Hardness	127	11	91.3%
Alkalinity	267	11	95.8%
pН	6.88	7.02	
BOD_5	220	9	95.9%
Coliform	318,000/ml	O	99% +
Phosphates	38	О	99% +

Wastewater Facility Hydro, OK

Food Processing Industry: Chicken Processing Plant

	<u>Raw (mg / l)</u>	Treated	%Removal
BOD ₅ (Total) BOD ₅ (Soluble) TSS	4,328	480	89%
	303	39	87%
	3,367	83	97%

Food Processing Industry: Fish Processing and Packaging Plant

Raw (mg / l	Treated	% Removal
-------------	---------	-----------

BOD ₅ TSS	40,500	750	98.1%
TSS	33,667	107	99.7%
FOG	3,047	12.1	99.7%

Salmon Farm - Chile

Food Processing Industry: Salad Dressing Production Plant Water

	Raw (mg/l)	Treated	% Removal
BOD_5	8,223	752	91.0%
TSS	14,528	86	99.4%
FOG	18,165	28	99.8%

Metal Plating Client MO

Analyte (mg/l)	Raw	Post EC	% Reduction
Chromium (Cr) Total	37.9	0.10	99+
Chromium (Cr) hex	21.0	<0.05	99+
Zinc (Zn)	18.1	0.16	99+

3 gpm EC Operation

owell ater

Treated Effluent

Successful Result

Results - Lead & Other Metals

Lead mining operation client in Missouri.

Results in ug/L

Analyte	Raw	Post EC	% Reduction
Cadmium (Cd) Total	36	0.15	99+
Copper (Cu) Total	3	ND	99+
Lead (Pb) Total	1,285	0.64	99+
Zinc (Zn) Total	6,675	13.0	99+

Mining Results: <u>Minute</u> Constituent Removal (3 different mines)

Constituent	Raw	Post EC	% Removal
	mg/L	mg/L	
Copper	0.0068	<0.0019	72
Zinc	0.42	<0.0019	99+
Cadmium	0.00392	<0.0006	98
Lead	0.00732	<0.00003	99+
Silver	<0.00003	<0.00003	
Zinc	0.15	<0.001	99+
Cadmium	0.00082	<0.00006	93
Lead	0.00171	<0.00003	98
Copper	0.798	0.002	99 +
Cadmium	0.1252	0.004	96.8
Lead	0.59	0.0032	99 +
Silver	0.0081	0.0006	92.6

Biologicals					
Contaminant Before After % Remov					
Bacteria	110,000,000 cfu	2,700 cfu	99+		
Coliform	318,000,000 cfu	ND (<1) cfu	99+		
E. coli	>2,419.2 mpn	ND (<0.01) mpn	99+		
Enterococcus	83 mpn	ND (<10) mpn	82		
Total Coliform	>2,419.2 mpn	ND (<0.1) mpn	99+		

Dyes			
Contaminant	Before (NTU)	After (NTU)	% Removal
Ref. 006-691	125.1	12.1	90
Ref. 006-692	129.4	2.2	98
Ref. 006-854	68.30	0.68	99+
Ref. 006-851	2,340	4.5	99+

Hydrocarbons			
Contaminant	Before (mg/l)	After (mg/l)	% Removal
Benzene	90.1	0.3590	99+
Ethyl Benzene	428	0.372	99+
MP-Xylene	41.6	0.057	99+
MTBE	21.58	0.0462	99+
O-Xylene	191	0.416	99+
PCB	0.0007	ND (<0.0001)	85
Petroleum Hydrocarbons	72.5	ND (<0.2)	99+
Toluene	28,480	0.227	99+

Nutrients			
Contaminant	Before (mg/l)	After (mg/l)	% Removal
Ammonia	49	19.4	60
Nitrate	11.7	2.6	77
Nitrite	21	12	42
Nitrogen TKN	1,118.88	59.08	94
Phosphate	28	ND (0.2)	99+
Potassium	200	110	45
Sulfate	104	68	34

Pesticides			
Contaminant	Before (mg/l)	After (mg/l)	% Removal
Aldrin	0.063	ND (0.001)	98
Chlorpyriphos	5.87	ND (0.03)	99+
Cypermethrin	1.3	0.07	94
DDT	0.261	0.002	99+
Diazinon	34	0.21	99+
Lindane	0.143	ND (0.001)	99+
Propetamphos	80.87	0.36	99+

Metals / Minerals			
Contaminant	Before (mg/l)	After (mg/l)	% Removal
Aluminum	224	ND (0.7)	99+
Arsenic	0.076	ND (<0.002)	97
Barium	0.014	ND (<0.001)	93
Boron	4.86	1.41	70
Cadmium	0.125	ND (<0.004)	96
Calcium	1,321	21.4	98
Chromium	139.	ND (<0.1)	99+
Cobalt	0.1238	0.0214	82
Copper	0.7984	ND (<0.0020)	99+
Cyanide (free)	723	ND (<0.02)	99+
Fluoride	1.1	0.415	62
Gold	5.72	1.38	75
Iron	68.34	0.19	99+
Lead	0.59	0.0032	99+
Magnesium	13.15	0.04	99+
Manganese	1.061	0.018	98
Mercury	0.72	ND (<0.003)	98
Molybdenum	0.35	0.029	91
Nickel	183	0.07	99+
Platinum	4.4	0.68	84
Selenium	68	38	44
Silicon	21.07	ND (0.10)	99+
Silver	0.0081	0.0006	92
Tin	0.213	ND (<0.020)	90
Vanadium	0.262	ND (<0.002)	99+
Zinc	221	0.140	99+

Organics			
Contaminant	Before (mg/l)	After (mg/l)	% Removal
BOD ₅	1,050	14	98
NTU	35.38	0.32	99+
TSS	1,560	8	99+

Radioisotopes			
Contaminant	Before	After	% Removal
Americium-241	71.99 pCi/l	0.57 pCi/l	99+
Plutonium-239	29.85 pCi/l	0.29 pCi/l	99+
Radium	1093 pCi/l	0.10 pCi/l	99+
Uranium	0.13 mg/l	0.0002 mg/l	99+

Abbreviations

mg/I = milligrams per liter or parts per million

pCi/I = picocuries per liter

cfu = colony forming unit

mpn = most probable number

NTU = nephelometric turbidity units

ND = not detectable at the reporting limit

THANK YOU!

Local Ohio Powell Water Representative
Mark Fashian
740-815-2440
mark@covenantanalytical.com

For Questions and Comments Please Contact

Judd Sundine at: isolite@ix.netcom.com (720)-363-0548

or Jeff Couch at: jeffcouch7@comcast.net (970)-231-9937

Electrocoagulation Demo

