

Water Transmission Main Condition Assessment

March 6, 2024

environment

aining Center

Agenda

Project Background & Objectives

Inspection Technology Selection

Valve Assessments

Cast Iron Pipe Leak Detection

PCCP Inspection

Overall Transmission Main System Recommendations

2

City of Elyria Water System

Transmission Mains

21,700LF of 1902 20" Cast iron pipe 26,000 LF of 1945 30" Cast iron pipe 20,500 LF of 1958 48" Prestressed concrete cylinder pipe (PCCP)

BLACK & VEATCH

Keys To Success

Inspection Technology Selection

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

Data Collection & Failure History

Limited Data Available on Transmission Main System

- Transmission Main System Record Plans
- Soil Corrosivity Study
- Limited GIS Data
- High Service Pressure & Flow Data
- City institutional knowledge of system

Failure History

- 20" CIP 1 Failure & History of Joint Leaks/Repairs
- 30" CIP No Failures, History of Joint Leaks
- 48" PCCP No Failure History
- Valve Conditions Largely Unknown, City did not regularly exercise transmission main valves

PCCP Technology Selection

PCCP Design

- Composite pipe product
 - Internal mortar or concrete lining
 - Steel Cylinder
 - Concrete Core(s)
 - High Strength Prestressed Wires
 - Exterior Mortar Coating
- No lay sheets available for Elyria's PCCP transmission main

Let Failure Mode Dictate Technology Selection

<image>

Technology

Selection

ELECTROMAGNETIC INSPECTION

Technology & Platform Comparison for this Project

Technique or Technology	Platforms	Information Obtained	Deployment/ Extraction Requirements	Operating Environment	Viable for this Project?	
Internal Electromagnetic	Pure PipeDiver	 Location and quantity of wire breaks Identifies cracking, spalling, and joint damage from onboard camera 	 Hand or insertion tube >=16-inch outlet 	In servicePartially Isolated	YES	7
Inspection	Pure Robotics	 Location and quantity of wire breaks Identifies cracking, spalling, and joint damage from CCTV 	Hand>=16-inch outlet	PartiallyDewateredFully Isolated	YES	
Visual and Sounding Inspection	Manned Entry	Identify hollows, cracking, spalling, and joint damage	Manned entry though >=20-inch outlet	Dewater main	NO	
Acoustic Fiber Optic Monitoring	Fiber Optic Cable	Real time location and quantity of wire breaks	Installation requires dewatering of the pipeline	 Normal operating conditions 	NO	
Stress Wave Analysis	Echologics Epulse	 Provides an indirect estimate of prestress loss Does NOT find wire breaks 	Requires external sensors spaced ~100 feet	 Normal operating conditions 	NO	
Leak Detection & Visual Inspection	Pure Sahara	 Identify and locate leaks Identifies cracking, spalling, and joint damage Does NOT find wire breaks 	<pre>Insertion tube >=2-inch outlet</pre>	Inservice	NO	

Electromagnetic PCCP Inspection Technology Option 1: Pipe Diver

Free swimming condition assessment tool Data obtained: Wire break data & onboard camera footage

Electromagnetic PCCP Inspection Technology Option 2: Pure Robotics

Robotic Crawler Inspection Tool Data obtained: Wire break data & CCTV

Pure Robotics & Pipe Diver Comparison

	PureRobotics CCTV	PipeDiver (Depressurized Entry)		
Inspection Duration	5 Days	1 day		
Operational Impacts	48" PCCP Offline for 5 Days minimum Full isolation Requires Installation of 5 Pipe Taps	48" PCCP Offline for 1 Day Partial isolation Requires Installation of 2 Pipe Taps		
Required Dewatering	Significant dewatering effort. Multiple phases required.	Minimal dewatering required at two locations.		
Length Inspected	20,247 LF	20,066 LF		
Information Obtained	High-resolution electromagnetic data Wire break location & quantity Cracking, spalling and joint damage (Depending on CCTV Video Quality)	Medium-resolution electromagnetic data Wire break location & quantity Cracking, spalling and joint damage (Depending on onboard Video Quality)		
Cost Estimate	\$1,500,000	\$1,000,000		
Schedule	Requires multiple contracts, longest duration	Requires single contract, shortest duration		

CIP Technology Selection

Leak Detection Platforms

- In-pipe acoustic probe
 - Pressure and flow requirements
 - Tethered: Can couple to CCTV
 - Free-flowing: Requires excavation for sensor installation; may get lost

- External acoustic correlators
 - Easy installation on existing appurtances (hydrants, valves, sampling ports)
 - Pressure requirements; not ideal near noisy areas (high traffic, pump stations)

Leak Detection Selection

External leak detection is recommended for Elyria's 20 & 30-inch CIP Transmission Mains

- Minimal operational impact
- Minimal city support

Why not internal?

- Risk of losing tool in service connections or cross connections
- Risk of tool getting caught on tuberculation
- Significant pipeline modifications
- Major system operational impacts (Dewatering, Isolation, etc.)

Valve Assessment

Valve Assessment Objectives

- 1. Ensure that valves required for pipeline inspection function and identify any valve replacements that may be required.
- 2. Gather information on existing valves for the condition assessment.

Valve Assessment Overview

48" PCCP Main – Mainline Cone Valves

20" & 30" CIP Main – Mainline Gate Valves

BLACK & VEATCH

Valve Assessment Overview

48" PCCP to 30" CIP Cross Connection Gate Valves

20" CIP to 30" CIP Cross Connection Gate Valves

PCCP Cone Valves & Cross Connection Valves

All cone valves operated very well and were in great condition.

48 – 30-inch Cross-connection gate valves also operated well

PCCP Cone Valves & Cross Connection Valves Results

Short Term Recommendations

• No action needed prior to inspection

Long Term Recommendations

• Continue to monitor performance of valves and exercise valves on a scheduled program.

	Total Valves	Operable	Inoperable	High Risk	Medium Risk	Low Risk
Valve Type	Inspected	Valves	Valves	Valves	Valves	Valves
Water Treatment Plant						
Gate Valves	2	2	0	0	1	1
30-inch Cone Valves	6	6	0	0	0	6
24-inch Cross						
Connection Valves	6	6	0	0	0	6
Downstream Gate						
Valves to Distribution						
System	2	1	0	1	0	0
Total	16	15*	0	1	1	13

Table 2: Condition Summary of 48-inch PCCP System Valves

*This Quantity does not include the 36-inch gave valve which is yet to be exercised

30-inch & 20-inch CIP Mainline & Cross Connection Valves

Valves were very corroded

Valves struggled to exercise 25% often

Some exposed gear boxes on the 20-inch CIP valves in very poor condition – did not exercise

20-inch & 30-inch CIP Valves Reults

Short Term Recommendations

• No action needed prior to inspection.

Long Term Recommendations

- Continue to exercise valves in operable condition
- Avoid exercising high risk valves identified in TM
- Replace all valves including air valves and drain valves during pipeline rehabilitation project or within 10 years.

	Total Valves	Operable	Inoperable	High Risk	Medium Risk	Low Risk
Transmission Main	Inspected	Valves	Valves	Valves	Valves	Valves
30-inch CIP Main Line	17	15	2	7	10	0
20-inch CIP Main Line	11	9	2	4	6	1
30 - 20-inch Cross						
Connection	5	4	1	1	4	0
Total	33	28	5	12	20	1

Table 3: Condition Summary of 30-inch and 20-inch CIP System Valves

30-inch & 20-inch CIP Air Valves

Air Valves were very corroded and in poor condition

Did not operate or exercise air valves

CIP Leak Detection

CIP Leak Detection Overview

- Utilize correlator data to recommend any necessary improvements to transmission main system
- Correlators can detect acoustic leak noise at a relative location between sensors
- Sensors can be mounted on surface of pipe, appurtenances, or threaded into hydrants or air valves (hydrophone)
- General approach was to space sensors at ~1000 ft
- Utilized potholing when 1000 ft spacing between valves, hydrants, etc. could not be achieved

CIP Leak Detection Photos

CIP Leak Detection Overview: 20-inch CIP Transmission Main

23 Phases Completed ~22,000 LF Inspected

FIGURE 1: 23,000-LF, 20-inch Phase

26 Phases Completed ~26,000 LF Inspected FIGURE 2: 25,000-LF, 30-inch Phase

CIP Leak Detection Results Overview

FIGURE 1: 23,000-LF, 20-inch Phase

FIGURE 2: 25,000-LF, 30-inch Phase

CIP Leak Detection Data Validation

- Utilize ground mics to confirm data that was gathered by leak correlators
- Confirm areas with observed surface leaks are generating leak noise
- Testing surfacing leaks for chlorine content
- Excavation at a few sample leaks to test for chlorine, ultrasonic pipe testing for wall thickness at leak locations

Objective:

Quantify number of leaks and locations for use in condition assessment.

PCCP Inspection

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

PCCP Inspection Plan Overview

PCCP Inspection Plan Sequence Overview

Insertion & Retrieval of Inspection Tool

- Decided to tap pipeline to create reliable access, reducing • risk and operational impact
- Pressurized insertion lacksquare
- Depressurized retrieval ullet

MOPO Overview (Maintenance of Plant Operations)

Step by step procedure for execution of inspection and operational activities broken down into the following:

- 1. Maintaining Supply
- 2. Retrieval Mechanism Setup
- 3. Pressurized Insertion/Inspection of Main
- 4. Retrieval of Inspection Tool
- 5. Flushing

(48" PCCP Shu	Electromagn	etic Inspection			
		Date MOPO submitted:			1/9/2024			
				Project Start Date	6/4/2024			
				Approximate Duration		35 Hours		
				D	RAFT			
	City of Elyri	a - 48-inch PCCP Tra	nsmission Main	MOPO written by:		Adam Covey (Black & Veatch)		
Pip	e length/volume:	3.9 mil 2.0	es of 48 inch, M gallons	Phone:		440-785-8868		
	Site/Location:	3628 W Erie Ave Cooper Foster	e, Lorain, OH 44053 to Park Rd, Lorain, OH	City Project Manager		Stephen Canfield		
	PROJECT #:	4	14869		Phone:	440-935-3012		
	Pre-work Items							
	Activity		Start Time	Date	City of Elyria / Black & Veatch / Pure Technologies			
				Retrieva	al Net Set Up			
Item Activity		Start Time	Date	City of Elyria / Black & Veatch / Pure Technologies				
1 To Maintain Supply and Flush a Dead End Main Begin flushing hydrants on Avon Lake Interconnection		7:00 AM	Tuesday, June 4, 2024	City of Elyria Crew 1 (Crew Contact Name XXX-XXX-XXXX)				
2 Slowly open 20" and 24" gate valves to open the Avon Lake interconnection line and confirm interconnection is open		7:15 AM	Tuesday, June 4, 2024	City of Elyria Crew 1 (Crew Contact Name XXX-XXX-XXXX)				
Begin flushing hydrant west of W Ridge Rd & Milan Elyria Rd intersection <u>Completed Maintaining Supply Measures</u>		7:45 AM	Tuesday, June 4, 2024	City of Elyria Crew 1 (Crew Contact Name XXX-XXX-XXXX)				
 Begin Isolation of Southern Retrieval Section - Slowly close 36" BFV (Butterfly Valve) at Middle Ridge Rd and Old West Ridge Rd. Allow at least 10 minutes to close 		8:00 AM	Tuesday, June 4, 2024	City of Elyria Crew 2 (Crew Contact Name XXX-XXX-XXXX)				
Slowy close 36" gate valve south of Cooper Foster Park Rd. Allow t least 10 minutes to close <u>Completed Isolation of Southern Retrieval Section</u>		8:30 AM	Tuesday, June 4, 2024	City of Elyria Crew 4 (Crew Contact Name XXX-XXX-XXXX)				

39

Hydraulic Planning

- Modeling scenarios Taking 48" PCCP Transmission main offline for 8 24 hours
- Desired flow velocity for inspection tool: 1-2 ft/s
- Evaluation of opening interconnection with neighboring city to supplement taking 48" offline temporarily
- Determine min/max achievable flows

PCCP Inspection Objectives

- Obtain wire break data to complete structural analysis of pipe
- Determine expected useful life of pipeline lacksquare

Overall Transmission Main System Recommendations

© Black & Veatch Corporation, 2023. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

Next Steps:

Overall Transmission Main System Recommendations

- Summarize Inspection Results
- Utilize data collected from:
 - Valve Assessments
 - CIP Leak Detection
 - PCCP Inspection
 - Past Records & Reports
- Provide recommendations for future inspection, repair and maintenance
- Provide alternatives analysis for rehabilitation or replacement
- Provide recommendations for future capital improvement projects

Special Thanks to...

Sam F. Jacob – Water Team Leader Dave Rothgery – Water Distribution Operations Manager Sam W. Jacob – Water Distribution Kathy McKillips – City Engineer Stephen Canfield – Water Distribution Operator

THANK YOU

CONTACT:

Lee Weber, P.E Senior Engineering Manager

4449 Easton Way, Suite 150 Columbus, OH 43219 614.454.4398