

Enhanced Operations at the Water Treatment Plant

E. Ashley Bair Fontus Blue

OTCO Annual Class III & IV Workshop July 31, 2019

fontusblue Presentation Overview

- Discuss two groups of key metrics to monitor and enhance operations:
 - Key metrics from existing data and no additional software or lab equipment required
 - Key metrics requiring additional software and/or lab equipment
- Key Metric Discussion Format
 - What the metric is
 - Why the metric is valuable
 - How the metric is measured
 - Case studies with data from Ohiobased water treatment plants

fontusblue Key Metric: Lab Measured Stability

- What?
 - aka Marble Test
 - Direct measure of water tendency to deposit/dissolve calcium carbonate scales
 - Recorded on MOR as Stability
- Why?
 - Provides information about whether water is corrosive or excessively scale forming
- How?
 - Lab test to determine saturated vs. unsaturated alkalinity and pH

fontusblue Lab Measured Stability Results (Monthly)

Calculation

CCPP = unsat. alk. – sat. alk.

- >0 stable or scale forming
- < 0 corrosive

Observations

 Monthly results could miss changes in stability caused by operational changes

fontusblue Lab Measured Stability Results (Weekly)

Observations

 Weekly results show trends and could catch operational changes

fontusblue Lab Measured Stability Results (Daily)

- Daily measures identify operational extremes
- Additional uses for daily values?

- What?
 - A measure of the total organic carbon
- Why?
 - Monitor variation in source water
 - If SW, must meet required removal percentages
 - Estimate chlorine demand from Tap
 - Associated with DBPs
- How?
 - Data required for MOR
 - Usually sent out to a lab for analysis

Required TOC Removal				
	Source water alkalinity,			
Source water	mg/L as C			
TOC, mg/L	0-60	>60-120	>120	
>2.0 to 4.0	35%	25%	15%	
>4.0 to 8.0	45%	35%	25%	
>8.0	50%	40%	30%	

TOC Results – Source Water Variation

Calculation

Plot over time

- Source water varies from ~3-8 mg/L (>150%)
- How much does it vary between monthly samples?

TOC Results – Tap Water Variation

Calculation

Plot over time

- Tap water varies from ~2-3 mg/L (50%)
- How much does it vary between monthly samples?
- Impact on disinfection demand?

fontusblue TOC Results - % Removal

Calculation

Simple removal calculation

- Removal varies ~30-70% from month to month
- How much does it vary between monthly samples?

fontusblue Key Metric: Max. Chlorine Demand

- What?
 - Maximum measured chlorine demand in the distribution system
- Why?
 - Provides information about seasonal demand
 - Potential to reduce disinfectant dose if DBP concerns
- How?
 - Required data available on MOR

Max. Chlorine Demand Results

Calculation

Max Demand (in given month) = Entry Point Total – Dist. System **Lowest** Total

Observations

- Seasonal variation as expected and more frequent insight than TOC results
- Demand more than doubles in the summer and fall (tap TOC and temperature)
- Opportunity to lower dose in January-May?

Exceptional Water for Everyone, Every Day

Max. Chlorine Demand Results cont.

- Seasonal variation as expected
- Demand increases by 50% in the summer (tap TOC and temperature)
- Opportunity to lower dose throughout the year?

fontusblue Key Metric: Distribution System DBPs

- What?
 - Disinfection byproduct compliance results
- Why?
 - Provides information about treatment performance and disinfection practices and distribution system issues
- How?
 - Basic calculations (LRAA etc.)

fontusblue Distribution System DBP Results - LRAAs

Calculation

LRAA (Locational Running Average) for each site

- LRAA's general trend can be visualized
- Sites moving in unison indicates treatment and disinfection practices
- "Rogue" sites indicate distribution system location-specific issues

fontusblue Additional Support for Some Key Metrics

- Additional items required to support some key metrics:
 - UV254 Meter-Spectrophotometer
 - 2. Simulation Software

decisionblue

Excel-based program

Cloud-based program

Instrument	Adapter
DR 6000	LZV902.99.00020 (1-cm, 5-cm sample cells)
	LZV902.99.00002 (1-cm carousel)
	LZV887 (10-cm sample cell)
DR 5000	A23618 (1-cm, 5-cm sample cells)
	LZY421 (10-cm sample cell)

- What?
 - Surrogate measure of organics in water
- Why?
 - Monitor variation in source water
 - If SW, estimate required TOC removal
 - Estimate chlorine demand and DBPs from tap
 - Can be measured more frequent than TOC
- How?
 - UV meter/spec, easy and fast (<1 min/sample)

Instrument	Adapter
DR 6000	LZV902.99.00020 (1-cm, 5-cm sample cells)
	LZV902.99.00002 (1-cm carousel)
	LZV887 (10-cm sample cell)
DR 5000	A23618 (1-cm, 5-cm sample cells)
	LZY421 (10-cm sample cell)

fontusblue UV254 Results – Source Water Variation

Calculation

Plot over time

- Source water varies from ~0.15-0.6 cm⁻¹ (400%)
- Considerable variation within a month (not captured in monthly TOC)

fontusblue UV254 Results – Treated Water Variation

Calculation

Plot over time

- Treated water varies from ~0.04-0.065 mg/L (>50%)
- More variation than captured by monthly TOC

fontusblue UV254 Results - % Removal

Calculation

- Simple removal calculation for UV254
- Predicted TOC is 40-70% of UV254 removal

- July TOC at 60% of UV254 removal
- UV254 removal varied from ~60-90% over month
- Going into August, can expect removal to be 41-50%.

fontusblue UV254 Results - PAC Dosing

Calculation

Simple removal calculation

- Removal increases with increasing PAC
- Removal decreases with decreasing PAC
- Can be used to approximate when dose is "right" – immediate response

fontusblue Key Metric: Simulated CCPP

- What?
 - Simulated value of the mass of CaCO₃ to deposit or dissolve based on equilibrium chemistry
- Why?
 - Provides stability estimate how corrosive or scale forming water is
- How?
 - Uses values already recorded on bench sheet plus calcium hardness
 - Calculation is complex

fontusblue Key Metric: Simulated CCPP

Calculation

- Calculation is complex
- CCPP:
 - >0 stable or scale forming
 - < 0 corrosive

- Simulated CCPP is different than measured CCPP
- Simulated CCPP
 changes are much more
 visible than measured

Thanks for your attention.

E. Ashley Bair

ashley@fontusblue.com

