Evaluating Risks in a Source Water Protection Area -Modernized Methodologies

Aaron Colson

City of Dayton, Department of Water Division of Environmental Management

Operator Training Committee of Ohio, Inc.
Class III/IV Workshop
August 2, 2017

Outline

- City of Dayton Source Water Protection Area
- Recent Updates to the City of Dayton Source Water Protection Program
- * US EPA's Priority Setting Approach (PSA) for Managing Groundwater Contamination Sources in Wellhead (Source Water) Protection Areas
- Modernizing PSA Methodology
- * Conclusions

Outline

- City of Dayton Source Water Protection Area
- Recent Updates to the City of Dayton Source Water Protection Program
- * US EPA's Priority Setting Approach (PSA) for Managing Groundwater Contamination Sources in Wellhead (Source Water) Protection Areas
- Modernizing PSA Methodology
- * Conclusions

City of Dayton, Ohio

Great Miami Buried Valley Aquifer

- Sustainable Asset
- Phenomenal Recharge
- Sole Source Aquifer
- ~1.5 Trillion Gallons
- Principal Water Source For 1.6
 Million People
- Dayton Water provides
 drinking water to more than
 400,000 customers
- Producing 60 MGD

Wellfields and Source Water Protection Area

Outline

- City of Dayton Source Water Protection Area
- Recent Updates to the City of Dayton Source Water Protection Program
- * US EPA's Priority Setting Approach (PSA) for Managing Groundwater Contamination Sources in Wellhead (Source Water) Protection Areas
- Modernizing PSA Methodology
- * Conclusions

Reasons for Updating SWPP

- ➤ Timeframe 25+ years
- Water usage decrease
- More and better hydrogeological data
- Need to model the 5 year Time Of Travel (TOT) boundary

Reasons for Updating SWPP Cont

- Time for a re-evaluation of the Source Water Protection Program
- Reconnect with the businesses operating in the 1 year TOT
- Begin to understand businesses operating in the 5 year TOT

Reasons for Updating SWPP Cont.

- ➤ Used new delineation and the risks posed within the 5 year TOT
- Large number of businesses and the need for a quantitative risk ranking system
- End goal of the risk ranking system is to prioritize limited SWPP funding and resources for the highest risks

Outline

- City of Dayton Source Water Protection Area
- Recent Updates to the City of Dayton Source Water Protection Program
- * US EPA's Priority Setting Approach (PSA) for Managing Groundwater Contamination Sources in Wellhead (Source Water) Protection Areas
- Modernizing PSA Methodology
- * Conclusions

Priority Setting Approach (PSA)

- ➤ What is the PSA?
 - Method developed by the US EPA in the early 1990s
 - ➤ Risk screening tool to enable assessment of risks posed by potential sources of contaminants
 - Scores and ranks risk posed by sources of contaminants

Priority Setting Approach R = L + S

- ➤ What is the PSA?
 - ➤ PSA is based on conventional risk assessment
 - Risk = Likelihood
 x Severity
 - \triangleright R = L x S

Example Potential Sources of Contamination in the Dayton SWPA

- Container Storage and Material Transfer
- ☐ Storage Piles
- Tanks
- Overland Material Transport
- Landfills
- ☐ Shallow (Class V) Dry Wells
- Agrichemical Applications
- Pipelines

Priority Setting Approach

R = L + S

S reflects the potential health hazard

$$S = Q + A + T$$

Quantity Released (Q)

Attenuation due to transport (A) through buried valley aquifer deposits

Toxicity of the contaminant (T)

Outline

- City of Dayton Source Water Protection Area
- Recent Updates to the City of Dayton Source Water Protection Program
- * US EPA's Priority Setting Approach (PSA) for Managing Groundwater Contamination Sources in Wellhead (Source Water) Protection Areas
- * Modernizing PSA Methodology
- * Conclusions

Modernization of the PSA

- USEPA PSA method required modernization for use by the City of Dayton
- Over 25 years of SWPA- specific information available
- Incorporation of results from numerous hydrogeological investigations

Modernizing PSA Method Cont.

- Standardization of potential contaminant's environmental characteristics and how they persist in the subsurface
- Inclusion of new contaminants of concern in the PSA evaluation process
- Needed to implement PSA calculations in a computer model format to permit quick and standardized assessments

Original PSA

Modernized PSA

I: Characterize Your WHPA

Approach:

I: Characterize Dayton's SWPA

Approach:

Analytical models
Manual maps

Approach:
Wellhead Datasheet
General Assumptions
Planning period
Depth to aquifer
Aquifer thickness
Net infiltration
Unsaturated zone
Saturated zone
Groundwater
velocity

Well logs

Approach:
Using Site-Specific
Data Sources

Existing/ updated
MODFLOW
model(s)

Existing/ updated
DRASTIC model

Hydrogeological
investigations

Long-term
monitoring results

Well logs - Investigations

Numerical models

Derivative maps

Previously Defined WHPA vs Current SWPA Delineation

Dayton WHPA (circa 1988)

Current Dayton SWPA

Original PSA

Modernized PSA

II: Potential Sources of Well Contamination

II: Potential Sources of Well
Contamination

Subtask 3:

Identify & Locate All Sources

Approach:

Surveys
Field studies
Manual maps

Identify & Locate All Sources

Approach:

Site inventories (historical & new) Existing databases

Subtask 4:

List all sources by category & name

Approach:

Manually complete Block I Master Scoresheet

Subtask 4:

List all sources by category & name

Approach:

Develop standardized category & name database

Subtask 5:

Contaminant source characterization

Approach:

Source Datasheet
General Assumptions
Non-standard inputs
estimated based on
source type

Contaminant source characterization

Approach:

Develop standardized database for potential contamination for all sources

Continue Task III

Original PSA

Modernized PSA

III: Perform Source Calculations

III: Perform Source Calculations

Subtask 6:

Assess
Contaminant
Source Releases

Approach:

Use Source Datasheet and manually calculate:

Likelihood of release
(L₁), Quantity of release
(Q), Toxicity (T) scores

Subtask 6:

Assess
Contaminant
Source Releases

Approach:

Using standardized databases and compute:

Likelihood of release
(L₁), Quantity of release
(Q), Toxicity (T) scores

Subtask 7:

Scoring Results
Transfer Master
Scoresheet

Approach:

Manually complete Block II Master Scoresheet Subtask 7:

Scoring Results
Transfer Master
Scoresheet

Approach:

Automatic calculation of Master Scoresheet variables

Original PSA

Modernized PSA

IV: Perform Transport Calculations

IV: Perform Transport Calculations

Subtask 8:

Assess Contaminant Transport

Approach:

Use Source Datasheet manually calculate,

- Likelihood of Reaching well (L₂)
- Attenuation due to Transport (A)

Subtask 8:

Assess Contaminant Transport

Approach:

Using standardized databases, compute

- -Likelihood of Reaching well (L₂)
- -Attenuation due to Transport (A)

Approach:

Subtask 9:

Scoring Results
Transfer Master
Scoresheet

Approach:

Manually complete Block II Master Scoresheet

Scoring Results
Transfer Master
Scoresheet

Automatic calculation of Master Scoresheet variables

Original PSA

Modernized PSA

V: Estimate Risks and Rank Sources

V: Estimate Risks and Rank Sources

Original PSA

Subtask 13: Risk Reduction Projects

Approach:
More regulatory
with some
incentives including
purchasing
chemical rights

Modernized PSA

Subtask 13: Risk Reduction Projects

Approach:

- More incentive focus and target greatest risks
- Developing Drinking Water Protection Partnerships
- Social media to create awareness plus promoting the business
- Offering more useful incentives such as use of consultant and funding for engineering controls
- Purchasing chemical rights

Overview of the Dayton's Priority Setting Approach Spreadsheet Based Platform

Source #																																					
Source Name																																					
Location																																					
Author																																					
Date																																					
State Plane X (US Survey Ft) [LINK]	15022	280																																			
State Plane Y (US Survey Ft) [LINK]	66661	2																																			
				(Curr	ent S	Source 1	Гуре:	Landfills																												
	WD1	WD2	WD:	3 W	D4 \	WD5	WD6	WD7	SD1	SD2	SD4	SD5	SD6	SD7	SD3			T		L1		Q						Lu	Ls	L2	Au	As	Α	L	S		
						<u> </u>		ore	₹						ź	Reset	NK			Score	Area						gony				_		sport				
Source Type	Planning Period (yrs)	Depth to Aquifer Score	Aquifer Thickness Score	4014	Intilitration	Unsaturated Zone Hydra Conductivity Score	Saturated Zone Material	Groundwater Velocity So	Landfill Design (list) [LINK]	Landfill Status (list)	Age of Landfill (yrs)	Area of Landfill (acres)	Distance Score (list)	Direct Transport to Well? (Y/N)	Default Assumptions (Y/N)	Contaminant Data	Concentration Score [LINK]	Toxicity Score	Mobility Score	ood of Reslease	Release, Volume and/or	Quantity Score	Timeframe	Adjusted Hydraulic Conductivity Score	Adjusted Velocity Score	Unsaturated Zone TOT Category	Saturated Zone TOT Cate	Likelihood Unsaturated	Likelihood Saturated	Likelihood Reaching Well	Unsaturated Attenuation	Saturated Attenuation	σ,	Likelihood of Well Contamination	Severity of Well Contamination	Risk Score	Risk Level
Agrichemical Application	10	0.3	1.5	9	9	4	Gravel	4	35	500			2	No		2,4-D	3	0.5	M L	0.0	2.3	5.3	45	3	3	Α	В	0.0	0.0	0.0	-0.2	-47.8 -	-48.0	0.0 -	42.2 -	-42.2 Lo	.ow
Container Storage and Material Transpor	10	0.3	1.5	9	9	4	Gravel	4	5	Н	Unpadded	30	2	No		Hazardous Material/Products	-2.7	2.0	M L	-1.	3 2.3	-0.4	40	3	3	Α	В	0.0	0.0	0.0	-0.2	-47.8 -	-48.0	-1.3 -	46.4 -	-47.7 Lo	.0W
Shallow Injection Wells (Class V)	10	0.3	1.5	9	9	4	Gravel	4	7	1			2	No		Industrial Process Water Disp	-1.3	0.5	M N	1 0.0	3.4	2.1	17	3	3	Α	В	0.0	0.0	0.0	0.0	-2.5	-2.5	0.0	0.1	0.1 H	ligh
Land Treatment	10		1.5	_	-	4	Gravel	4	15	50	2		2	No		Inorganic Chemicals - Land Tr		0.8	H F	0.0	4.7		_	4	4	Α	Α	0.0	0.0	0.0	0.0	-4.4	-4.4	0.0	0.2	0.2 H	ligh
Landfills	10	0.3	1.5	9	9	4	Gravel	4	1	2	8	100	2	No	No	Arsenic(Subtitle C/Hazardous	-1	3.7	H F	0.0	4.9	3.9	18	4	4	Α	Α	0.0	0.0	0.0	0.0	-4.4	-4.4	0.0	3.2	3.2 H	ligh
Material Transport	10	0.3	1.5	9	9	4	Gravel	4	Н	Н	100		2	No		RCRA Permitted Storage (X50	2	2.0	M L	-1.0	0 1.1	3.1	110	3	3	Α	В	0.0	0.0	0.0	-0.2	-47.8 -	-48.0	-1.0 -	42.9 -	-43.9 Lo	.ow
Pipelines	10	0.3	1.5	. 9	9	4	Gravel	4	Other	25	30	15	2	No		RCRA Permitted Storage (X50	2.4	-0.4	H L	0.0	3.1	5.5	35	4	4	Α	Α	0.0	0.0	0.0	0.0	-4.9	-4.9	0.0	0.2	0.2 H	ligh
Septic Tank Systems	10	0.3	1.5	. 9	9	4	Gravel	4	30	10			2	No		Sewer - Chloroform	-4.8	1.2	H N	1 0.0	1.5	-3.3	40	4	4	Α	Α	0.0	0.0	0.0	0.0	-4.4	-4.4	0.0	-6.5	-6.5 Lo	.ow
Storage Piles	10	0.3	1.5	. 9	9	4	Gravel	4	Heap Lea	1	1	4	2	No		Heap Leaching Piles - Metals	-0.3	-0.8	H F	0.0	3.0	2.7	14	4	4	Α	Α	0.0	0.0	0.0	0.0	-4.4	-4.4	0.0	-2.5	-2.5 N	Medium
Surface Impoundments	10	0.3	1.5							٧			-			land a second						4.0	20	2	2	Α.	В	0.0	0.0	0.0	0.0	-2.4	2.4	0.0	-0.4	0.4	Medium
Juriuce impoundments	10	0.5	1.5	9	9	4	Gravel	4	1	1	10			No		Urban Stormwater Retention	2	0.2	M H	0.0	-0.2	1.8	20	3	3	Α	D	0.0	0.0	0.0	0.0	-2.4	-2.4	0.0	-0.4	-U.4 N	vieuluiii

Outline

- City of Dayton Source Water Protection Area
- * Recent Updates to the City of Dayton Source Water Protection Program
- * US EPA's Priority Setting Approach (PSA) for Managing Groundwater Contamination Sources in Wellhead (Source Water) Protection Areas
- * Modernizing PSA Methodology
- * Conclusions

- Many business operations may not pose a great risk to groundwater
- Many businesses already diligently provide BMPs further protecting groundwater
 - > Just in time ordering of needed chemicals
 - Less toxic or benign substitutes
 - Secondary containment and engineering controls
 - Spill response and safety training

- Some businesses do pose significant risks
 - Large quantities of toxic and persistent chemicals with high mobility in soil and groundwater
 - > BMPs needed or improvements needed
- Not so common anymore but chlorinated ethenes used as degreasers, or in dry cleaning
- Emerging contaminants: Poly & Perfluoroalkyl Substances (PFAS), and 1, 4 Dioxane

- * Modernization of the Priority Setting Approach (PSA) algorithm provides a realistic method
- * Screening and ranking of risks for source water protection programs
- * Comprehensive approach that can seem overwhelming because it is realistic

- * The PSA provides objective ranking of risks to drinking water resources of businesses and other sources operating and located within the SWPA
- * The PSA can be updated with data from emerging contaminants of concern
- * Effective tool for Source Water Protection Programs

Based on risk screening using Dayton's PSA, locate monitoring equipment/ wells in areas of greatest risk

Prioritization of limited resources to address greatest risks

Thank You!

Contributors and Acknowledgments

- City of Dayton Dept. of Water
 - Michele Simmons, Jim Shoemaker, Gayle Galbraith, and Environmental Management staff
- * Amec Foster Wheeler Dayton Office
 - * Paul Stork and staff
- * Terran Corp.
 - * Brent Huntsman and staff
- * OTCO, Inc.

OTCO, Inc.