SAVINGS IN WATER & FILTRATION STATIONS HOW TO ACHIEVE SIGNIFICANT ENERGY

Tom Sherman CEM, CDSM

President Sustainable Energy Services, Inc.

440.773.5044 Tom@SESCorp.co

WHAT WE WILL COVER TODAY

- Where to Start
- Lighting
- HVAC
- Building Envelope
- Motors and Pumps
- Motor Management
- Motor Preventive Maintenance
- Rebates

BEFORE YOU START ... HAVE A PLAN

Or You May End Up in Deep Water!

A ROBUST ENERGY SAVINGS PROGRAM

Will.

- decrease energy costs 20% and more...
- reduce operating costs
- increase cash flow
- improve the environment
- improve facility sustainability
- provide a great marketing op
- improve employee morale

AND...

Eventually utilities will raise initiatives. through energy efficiency rates to recover the \$ lost

With PUCO approval!

HOW WILL YOU GET THERE?

Do you have...

- a plan?
- the expertise?
- the tools?
- a road map?
- a champion?

START WITH A BASELINE – 2 YEARS OF DATA MIN

TO GET MMBTU/FT²

- Electric:
- Multiply kWh by 3.413 / 1,000
- Gas:
- 1 MCF ~ 1 dTherm = 1 mmBtu
- Add both numbers for total mmBtu
- Divide by total square footage

ISOLATE MAJOR CONTRIBUTORS

- Understand the major contributors to your mmbtu/ft²
- Understand weather effects on data CDD and HDD
- If peak demand (kW, kVA, kVars) is part of your electric rate, know the major contributors and operating schedule

BE CAREFUL HOW YOU MEASURE IT

BE CAREFUL HOW YOU MEASURE IT

WITH AN UNBIASED ENERGY AUDIT THE ROAD TO ENERGY EFFICIENCY STARTS

- Encompass Whole Facility
- Find all the savings possibilities
- Insist on ASHRAE Level 2 Energy Audit
- American Society of Heating, Refrigeration and Air Conditioning Engineers
- Level 2 ensures technical and financial analysis for decision making
- Use Independent Qualified Firm
- Required for objectivity and utility incentives
- Look for PE, CEM or CEA certification
- Independent: No tie to any equipment supplier or contractor
- Utilities Offer Energy Audit Incentives
- Some utilities pay up to 50% of the energy audit fee

TYPICAL ENERGY AUDIT FINDINGS

- Lighting
- HVAC
- Motors
- Pumps
- Equipment
- Building Envelope
- Windows
- Insulation
- Infiltration

TYPICAL ENERGY AUDIT FINDINGS

- Lighting
- HVAC
- Motors
- Pumps
- Equipment

- Building Envelope
- Windows
- Insulation
- Infiltration

. The Biggest Savings Opportunity

LIGHTING

- Not fixture for fixture
- Do photometric mapping
- Task lighting over high bay
- Sensors whenever possible
- Run costs dominate (not first cost)
- Include maintenance and lamp replacement costs

HIGH BAY LIGHTING

Example: Single High Bay Fixture; On 24 / 365 LIGHTING

Rebate	Life of bu	Cost/year	Cost/kWh	kWh/year	Fixture W	
	d					
\$0	15,000 hrs	\$484	\$0.12	4030	458	HD
\$105	35,000 hrs	\$231	\$0.12	1927	254	Fluorescent
\$122	70,000 hrs	\$189	\$0.12	1577	180	LED
\$114	100,000 hrs	\$210	\$0.12	1752	200	Induction

2 X 4 OFFICE CEILING FIXTURE

Example: Single 2 x4 Office Ceiling Fixture; On 12 / 260 LIGHTING

	T12	T 8	LED
	Fluorescent	Fluorescent	
Fixture W	160	112	36
kWh/year	499	349	112
Cost/kWh	\$0.12	\$0.12	\$0.12
Cost/year	\$60	\$42	\$13
Life of bulb	15,000 hrs	35,000 hrs	70,000 hrs
Rebate	\$0	\$7.5	\$19.35

TWO BRANDS OF LED T8 THAT WORK WELL 18 - 22 W, 120 - 130 LPW

Borealis

Energy Focus

LIGHTING - FINANCIAL

Project cost Annual energy savings

Simple Payback

ROI

\$28,000 \$13,000

2 years 364%

HVAC

- Savings often found with repairing / cleaning / re-programming / balancing
- Replacing units normally occurs at end-of-life
- favorite HVAC contractor If doing a major renovation, best to work with an independent expert or your
- Savings analysis is difficult many factors involved
- Software modeling often needed to play what-if scenarios

BUILDING ENVELOPE

Windows, doors, insulation, sealing

MOTORS AND PUMPS

- Motors consume 90% of the energy in pumping stations
- Motors are the largest opportunity for savings money
- Running a motor costs more than 10 times its purchase price each year in energy costs alone
- Over life of motor, 98%+ of cost of ownership is operating cost

IF OWNING A CAR WAS LIKE OWNING A MOTOR

- Purchase price = \$30,000
- Annual operating cost = \$500,000
- Operating cost over life of car = \$4,000,000

to make your car run more efficiently? What would you be willing to do

How important is purchase price to you now?

WHAT IT COSTS TO RUN A MOTOR

- Rating = 100HP
- Hours of Operation = 8,760
- Cost per kWh = \$0.09
- Demand kW = \$7
- Purchase Price = \$6,000
- Load Factor = 100%
- Motor Eff. = 92%

Annual Energy Cost = 100 x .746 x 8760 x 1 x .09.92 100 x .746 x 1 x 7 x 12 92

Annual Energy Costs = \$63,929 + \$6,811 = \$70,740 Then must add maintenance costs! Purchase Price = \$6,000

CHANGING A STD. EFF. WITH PREMIUM EFF.

kWSaved = $HP \times 0.746 \times LF$ Eff_{std} $HP \ge 0.746 \ge LF$ Eff_{EE}

 $kWh\ Saved = kW\ x\ Oper.\ Hours$

Saved = kWh x cost/kWh + kW x cost/kW x 12

CHANGING A STD. EFF. WITH PREMIUM EFF.

- Rating = 100HP
- Hours of Operation = 7400
- Cost per kWh = \$0.09
- Demand kW = \$7
- Purchase Price = \$4,200
- Load Factor = 90%

$$W = \frac{100 \ x .746 \ x .9}{.83} - \frac{100 \ x .746 \ x .9}{.94} = 9.6 \ kW$$

 $Cost \ Savings = (71,040 \ x \ .09) + (9.6 \ x \ 7 \ x \ 12) = \$7,200/year$

DO VFD DRIVES MAKE SENSE?

HP = 300 \$/kWh = \$0.09 Hours = 8760 \$/kW = \$ 7

With VFD	NEMA Prem Eff Motor	Standard Motor

\$221,867

\$203,378

\$126,184

Save \$18,489 annually with a more efficient motor

OR...save \$95,683 annually by adding a VFD to the same more efficient motor

INVESTING IN A 300HP MOTOR WITH VFD

(\$18,000)	Rebate
(\$18,000)	Rehate
	-
\$16,000	Ship/Install cost
-	
\$18,000	Cost of VFD
ψ10,000	
¢16 000	Cost of Motor
Amount	ltem

VFD TECHNICAL CONSIDERATIONS

- Requires a varying load
- Requires inverter grade motor
- Limit VFD-Motor distance to 50 feet or less
- Preventive Maintenance critical for long term success
- VFDs cause leakage current through bearings
- 5th and 11th harmonic generate reverse torque
- Current imbalance between phases < 10%
- Voltage imbalance between phases < 3%
- Watch for dV/dT exceeding CIV (corona inception voltage)
- Thermal imaging should be compared every 3 to 6 months

VFD CAUSED BEARING WEAR

- Capacitive coupled leakage current Static
- Static electricity from load

FLUTING IN BEARING CHASE CAUSED BY LEAKAGE CURRENT

WHAT BEARING WEAR LOOKS LIKE

THERMAL IMAGING - EXTREMELY HELPFUL!

VFD OUTPUT VOLTAGE – INSULATION FAILURE

NEGATIVE SEQUENCING

MAINTENANCE (PM) MOTOR MANAGEMENT, PREVENTIVE

- Well planned PM is key to dependable, long-life operation of motors, pumps and generators
- Unscheduled stoppage and long repairs are intolerable
- resources and training Leadership often sees value of PM but resists investment for proper tools,
- PM often needs to be pitched as a business case
- Case studies of prior breakdowns and resulting costs will help
- Once budget approved, develop a plan for each motor category

MOTOR MANAGEMENT PROGRAM

- Survey motors. Gather nameplate information (HP, RPM, enclosure, voltage, amps, etc.)
- Initially focus on motors that exceed minimum size and operating hours
- 50 HP and above
- 6,000 hours/year of operation minimum
- Collect info re Standard, EPAct and NEMA Prem. Eff.
- Constant load (not intermittent, cycle or fluctuating)
- Older or rewound motor

MOTOR MANAGEMENT PROGRAM

- Conduct Motor Replacement Analysis by the following three categories:
- Motors Offering Rapid Payback through Energy Savings. Motors that run continuously (8,000 or more hours/year.)
- 2. Improved Reliability Oversized Motors
- ယ inefficient motor with new NEMA Premium Motor. Utility Rebate Program - utility pays end-user to replace older

AREAS TO COVER FOR GOOD PM PROGRAM

- Thermal Imaging
- Over-heating (insulation class, impact on life)
- Overloads
- Imbalances
- Vibration Analysis
- Included load on shaft (pump bearing)
- Load Analysis

- Tachometer and slip equations
- Power Analysis
- Phase imbalance
- Overload
- Harmonics
- Power Factor
- Power Quality

NEEDED - GOOD TOOLS AND EXPERTISE!

Create a Record for Each Motor

M-13

Motors

2011	Year Built
	Location/Service
	Motor ID/ Tag
	Site Name
	General Information

Motor Data	Nameplate
Manufacturer	MARAthon
Model Number	EUD 256TFFNA60
Serial Number	AE RIVO
Motor Type	TEFC AC Prevet
Motor Efficiency	92.4 2/2
Full-Load HP	20
Frame Size	
Frame Style	256T
Full-Load RPM	33 3537
Synch RPM	3600
Volts	460
Phase	s
Full-Load Amps	23.4
Power Demand (kW)	18
Connection Type	

)	2
	0
1	R
í	¥
ł.	0
	19
	a
	5
	-

|--|

-	
1	0
I.	U
	9
	Di
h	H
)	5
	50
,	<u>n</u>
	5
1	D.
-	5
	D
1	

Annual Oper. Hours		Time of Day Scheduling
2	Sat	M-F
1.04	74-30	530A-10p

4	Blowe	Load on shaft
1361	129 F	Ambient Temp
Measured	Design	

Measurments	
Voltage A	476.1
Voltage B	472.4
Voltage C	474.6
Current A	21.7
Current B	22.9
Current C	22.4
Shaft RPM	3541
Frame Temp Range	class H
Hotspot Temp	164.2 F

Convert Collected Data into Database

No Moderate bearing looseness No Bearings at both ends have moderate wear No Moderate bearing wear and looseness No No No Slight hearing wear	Yes Te	Yes	Yes	54.4	RELIANCE 89864009	GD VS-40 Air Compressor	M47
No Moderate bearing looseness No Bearings at both ends have moderate wear No Moderate bearing wear and looseness No No No No	ē ē	Yes	Yes	54.4	RELIANCE 89864009	GD VS-40 Air Compressor	<
No Moderate bearing looseness No Bearings at both ends have moderate wear No Moderate bearing wear and looseness No No	ġ						
No Moderate bearing looseness No Bearings at both ends have moderate wear No Moderate bearing wear and looseness No No No No	<	Yes	Yes	10	MARATHON DVA 215TTFS6001GWR1401	3 1/2 - IBC Exhaust Blower	M45
No Moderate bearing looseness No Bearings at both ends have moderate wear No Moderate bearing wear and looseness No No	Yes	Yes	Yes	40	DELCO 1V9716L1	6" - Grinder	M44
No Moderate bearing looseness No Bearings at both ends have moderate wear No Moderate bearing wear and looseness No Moderate bearing wear and looseness	Yes	Yes	Yes	ы	LEESON C324T17FB7D	6" - Grinder	M43
No Moderate bearing looseness No Bearings at both ends have moderate wear No Moderate bearing wear and looseness	Yes	Yes	Yes	8	GE 50D363NA001A015	2" Extruder	M42
No Moderate bearing looseness No Bearings at both ends have moderate wear	Yes	Yes	Yes	25	BALDOR M4107T	6" - Air Ring Supply	M41
No Moderate bearing looseness	Yes	Yes	Yes	250	POWERTEC A32EYS1000100000	6" Extruder	M40
	Yes	Yes	Yes	10	RELIANCE P21G3319H	3 1/2 - IBC Exhaust	M39
No	Yes	Yes	Yes	15	MARATHON DVF 254TTFNA6001 AER1401	3 1/2 - IBC Suply Blower	M38
No	Yes	Yes	Yes	150	RELIANCE 7135052-001-DJT1	3 1/2 - Extruder	M37
No	Yes	Yes	Yes	20	TOSHIBA B02020LF2UMH01	5 Layer - Air Ring Blower	M36
No Machine down	No	No				3 Layer 1 - Air Ring Supply	M35
No Machine down	No	No				3 Layer 1 - IBC Exhaust	M34
No	Yes	Yes	Yes	15	BALDOR M3314T	2 /12 - Air Ring Supply	MBB
No Machine down	No	No				3 Layer 1 - IBC Suply	M32
No motor not accessible	No	No				Macchi reclaim	M31
No	Yes	Yes	Yes	20	SIEMENS ILA91866	605 Erema - Cutter/Compactor	MBO
No Moderate bearing looseness	Yes	Yes	Yes	15	SIEMENS ILE10011DC434AB4Z	605 Erema - Extruder	M29
No	Yes	Yes	Yes	8	GE 5CD84TA096B032	3 Layer 2 - Extruder C	M28
No	Yes	Yes	Yes	50	SAFTRONICS CD203PA097A151	3 Layer 2 - Extruder B	M27
No	Yes	Yes	Yes	8	SAFTRONICS 5CD184TA096B017	3 Layer 2 - Extruder A	M26
No	Yes	Yes	Yes	6	RELIANCE 7342431A-00-DKT1	9 Layer - Extruder I	M25
No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T8	9 Layer - Extruder H	M24
No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T7	9 Layer - Extruder G	M23
8	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T6	9 Layer - Extruder F	M22
	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T5	9 Layer - Extruder E	M21
No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T4	9 Layer - Extruder D	M20
No	Yes	Yes	Yes	4	RELIANCE 7350638-001-CK-T3	9 Layer - Extruder C	M19
No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T2	9 Layer - Extruder B	M18
No	Yes	Yes	Yes	8	RELIANCE 73424318-00-DR-T1	9 Layer - Extruder A	M17
No Slight looseness	Yes	Yes	Yes	20	MARATHON EVD286TSTFN6001BHR1402	9 Layer - IBC Supply	M16
No	Yes	Yes	Yes	w	MARATHON EVD286TSTFN6001BHR1401	9 Layer - Air Ring Blower	M15
No	Yes	Yes	Yes	10	MARATHON DUB 215TTFS6001GWR140	3 Layer 2 - Air Ring Exhaust	M14
No	Yes	Yes	Yes	20	MARATHON EVD 256TTFNA6001	9 Layer - IBC Exhaust Blower	M13
No	Yes	Yes	Yes	30	LEESON M286TDB10B	2 1/2 - Grinder	M12
No Moderate bearing wear; non-std	Yes	Yes	Yes	50	BALDOR 59084771-001001-JN	5 Layer - Extruder A	M11
No Excessive bearing wear	Yes	Yes	Yes	10	CONTRAVES 2190B450B02	5 Layer - Extruder B	M10
No Moderate bearing wear	Yes	Yes	Yes	25	BALDOR P28800450035000	5 Layer - Extruder C	eм
No Excessive bearing wear	Yes	Yes	Yes	10	CONTRAVES N058/0413-FN112	5 Layer - Extruder E	M8
No Moderate bearing wear; non-std	Yes	Yes	Yes	10	CONTRAVES 2190B450B03	5 Layer - Extruder D	M7
No Machine down	No	No				3 Layer 1 - Extruder A	M6
No Machine down	No	No				3 Layer 1 - Extruder B	MS
No Machine down	No	No				3 Layer 1 - Extruder C	M4
Yes Excessive bearing wear; severe 5th and 11th harmonic	Yes	Yes	Yes	150	RELIANCE 01KL517389DFT1	2 1/2 - Extruder	MB
Yes Severe bearing wear, excessive heating at power connection, overloaded	Yes	Yes	Yes	22.8	WEG LENZE TEO1FOXOXOX000091180	806 Erema Extruder	M2
Yes Excessive bearing wear, severe current unbalance	Yes	Yes	Yes	22.8	WEG Lenze 06AG008	806 Erema Cutter/Compactor	M1
Power Condition Comments	IR P	Vibration	Photo	Ħ	Make and Model	Location	₽

MOTORS AND VFD'S – FIRSTENERGY UTILITY REBATES FOR

saved, caped at 50% of project cost. Motors and VFD's fall under their custom program and pay \$0.08/kWh

UTILITY REBATES FOR MOTORS AND VFD - AEP

NEMA Premium™ Efficiency Criteria Qualifying Motors Exceed NEMA Premium™ Efficiency

A manual	som Bun						
Horse-	3600	RPM	1800	RPM	1200	RPM	Incentive
power	Open	Closed	Open	Closed	Open	Closed	/Motor
1	77.0%	%0.77	85.5%	%5.58	82.5%	82.5%	8\$
1.5	84.0%	84.0%	86.5%	%5.98	86.5%	87.5%	\$10
2	85.5%	85.5%	86.5%	86.5%	87.5%	88.5%	\$13
3	85.5%	86.5%	89.5%	89.5%	88.5%	89.5%	\$20
5	86.5%	88.5%	89.5%	89.5%	89.5%	89.5%	\$25
7.5	88.5%	89.5%	91.0%	91.7%	90.2%	91.0%	\$40
10	89.5%	90.2%	91.7%	91.7%	91.7%	91.0%	\$45
15	90.2%	91.0%	93.0%	92.4%	91.7%	91.7%	\$60
20	91.0%	91.0%	93.0%	93.0%	92.4%	91.7%	\$75
25	91.7%	91.7%	93.6%	93.6%	93.0%	93.0%	08\$
30	91.7%	91.7%	94.1%	93.6%	93.6%	93.0%	06\$
40	92.4%	92.4%	94.1%	94.1%	94.1%	94.1%	\$100
50	93.0%	93.0%	94.5%	94.5%	94.1%	94.1%	\$120
60	93.6%	93.6%	95.0%	95.0%	94.5%	94.5%	\$130
75	93.6%	93.6%	95.0%	95.4%	94.5%	94.5%	\$140
100	93.6%	94.1%	95.4%	95.4%	95.0%	95.0%	\$190
125	94.1%	95.0%	95.4%	95.4%	95.0%	95.0%	\$238
150	94.1%	95.0%	95.8%	95.8%	95.4%	95.8%	\$285
200	95.0%	95.4%	95.8%	96.2%	95.4%	95.8%	\$380
250	95.0%	95.8%	95.8%	96.2%	95.4%	95.8%	\$475

VFD Application		Incentive Amount
Supply/ Return Fan		
Chilled Water Pump/ Conder	nser Water Pump	
Hot Water Pump		\$60/HP
Cooling Tower Fan		₩COT II
Other HVAC Motor (Fan/ Pu	mp)	
Process Fan and Pump Mot	or	
Pool Pump & Compressor	Prescriptive Incentive	s
VFD Application	Size Requirements	Incentive Amount
Pool Pump	A/N	\$100/HP
New Compressor	≤ 150 HP	\$100/HP
Installing VFDs on Existing	g Equipment	

Incentives qualify for new VFDs, not replacement VFDs. Prescriptive Incentives for VFD applications ≤ 200 HP* (For motors >100 HP custom analysis is completed, but prescriptive incentives are paid.)

Installing VFDs on New Equipment

Subject to ASHRAE 90.1-2007 standards. If a VFD is required it is not eligible for incentives.

The following are the most common applications not eligible for incentives:

VFD Application	Required by ASHRAE 90.1-2007	Notes
Variable Air Volume (VAV) Fan Control	Motor ≥ 10 HP	Supply/ return fans
 Hydronic Variable Flow 	Motor > 50 HP & Pump	Variable fluid
Systems	Head > 100 ft	flow pumps
Heat Rejection Equipment, Fan Speed Control	Motor ≥ 7.5 HP	Cooling towers, condensing units, etc.

MOTORS AND VFD'S – DUKE ENERGY UTILITY REBATES FOR

VARIABLE FREQUENCY DRIVES

For all VFD operations >2000 hours per year applied to HVAC fans and pumps and process pumps

From 1.5 hp to 50 hp	HP
Up to \$100.00/hp	INCENTIVE/HP

Visit www.duke-energy.com for required efficiency levels.

UTILITY REBATES FOR MOTORS AND VFD'S - DP&L

Premium Motors

Measure	Rebate (per HP)
1.0 - 5.0 HP	\$25.00
7.5 - 20.0 HP	\$15.00
25.0 - 250.0 HP	\$10.00

Variable Frequency Drives	
Measure	Rebate (per HP)
1.0 - 250.0 HP	\$40.00

Tom Sherman CEM, CDSM 440-773-5044 Tom@SESCorp.co