SAVINGS IN WATER & FILTRATION STATIONS HOW TO ACHIEVE SIGNIFICANT ENERGY

Tom Sherman CEM, CDSM

President

Sustainable Energy Services, Inc.

440.773.5044 Tom@SESCorp.co

WHAT WE WILL COVER TODAY

- Where to Start
- Lighting
- HVAC
- Building Envelope
- Motors and Pumps
- Motor Management
- Motor Preventive Maintenance
- Rebates

BEFORE YOU START ... HAVE A PLAN

Or You May End
Up in Deep Water!

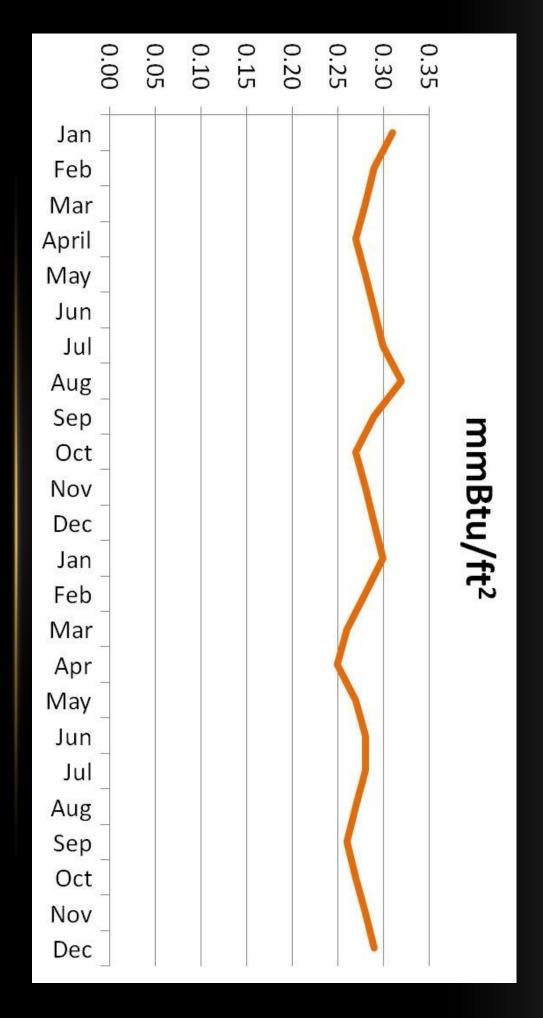
A ROBUST ENERGY SAVINGS PROGRAM

 $\mathbb{W}_{\mathbb{H}}$

- decrease energy costs 20% and more...
- reduce operating costs
- increase cash flow
- improve the environment
- improve facility sustainability
- provide a great marketing op
- improve employee morale

AND...

Eventually utilities will raise initiatives. through energy efficiency rates to recover the \$ lost


With PUCO approval!

HOW WILL YOU GET THERE?

Do you have...

- a plan?
- the expertise?
- the tools?
- a road map?
- a champion?

START WITH A BASELINE - 2 YEARS OF DATA MIN

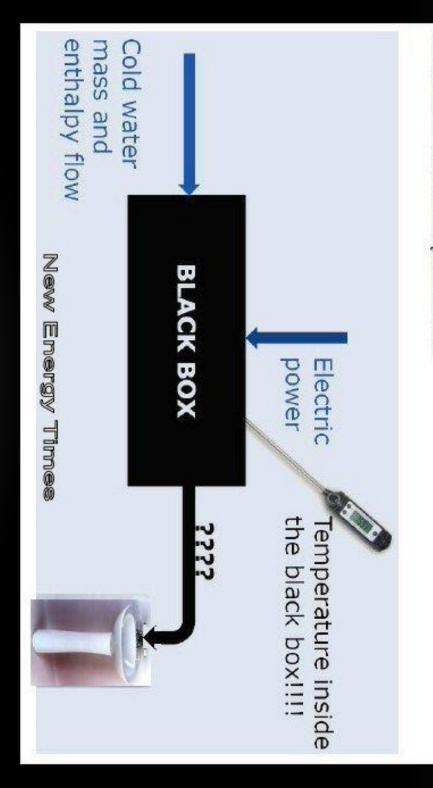
TO GET MMBTU/FT²

- Electric:
- Multiply kWh by 3.413 / 1,000
- Gas:
- 1 MCF ~ 1 dTherm = 1 mmBtu
- Add both numbers for total mmBtu
- Divide by total square footage

ISOLATE MAJOR CONTRIBUTORS

- Understand the major contributors to your mmbtu/ft²
- Understand weather effects on data

CDD and HDD


If peak demand (kW, kVA, kVars) is part of your electric rate, know the major contributors and operating schedule

BE CAREFUL HOW YOU MEASURE IT

BE CAREFUL HOW YOU MEASURE IT

The conceptual mistake in the energy balance ...and what was actually measured

WITH AN UNBIASED ENERGY AUDIT THE ROAD TO ENERGY EFFICIENCY STARTS

- Encompass Whole Facility
- Find all the savings possibilities
- Insist on ASHRAE Level 2 Energy Audit
- American Society of Heating, Refrigeration and Air Conditioning Engineers
- Level 2 ensures technical and financial analysis for decision making
- Use Independent Qualified Firm
- Required for objectivity and utility incentives
- Look for PE, CEM or CEA certification
- Independent: No tie to any equipment supplier or contractor
- Utilities Offer Energy Audit Incentives
- Some utilities pay up to 50% of the energy audit fee

TYPICAL ENERGY AUDIT FINDINGS

- Lighting
- HVAC
- Motors
- Pumps
- Equipment
- Building Envelope
- Windows
- Insulation
- Infiltration

TYPICAL ENERGY AUDIT FINDINGS

- Lighting
- HVAC

Motors

Pumps

The Biggest Savings Opportunity

- Equipment
- Building Envelope
- Windows
- Insulation
- Infiltration

LIGHTING

- Not fixture for fixture
- Do photometric mapping
- Task lighting over high bay
- Sensors whenever possible
- Run costs dominate (not first cost)
- Include maintenance and lamp replacement costs

HIGH BAY LIGHTING

LIGHTING

Example: Single High Bay Fixture; On 24 / 365

	UIH	Fluorescent	LED	Induction
Fixture W	458	254	180	200
kWh/year	4030	1927	1577	1752
Cost/kWh	\$0.12	\$0.12	\$0.12	\$0.12
Cost/year	\$484	\$231	\$189	\$210
Life of bulb	15,000 hrs	35,000 hrs	70,000 hrs	100,000 hrs
Rebate	\$0	\$105	\$122	\$114

2 X 4 OFFICE CEILING FIXTURE

LIGHTING

Example: Single 2 x4 Office Ceiling Fixture; On 12 / 260

	T12 Fluorescent	T8 Fluorescent	LED
Fixture W	160	112	36
kWh/year	499	349	112
Cost/kWh	\$0.12	\$0.12	\$0.12
Cost/year	\$60	\$42	\$13
Life of bulb	15,000 hrs	35,000 hrs	70,000 hrs
Rebate	\$0	\$7.5	\$19.35

TWO BRANDS OF LED T8 THAT WORK WELL 18 - 22 W, 120 - 130 LPW

Borealis

Energy Focus

LIGHTING - FINANCIAL

Project cost

Annual energy savings

\$28,000

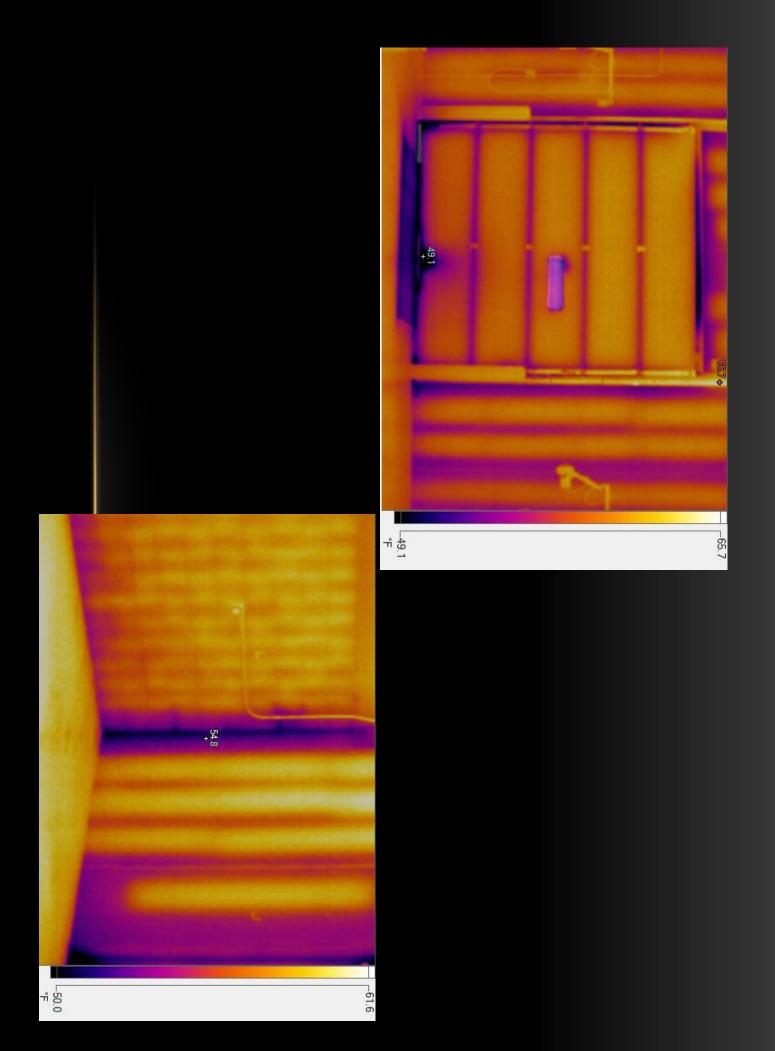
\$13,000

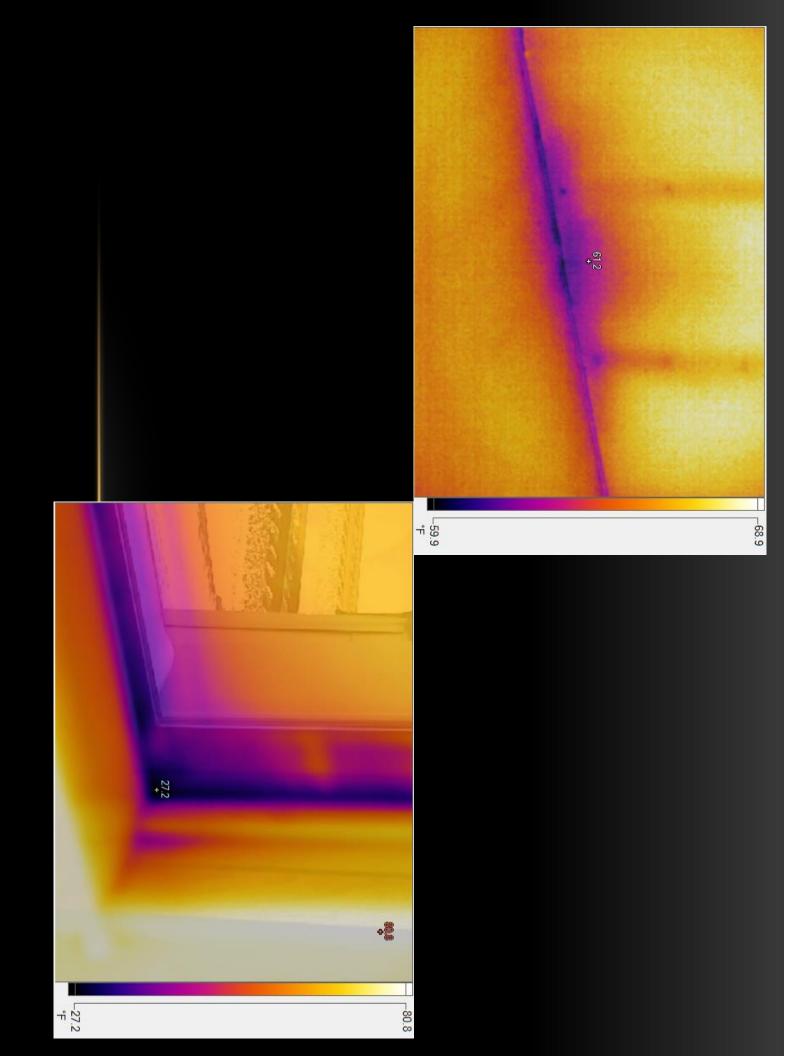
Simple Payback

ROI

2 years

364%


HVAC


- Savings often found with repairing / cleaning / re-programming / balancing
- Replacing units normally occurs at end-of-life
- favorite HVAC contractor If doing a major renovation, best to work with an independent expert or your
- Savings analysis is difficult many factors involved
- Software modeling often needed to play what-if scenarios

BUILDING ENVELOPE

Windows, doors, insulation, sealing

MOTORS AND PUMPS

- Motors consume 90% of the energy in pumping stations
- Motors are the largest opportunity for savings money
- Running a motor costs more than 10 times its purchase price each year in energy costs alone
- Over life of motor, 98%+ of cost of ownership is operating cost

IF OWNING A CAR WAS LIKE OWNING A MOTOR

- Purchase price = \$30,000
- Annual operating cost = \$500,000
- Operating cost over life of car = \$4,000,000

to make your car run more efficiently? What would you be willing to do

How important is purchase price to you now?

WHAT IT COSTS TO RUN A MOTOR

- Rating = 100HP
- Hours of Operation = 8,760
- Cost per kWh = \$0.09
- Demand kW = \$7
- Purchase Price = \$6,000
- Load Factor = 100%
- Motor Eff. = 92%

Annual Energy Cost =
$$\frac{100 \times .746 \times 8760 \times 1 \times .09}{.92} + \frac{100 \times .746 \times 1 \times 7 \times 12}{.92}$$

Annual Energy Costs = \$63,929 + \$6,811 = \$70,740

Purchase Price = \$6,000

Then must add maintenance costs!

CHANGING A STD. EFF. WITH PREMIUM EFF.

$$kWSaved = \frac{HP \times 0.746 \times LF}{Eff_{std}} - \frac{HP \times 0.746 \times LF}{Eff_{EE}}$$

 $kWh\ Saved = kW\ x\ Oper.\ Hours$

 $$Saved = kWh \times cost/kWh + kW \times cost/kW \times 12$

CHANGING A STD. EFF. WITH PREMIUM EFF.

- Rating = 100HP
- Hours of Operation = 7400
- Cost per kWh = \$0.09
- Demand kW = \$7
- Purchase Price = \$4,200
- Load Factor = 90%

$$kW = \frac{100 \text{ x .746 x .9}}{.83} - \frac{100 \text{ x .746 x .9}}{.94} = 9.6 \text{ kW}$$

$$kWh = 9.6 \ kW \ x \ 7400 = 71,040 \ kWh$$

Cost Savings =
$$(71,040 \times .09) + (9.6 \times 7 \times 12) = \$7,200/year$$

DO VFD DRIVES MAKE SENSE?

HP = 300 : Hours = 8760 : :

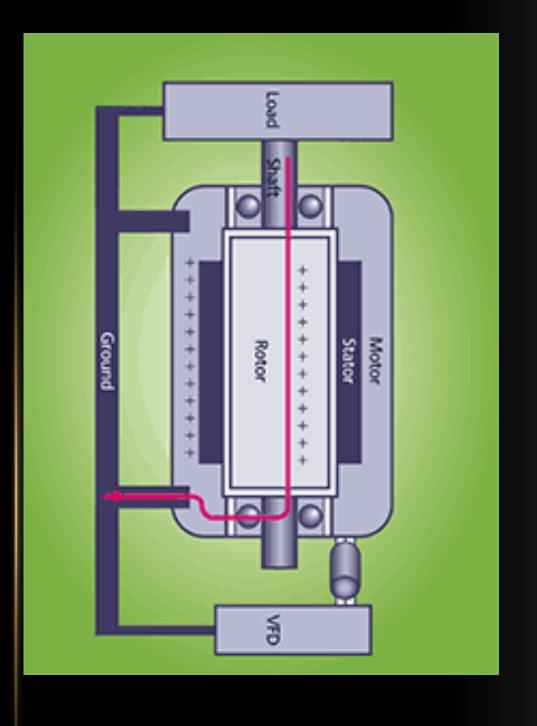
 $% \times 10^{-1} \text{ s} = 0.09$

%/kW = % 7

Standard Motor	NEMA Prem Eff Motor	With VFD
\$221,867	\$203,378	\$126,184

Save \$18,489 annually with a more efficient motor

OR...save \$95,683 annually by adding a VFD to the same more efficient motor

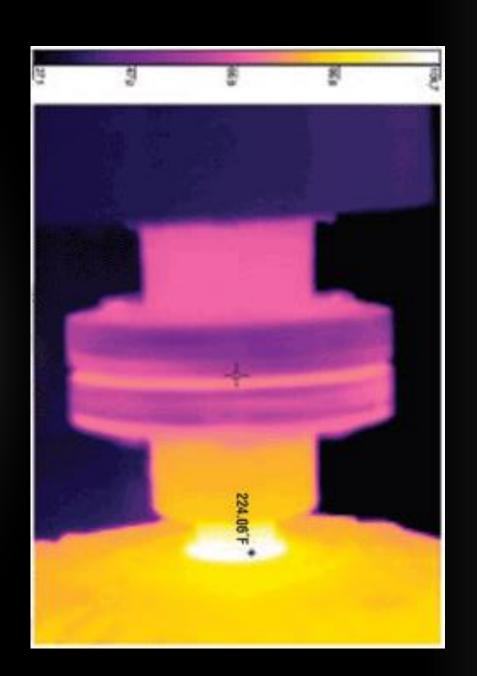

INVESTING IN A 300HP MOTOR WITH VFD

Item	Amount
Cost of Motor	\$16,000
Cost of VFD	\$18,000
Ship/Install cost	\$16,000
Rebate	(\$18,000)
Total Investment	\$34,000
Annual Energy Savings	\$126,184
Simple Payback	0.3 Years
Return on Investment	370%

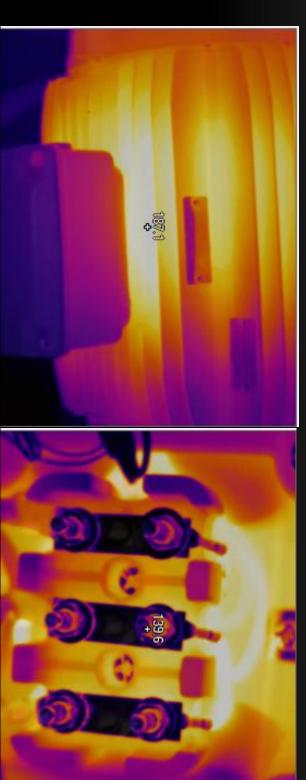
VFD TECHNICAL CONSIDERATIONS

- Requires a varying load
- Requires inverter grade motor
- Limit VFD-Motor distance to 50 feet or less
- Preventive Maintenance critical for long term success
- VFDs cause leakage current through bearings
- 5th and 11th harmonic generate reverse torque
- Current imbalance between phases < 10%
- Voltage imbalance between phases < 3%
- Watch for dV/dT exceeding CIV (corona inception voltage)
- Thermal imaging should be compared every 3 to 6 months

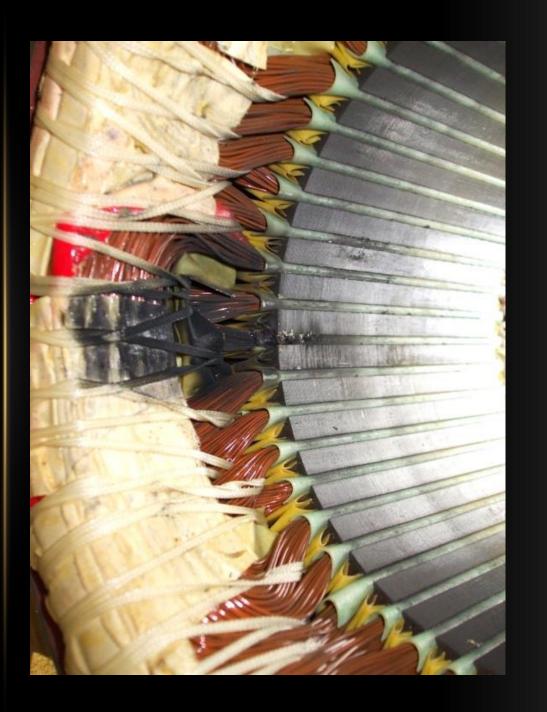
VFD CAUSED BEARING WEAR



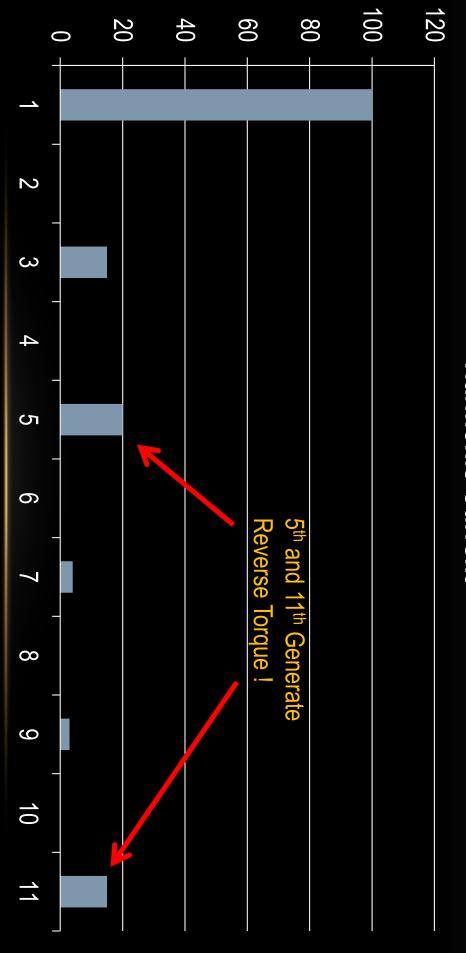
- Capacitive coupled leakage current
 Static
- Static electricity from load


FLUTING IN BEARING CHASE CAUSED BY LEAKAGE CURRENT

WHAT BEARING WEAR LOOKS LIKE



THERMAL IMAGING - EXTREMELY HELPFUL!



VFD OUTPUT VOLTAGE - INSULATION FAILURE

NEGATIVE SEQUENCING

MAINTENANCE (PM) MOTOR MANAGEMENT, PREVENTIVE

- Well planned PM is key to dependable, long-life operation of motors, pumps and generators
- Unscheduled stoppage and long repairs are intolerable
- resources and training Leadership often sees value of PM but resists investment for proper tools,
- PM often needs to be pitched as a business case
- Case studies of prior breakdowns and resulting costs will help
- Once budget approved, develop a plan for each motor category

MOTOR MANAGEMENT PROGRAM

- Survey motors. Gather nameplate information (HP, RPM, enclosure, voltage, amps, etc.)
- Initially focus on motors that exceed minimum size and operating hours
- 50 HP and above
- 6,000 hours/year of operation minimum
- Collect info re Standard, EPAct and NEMA Prem. Eff.
- Constant load (not intermittent, cycle or fluctuating)
- Older or rewound motor

MOTOR MANAGEMENT PROGRAM

- Conduct Motor Replacement Analysis by the following three categories:
- Motors Offering Rapid Payback through Energy Savings. Motors that run continuously (8,000 or more hours/year.)
- Improved Reliability Oversized Motors
- inefficient motor with new NEMA Premium Motor. Utility Rebate Program - utility pays end-user to replace older

AREAS TO COVER FOR GOOD PM PROGRAM

- Thermal Imaging
- Over-heating (insulation class, impact on life)
- Overloads
- Imbalances
- Vibration Analysis
- Included load on shaft (pump bearing)
- Load Analysis
- Tachometer and slip equations
- Power Analysis
- Phase imbalance
- Overload
- Harmonics
- Power Factor
- Power Quality

NEEDED - GOOD TOOLS AND EXPERTISE!

Create a Record for Each Motor

3-13

Motors

General Information			
Site Name			
Motor ID/ Tag			
Location/Service			
Year Built	2011		
Motor Data	Nameplate	Decign/Operating Conditions	÷:
Manufacturer	2 ALA Tron		Design Measured
Model Number	EUD 25677 FNA 6001	2 / Ambient Temp	NO
Serial Number	At RIVO		
Motor Type	TEFE AC Prem EX		Blower
Motor Efficiency	92.49		
Full-Load HP	20		
Frame Size			
Frame Style	2567		
Full-Load RPM	35 3537		
Synch RPM	3600	Measurments	
Volte			

INIOCOL COULTON	
ON/OFF	3
VFD	()0
Soft-start	20
Multiple Speed Settings	No

Power Demand (kW)
Connection Type

73.4

460

Phase

Volts

0
U
O
I (D)
01
l m
6.4
3
OD
S
C
2
0
0
=
m
10000
1

Annual Oper. Hours		Time of Day Scheduling
4	Sat	N-F
4591	74-30	530A-10p

Convert Collected Data into Database

Slight bearing wear		No	Yes	Yes	Yes	15	MARATHON BVA254TFNA6001AER140	3 Layer 2 - Air Ring Supply	M47	49
		No	Yes	Yes	Yes	54.4	RELIANCE 89864009		M46	48
		No	Yes	Yes	Yes	10	MARATHON DVA 215TTFS6001GWR1401	3 1/2 - IBC Exhaust Blower	M45	47
		No	Yes	Yes	Yes	40	DELCO 1V9716L1	6"-Grinder	M44	46
		No	Yes	Yes	Yes	ö	LEESON C324T17FB7D	6"-Grinder	M43	45
		No	Yes	Yes	Yes	30	GE 50D363NA001AO15		M42	44
Moderate bearing wear and looseness		No	Yes	Yes	Yes	25	BALDOR M4107T	6" - Air Ring Supply	M41	43
Bearings at both ends have moderate wear		No	Yes	Yes	Yes	250	POWERTEC A32EYS1000100000	6" Extruder	M40	42
Moderate bearing looseness		No	Yes	Yes	Yes	10	RELIANCE P21G3319H	3 1/2 - IBC Exhaust	M39	41
		No	Yes	Yes	Yes	15	MARATHON DVF 254TTFNA6001 AER1401	3 1/2 - IBC Suply Blower	M38	6
		No	Yes	Yes	Yes	150	RELIANCE 7135052-001-DJT1	3 1/2 - Extruder	M37	8
		No	Yes	Yes	Yes	20	TOSHIBA B02020LF2UMH01		M36	w
Machine down		No	No	No					M35	37
Machine down		No	No	No					M34	86
		No	Yes	Yes	Yes	15	BALDOR M3314T		M33	85
motor not accessible Machine down		8 8	N N	N _o				Macchi reclaim 3 Layer 1 - IBC Suply	M31 M32	24 83
		No	Yes	Yes	Yes	20	SIEMENS ILA91866	605 Erema - Cutter/Compactor	MBO	32
Moderate bearing looseness		No	Yes	Yes	Yes	15	SIEMENS ILE10011DC434AB4Z	605 Erema - Extruder	M29	31
		No	Yes	Yes	Yes	60	GE 5CD84TA096B032	3 Layer 2 - Extruder C	M28	ö
		No	Yes	Yes	Yes	50	SAFTRONICS CD203PA097A151	3 Layer 2 - Extruder B	M27	29
		No	Yes	Yes	Yes	60	SAFTRONICS 5CD184TA096B017	3 Layer 2 - Extruder A	M26	28
		No	Yes	Yes	Yes	60	RELIANCE 7342431A-00-DKT1		M25	27
		No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T8	9 Layer - Extruder H	M24	26
		No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T7	9 Layer - Extruder G	M23	25
		No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T6	9 Layer - Extruder F	M22	24
		No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T5	9 Layer - Extruder E	M21	23
		No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T4		M20	22
		No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T3	9 Layer - Extruder C	M19	21
		No	Yes	Yes	Yes	40	RELIANCE 7350638-001-CK-T2		M18	20
		No	Yes	Yes	Yes	60	RELIANCE 73424318-00-DR-T1		M17	19
Slight looseness		No	Yes	Yes	Yes	20	MARATHON EVD286TSTFN6001BHR1402		M16	18
		No	Yes	Yes	Yes	30	MARATHON EVD286TSTFN6001BHR1401		M15	17
		No	Yes	Yes	Yes	10	MARATHON DUB 215TTFS6001GWR140		M14	16
		No	Yes	Yes	Yes	20	MARATHON EVD 256TTFNA6001		M13	15
		No	Yes	Yes	Yes	80	LEESON M286TDB10B		M12	14
Moderate bearing wear; non-std		No	Yes	Yes	Yes	50	BALDOR 59084771-001001-JN		M11	tä
Excessive bearing wear		No	Yes	Yes	Yes	10	CONTRAVES 21908450802	5 Layer - Extruder B	M10	12
Moderate bearing wear		No	Yes	Yes	Yes	25	BALDOR P28800450035000	5 Layer - Extruder C	M9	Ħ
Excessive bearing wear		No	Yes	Yes	Yes	10	CONTRAVES N058/0413-FN112	5 Layer - Extruder E	M8	10
Moderate bearing wear; non-std		No	Yes	Yes	Yes	10	CONTRAVES 2190B450B03	5 Layer - Extruder D	M7	ø
Machine down		No	No	No				3 Layer 1 - Extruder A	M6	00
Machine down		No	No	No				3 Layer 1 - Extruder B	M5	7
Machine down		No	No	No				3 Layer 1 - Extruder C	M4	σ
Excessive bearing wear; severe 5th and 11th harmonic		Yes	Yes	Yes	Yes	150	RELIANCE 01KL517389DFT1	2 1/2 - Extruder	MS	v
Severe bearing wear, excessive heating at power connection, overloaded		Yes	Yes	Yes	Yes	22.8	WEG LENZE TEO1FOXOXOXO00091180	806 Erema Extruder	M2	4
Excessive bearing wear, severe current unbalance		Yes	Yes	Yes	Yes	22.8	WEG Lenze 06AG008	806 Erema Cutter/Compactor	M1	w
on Comments	Condition	Power	R	Vibration	Photo	퓩	Make and Model	Location	=	2

MOTORS AND VFD'S - FIRSTENERGY UTILITY REBATES FOR

saved, caped at 50% of project cost. Motors and VFD's fall under their custom program and pay \$0.08/kWh

MOTORS AND VFD - AEP UTILITY REBATES FOR

Qualify	Qualifying Motors Exceed NEMA Premium [™] Efficiency	ors Exc	Exceed NEM	EMA Pren	າium™ E	fficienc	у
Horse-	3600 RPM	RPM	1800	1800 RPM	1200 RPM	RPM	Incentive
power	Open	Closed	Open	Closed	Open	Closed	/Motor
1	77.0%	77.0%	85.5%	%5.58	82.5%	82.5%	88
1.5	84.0%	84.0%	86.5%	86.5%	86.5%	87.5%	\$10
2	85.5%	85.5%	86.5%	86.5%	87.5%	88.5%	\$13
3	85.5%	86.5%	89.5%	89.5%	88.5%	89.5%	\$20
5	86.5%	88.5%	89.5%	89.5%	89.5%	89.5%	\$25
7.5	88.5%	89.5%	91.0%	91.7%	90.2%	91.0%	\$40
10	89.5%	90.2%	91.7%	91.7%	91.7%	91.0%	\$45
15	90.2%	91.0%	93.0%	92.4%	91.7%	91.7%	\$60
20	91.0%	91.0%	93.0%	93.0%	92.4%	91.7%	\$75
25	91.7%	91.7%	93.6%	93.6%	93.0%	93.0%	\$80
30	91.7%	91.7%	94.1%	93.6%	93.6%	93.0%	\$90
40	92.4%	92.4%	94.1%	94.1%	94.1%	94.1%	\$100
50	93.0%	93.0%	94.5%	94.5%	94.1%	94.1%	\$120
60	93.6%	93.6%	95.0%	95.0%	94.5%	94.5%	\$130
75	93.6%	93.6%	95.0%	95.4%	94.5%	94.5%	\$140
100	93.6%	94.1%	95.4%	95.4%	95.0%	95.0%	\$190
125	94.1%	95.0%	95.4%	95.4%	95.0%	95.0%	\$238
150	94.1%	95.0%	95.8%	95.8%	95.4%	95.8%	\$285
200	95.0%	95.4%	95.8%	96.2%	95.4%	95.8%	\$380
250	95.0%	95.8%	95.8%	96.2%	95.4%	95.8%	\$475

VFD Application	Incentive Amount
Supply/ Return Fan	
Chilled Water Pump/ Condenser Water Pump	
Hot Water Pump	\$60/HP
Cooling Tower Fan	0001
Other HVAC Motor (Fan/ Pump)	
Process Fan and Pump Motor	

Pool Pump & Compressor Prescriptive Incentives	Prescriptive Incentives	-61
VFD Application	Size Requirements	Incentive Amount
Pool Pump	N/A	\$100/HP
New Compressor	≤ 150 HP	\$100/HP
Installing VFDs on Existing Equipment	g Equipment	
Incentives qualify for new VFDs, not replacement VFDs. Prescriptive Incentives for VFD applications ≤ 200 HP* (For motors >100 HP custom analysis is completed, but prescriptive incentives are paid.)	⁼ Ds, not replacement VF FD applications ≤ 200 HF n analysis is completed, l	Ds. p* but prescriptive

Installing VFDs on New Equipment

eligible for incentives. Subject to ASHRAE 90.1-2007 standards. If a VFD is required it is not

The following are the most common applications not eligible for incentives

mooning too.		
VFD Application	Required by ASHRAE 90.1-2007	Notes
Variable Air Volume (VAV) Fan Control	Motor ≥ 10 HP	Supply/ return fans
Hydronic Variable Flow Systems	Motor > 50 HP & Pump Head > 100 ft	Variable fluid flow pumps
Heat Rejection Equipment, Fan Speed Control	Motor ≥ 7.5 HP	Cooling towers, condensing units, etc.

MOTORS AND VFD'S - DUKE ENERGY UTILITY REBATES FOR

VARIABLE FREQUENCY DRIVES

For all VFD operations >2000 hours per year applied to HVAC fans and pumps and process pumps

_	l _
rom 1.5 hp to 50 hp	₩P
Up to \$100.00/hp	INCENTIVE/HP

Visit www.duke-energy.com for required efficiency levels.

UTILITY REBATES FOR

MOTORS AND VFD'S - DP&L	– DP&L
Premium Motors	
Measure	Rebate (per HP)
1.0 - 5.0 HP	\$25.00
7.5 - 20.0 HP	\$15.00
25.0 - 250.0 HP	\$10.00

Variable Frequency Drives	
Measure	Rebate (per HP)
1.0 - 250.0 HP	\$40.00

Tom Sherman CEM, CDSM 440-773-5044

Tom@SESCorp.co