

COMPUTER MODELING FOR IMPROVED CLARIFIER PERFORMANCE THE NEW STAMFORD DENSITY CURRENT BAFFLE

Earle Schaller, President NEFCO, Incorporated

SOME HISTORY

THE STAMFORD BAFFLE

1979 - Bob Crosby on assignment at the Stamford, CT WWTP

- · Observed that density currents were impacting clarifier performance
- Devised a passive plywood baffle to intercept currents
- Crosby's density current baffle reduced TSS by 38%.

1986 – The first full scale fiberglass density current baffles were installed at the Stamford, CT WWTP

1987 – Connecticut introduced a grant project for WWTP improvement, citing the benefits of the Density Current Baffle at Stamford ...

1987 - The Connecticut EPA described the

DENSITY CURRENT BAFFLE

"...the most cost-effective improvement in clarifier performance available today."

And the Stamford Baffle was born!

DENSITY CURRENTS

Occur in every activated sludge clarifier

Have a significant, negative impact on clarifier performance:

- Short circuit the main clarification volume
- Increase effluent TSS
- Reduces retention time
- Reduces clarifier hydraulic capacity

The density current baffle remains the most cost-effective improvement in clarifier performance available today.

DENSITY CURRENT BAFFLE

HOWEVER ...

There hasn't been a significant improvement in baffle design or performance in 20 years!

- 45° INCLINATION ANGLE THE STANDARD
- **1** BAFFLE POSITION ON THE WALL PROBLEMATIC

2004 - PRESENT

NEFCO STUDY

QUESTION

What are the keys to baffle performance? Can we make a better baffle?

- Horizontal Projection
- Inclination Angle
- Mounting Location
- Clarifier Depth
- Clarifier Diameter
- Blanket Depth

THE TOOLS

CFD Analysis - FLOW-3D software

PROCESSING

Dr. John Richardson, Blue Hill Hydraulic, Inc.

THE PLAN

- 1 Developed 3D model of 70 foot and 100 foot circular clarifiers.
- 2 Selected operating conditions that produced strong density currents at outer tank wall
- Developed detailed model of area at outer wall
- 4 Defined different baffle configurations and computed TSS concentration for each, then normalized results against the "No Baffle Case"

Qualitative Evaluation = Better Than/Worse Than Results

STUDY PARAMETERS

SIMULATION RESULTS

In the 70 foot and 100 foot simulations:

- 1. The Original Stamford Baffle performed well
- 2. The baffle with 30° inclination angle performed better
- 3. The baffle with increased projection was best overall

THE NEXT STEP: FOCUS ON THESE THREE CONFIGURATIONS

REFINE THE RESULTS

Case No.	Configuration	Relative Effluent Conc.
1	Original Stamford Baffle (α = 45°, HP = 32.0")	1.0
4	Long Stamford Baffle (a = 45°, HP = 39.0")	0.8
**	Modified Stamford Baffle (a = 30°, HP = 39.0")	0.7

30° INCLINATION ANGLE

- Horizontal outflow
- Increased distance from blanket to tip of baffle
- No appreciable buildup of solids
- Other researchers concur

30° INCLINATION ANGLE

- Increases the space between the baffle tip and the blanket
- Outflow is horizontal rather than vertical

45°

30°

INCREASING THE PROJECTION

- 1. The density current rises from the blanket before reaching the wall
- 2. Extending the projection enables the baffle to intercept a greater volume of solids

BAFFLE PERFORMANCE

An Introduction

THE MONCLOVA, MX EXPERIENCE

- Treatment facility serves the town and local industry (steel mill)
- City retrofitted plant to increase flow by 35% to 15.5 MGD and improve nitrification to meet industrial needs
- Three 112 foot diameter activated sludge clarifiers
- After the upgrade, the plant could not meet permit levels
- Increased flow caused TSS to exceed the 10 ppm limit

NEEDED TO REDUCE TSS TO LESS THAN 5 PPM

An Introduction

THE MONCLOVA, MX EXPERIENCE

> 10 ppm

INSTALLED MODIFIED STAMFORD BAFFLE Clarifier No. 3 – July 2009

TESTING AUGUST 4 – AUGUST 21, 2009 Six samples per day

RESULTS CLARIFIER NO. 3

Average TSS

with No Baffle

• with Modified Stamford Baffle 2.34 ppm

BAFFLE PERFORMANCE

BAFFLE MOUNTING

LAUNDER MOUNTED BAFFLE Reduces TSS by 25%-30%

WALL MOUNTED BAFFLE

Reduces TSS by 60% to 70%

An Introduction

THE DUAL SURFACE BAFFLE

- Continued the study to examine a more radical baffle concept
- Leveraged the energy of the rising density current
- Added a mirror lower surface to the baffle.

DUAL SURFACE BAFFLE IMPROVES CLARIFIER PERFORMANCE AT HIGHER FLOWS

Design Study - Test Results

DUAL SURFACE BAFFLE PERFORMANCE

Relative Effluent Reduction

NEFCO Study

CONCLUSIONS

A Stamford Baffle with 30° inclination angle and increased horizontal projection is significantly more effective than the original Stamford Baffle

As clarifier flows continue to increase, a Dual Surface Baffle offers a new means to improve clarifier performance.

The study provided new tools to evaluate baffle and clarifier performance.

