# INTRODUCTION TO LABORATORY MANAGEMENT AND METHOD PERFORMANCE





#### OUTLINE

- Laboratory Management
- Method Performance

   Accuracy and Precision
- Method Precision
- Method Detection Limit





#### TAKE HOME MESSAGES – LABORATORY MANAGEMENT

- Communication, documentation, and training are essential to good laboratory management.
- Keep it simple Try to document the essentials, without recording extraneous information.
- Standards are a useful tool for evaluating analyst, instrument, and reagent performance.



#### HOW IS WATER TESTED?

- Steps of Analysis
  - Sample Collection
  - Sample Preparation
  - Use of Standards
  - Procedure
  - Interpretation



#### SAMPLING AND SAMPLE PRESERVATION

# The analysis is only as good as the sample





#### LABORATORY MANAGEMENT

• Who should be involved in laboratory management and method performance?





#### LABORATORY MANAGEMENT

- Everyone involved with the lab:
  - Person sampling
  - Person running the test
  - Person washing the glassware
  - Person doing maintenance on the instruments
  - Person interpreting the results



#### **ANALYST AND USER**

- People involved with lab management can usually be categorized in one of two groups:
  - Analysts
  - Users
- Analyst and user could be the same person!



#### **ANALYST AND USER**

- Analyst
  - Person or group providing the analytical results
- User
  - Person or group using (managing or interpreting) the analytical results



# ANALYST AND USER RESPONSIBILITIES

- Good communication must exist between analyst and user
  - The user must define what information is required.
  - It is the analyst's task to provide required information.



# **ANALYST CONCERNS**

- What do I need for this application?
  - Pretreatment required?
  - Screening test or reporting results?
  - Required sensitivity?
  - Digital instruments or test kits?
- How many samples and how much sample?
- How many tests are necessary?



## **USER CONCERNS**

- How much is it going to cost?
- How long is it going to take to sample and get results?
- How can I realistically balance analytical requirements with resources?



# LABORATORY MANAGEMENT

- Keys to Laboratory Management
  - Communicate
  - Document
  - Train
  - Cross-Train
  - Update





# **DOCUMENT AND TRAIN**

- Record keeping
- Cleanliness
- Labware
- Maintenance
- Use of standards
- Stability of reagents
- Procedures Choice and training





# **RECORD KEEPING**

- A record keeping system (paper trail, chain of custody) should track samples <u>before</u>, <u>during</u>, and <u>after</u> analysis.
- Everyone involved needs to understand and utilize the system.



# **RECORD KEEPING**

- Efficiently process information through lab system while minimizing actual time spent recording data
- Keep it simple!
  - Collect only the information you need



#### **SUGGESTED INFORMATION - SAMPLE**

| Site Hayfield Site<br>Influent                  | Date 04-15-02 8am   |
|-------------------------------------------------|---------------------|
| Code HS IN 1                                    | Collected By Jim S. |
| Conditions Sunny, 75F                           |                     |
| Comments: pH adjusted to <2 with<br>nítric acid |                     |
| Grab sample                                     |                     |
|                                                 |                     |



# **SUGGESTED INFORMATION - LAB**

- Date of analysis
- Laboratory technicians performing the analysis
- Results (including units)
- Analytical comments: based on need to know
  - Dilutions
  - Interferences encountered





• Labware cleaning procedures should be documented and all persons involved should be trained.





# **ROUTINE CLEANING PROCEDURE**

- Rinse glassware with tap water.
- Clean glassware with a solution of water and laboratory detergent.
- Rinse the glassware with an acidic solution
  - 1.0 N HCl
  - 6N HNO<sub>3</sub> for regulatory reporting of heavy metals
- Rinse glassware at least 3X with DI water.



# **ROUTINE CLEANING PROCEDURE (CONT.)**

- Glassware should be stored in a manner that prevents contamination from dust particles.
- Prior to analysis, rinse the glassware with sample to prevent contamination or dilution.



# **ROUTINE CLEANING**

- Nitrate/ammonia do not clean with nitric acid
- Phosphates use phosphate-free detergent
  - use Liqui-Nox or hydrochloric acid
- Dedicate glassware



#### LABWARE

- Use the highest quality glassware that you can, that best fits your application.
- Dilutions clean Class A glassware
  - Volumetric flasks
  - Volumetric pipets







#### LABWARE

• An alternative to Class A glass pipets is an accurate volumetric dispenser such as Hach's Tensette Pipet.





## MAINTENANCE

- Preventative maintenance is the key to optimal instrument performance.
  - Follow any maintenance program and guidelines suggested by the instrument manufacturer.
  - Instrument manual



## MAINTENANCE

- Check the performance of instruments by using internal diagnostic programs
  - DR/6000, DR/3900 have self-diagnostic check
- Check the condition of analytical system (instruments, reagents and technique) with standards.



## **STANDARDS**

- How are standards used?
  - Instrument calibration
  - Instrument verification/accuracy check



## **CALIBRATION**

- Hach instruments built-in calibration curves, not necessary to calibrate
- Instrument <u>without</u> preprogrammed calibration curves
  - Prepare curve daily OR
  - Whenever a new lot of reagents is prepared



## **STANDARDS**

- Standard solution Am I running the test correctly?
  - Verifies instrument, technique, and reagents
  - Control charts





## **STANDARDS**

- Standard additions Is my sample compatible with the test?
  - Identifying interferences and percent recovery





# **REAGENT STABILITY**

- Running a standard can help assess reagent performance.
  - Reagents should be checked routinely with a standard to insure that they have not deteriorated.
  - You can't always tell by the expiration date
    - Storage conditions



# **REAGENT STORAGE**

- Reagents should be stored properly
  - Maximum shelf life depends on storage in a cool, dry location (refrigeration necessary if indicated on the packaging)



## **PROCEDURES**

- Be sure that the correct procedure is chosen for:
  - Analytical range and necessary precision
  - Sample type
  - Regulatory acceptance
  - Chemical form





## **PROCEDURES**

- Procedures should be:
  - Understood and followed <u>exactly</u> by all technicians involved.
  - Based on sound chemical principles.
  - Be safe for the technicians performing the test.



## **PROCEDURES**

- Practice new procedures using <u>standard solutions</u> in order to verify the analytical system.
  - Train and instill confidence in the technicians.
- If interferences are suspected, run a standard additions.



## **OUTSIDE LAB COMPARISONS**

- Confidence comes from within not by comparison to outside labs.
- If you compare with outside labs, remember:
  - Paying for results doesn't necessarily make them accurate.
  - A true comparison means the same test is being run on the same sample.
  - 3 different labs could see greater than +/- 25% in results.


## TAKE HOME MESSAGES – LABORATORY MANAGEMENT

- Communication, documentation, and training are essential to good laboratory management.
- Keep it simple Try to document the essentials, without recording extraneous information.
- Standards are a useful tool for evaluating analyst, instrument, and reagent performance.



## **METHOD PERFORMANCE**





## **TAKE HOME MESSAGES – METHOD PERFORMANCE**

- Accept the fact that analytical errors happen.
- Know and control the amount of error in measurements so it can be taken into account when making decisions.
- High quality measurements are possible with attention to detail and technique.



## WHY TEST WATER?

- To answer a question
  - Am I in compliance?
  - Is my process in control?
- Enough data is required so numbers can be accurately compared with historical data or MCL.



#### WHY TEST WATER?

- The measurement, together with consideration of any other relevant factors, is often the basis for decision making.
  - Accuracy is essential



#### **ACCURACY IS ESSENTIAL**

- Factors that could influence accuracy should always be carefully considered.
  - Representative sample, sample interferences, equipment quality, correct procedure, number of people involved
- The accuracy of analytical results is a primary issue in any analytical program.



#### **ERRORS HAPPEN**

• Error – Difference between analytical results and the true concentration.





#### **ERRORS HAPPEN**

• Analytical error affects the validity of any decisions made on the basis of the results.





#### **ERRORS HAPPEN**

- In a perfect world, every analytical result would always be equal to the true concentration.
- This is impossible to achieve!



#### **ERROR HAPPENS**

• Since there's no way to avoid it – accept the fact that error happens!





## IF YOU CAN'T BEAT THEM.....

- Since error can't be avoided in chemical analysis, there are a few ways to work with it:
  - Minimize error to ensure meaningful results
  - Be sure the magnitude of error is known, controlled, and quantified
  - Take error into account when decision-making



#### **CHLORINATION – AN EXAMPLE**



 To ensure adequate residual at the tap, water must leave your plant with 2.00 – 2.50 mg/L chlorine.



#### **CHLORINATION – AN EXAMPLE**



#### **CHLORINATION – AN EXAMPLE**



#### **DECHLORINATION – AN EXAMPLE**



 Dechlorinated wastewater effluent is discharged into a wetland and must be dechlorinated to less than 0.026mg/L.



#### **DECHLORINATION – AN EXAMPLE**



Results of two chlorine tests are:

 0.02 and 0.03mg/L
 (remember limit is 0.026mg/L)



#### **DECHLORINATION – AN EXAMPLE**



• A more precise test is necessary in order to make an accurate treatment decision!



## **DIGITS VS. DECISIONS**

• When choosing a method and collecting data, consider how accurate and how close the results **must** be in order to make a correct decision.



#### WHAT IS ACCURACY?

• <u>Accuracy</u> is the nearness of a test result to the true value.





#### WHAT IS PRECISION?

- Precision is how closely repeated measurements agree with each other.
- Although good precision suggests good accuracy, precise results can be inaccurate.





#### Imprecise and inaccurate



**Precise but inaccurate** 



#### Accurate but imprecise



**Precise and accurate** 

#### **MEASURE TWICE, CUT ONCE**

- Don't make judgments based on one analysis!
- Run multiple tests and get an average.
  - The amount of variation in those value gives you an idea of the precision.



### WHAT ARE THE SOURCES OF UNCERTAINTY?

- Systematic Error
- Random Error



#### SYSTEMATIC ERRORS

- An error that is repeated for every measurement, causing bias in the same direction.
  - Reagent blank can cause consistently high results
  - Pipet that is out of calibration and dispenses low volume
  - Balance out of calibration and weighs high



#### **RANDOM ERRORS**

- Errors that are different for each test add either positive or negative bias.
- Random errors result due to variation in technique
  - Washing glassware, dust on glassware
  - Rinsing sample cell
  - Improper use of pipet or TenSette
  - Monday morning or Friday afternoon syndrome



#### ACCURACY

• High quality measurements <u>are</u> possible with attention to detail and technique.



## **MEASUREMENT ISSUES**

- Instrument
- Procedure
- Preparation
- Reagents
- Technique
- Interferences





#### **INSTRUMENT**

- Can the instrument do what I want it to?
- What is the current condition of the instrument?
  - Wavelength accuracy
  - Noise
  - Stray light
  - Absorbance check: tests the lamp, monochromator and photodetector as a system



## **PROCEDURE (METHOD PERFORMANCE)**

- Be sure the procedure is correct for:
  - Analyte
  - Analysis range
  - Precision and sensitivity required



### **METHOD PERFORMANCE**

- Determining the Method Detection Limit (MDL)
- Determining the Sensitivity
- Determining the Precision
- Using Control Charts



## **TAKE HOME MESSAGES – METHOD PERFORMANCE**

- Accept the fact that analytical errors happen.
- Know and control the amount of error in measurements so it can be taken into account when making decisions.
- High quality measurements are possible with attention to detail and technique.



# **METHOD PRECISION**





# TAKE HOME MESSAGES – PRECISION AND CONTROL CHARTS

- Every method has some degree of variability in measurements.
- The degree of variability in a method can be quantified by calculating method precision.
- Measurement precision can be visualized and controlled using a control chart.





• <u>Every</u> measurement has some degree of uncertainty.



#### PRECISION

 Chemical measurements have some degree of uncertainty, similar to the way a ruler with 1/16" markings leaves some doubt as to the exact length.





#### **PRECISION**

- Precision is:
  - An estimate of the average response variation.
  - The 95% confidence interval for the stated concentration.


#### PRECISION

- 95% Confidence Interval (2s)
  - Any <u>single</u> reading may fall outside of the range, but the average of several readings should fall within the range <u>95 times out of 100</u>.
- These values hold only for a DI water matrix
  - Ranges may vary depending on the sample matrix.



#### **PRECISION LABORATORY PROCEDURE**

- Analyze 7 replicates of a 1.000 mg/L iron standard and record results
- Calculate the mean and standard deviation
- The 95% confidence interval is determined from 2s



# METHOD DETECTION LIMIT (MDL)



#### **TAKE HOME MESSAGES - MDL**

- There is a finite lower concentration limit to every chemical analysis method.
- The lower limit of a test can be quantified by determining the method detection limit for a particular method and analyst.
- Precision, MDL, and sensitivity are all factors which affect your choice of analytical methods.



### **METHOD DETECTION LIMIT**

 USEPA defines MDL as the minimum concentration that can be determined with 99% confidence that the true concentration is greater than zero.



### **METHOD DETECTION LIMIT**

- MDL varies from analyst to analyst.
  - Each analyst must determine their own MDL based on their own unique operating conditions.
- MDL does not account for variations in sample matrix and can only be achieve under ideal conditions.



### **METHOD DETECTION LIMIT**

- An idea of the estimated detection limit (EDL) is required in order to determine MDL.
- EDL the upper 99% confidence limit for zero concentration based on calibration data used to prepare a calibration curve.
  - Many Hach procedures contain EDLs.



#### **MDL DETERMINATION**

- Estimate (or look up) the detection limit.
- Prepare a laboratory standard of the analyte in DI water that is 1-5 times the EDL.
- Analyze at least 7 portions of the standard and record each result.



#### **MDL DETERMINATION**

- Calculate the mean and standard deviation of the results.
- Compute MDL
  - MDL = Student's "t" x standard deviation
  - Student's "t" is obtained from a statistical table.



### **EXAMPLE – MDL DETERMINATION**

- Method FerroZine Iron method
- EDL = 0.003 mg/L (from procedures manual)
- Prepare 1 liter of 0.010 mg/L standard (1-5X EDL).
- Analyze 8 replicates of standard and record results.



#### WHAT IS SENSITIVITY?

• Sensitivity is quantified as the change in concentration for a 0.010 change in absorbance.



#### **TAKE HOME MESSAGES - MDL**

- There is a finite lower concentration limit to every chemical analysis method.
- The lower limit of a test can be quantified by determining the method detection limit for a particular method and analyst.
- Precision, MDL, and sensitivity are all factors which affect your choice of analytical methods.



#### FOR MORE INFORMATION.....

• "Standard Methods for the Examination of Water and Wastewater" is an excellent source to begin a QA/QC program in your laboratory.



## INTRODUCTION TO LABORATORY MANAGEMENT AND METHOD PERFORMANCE



