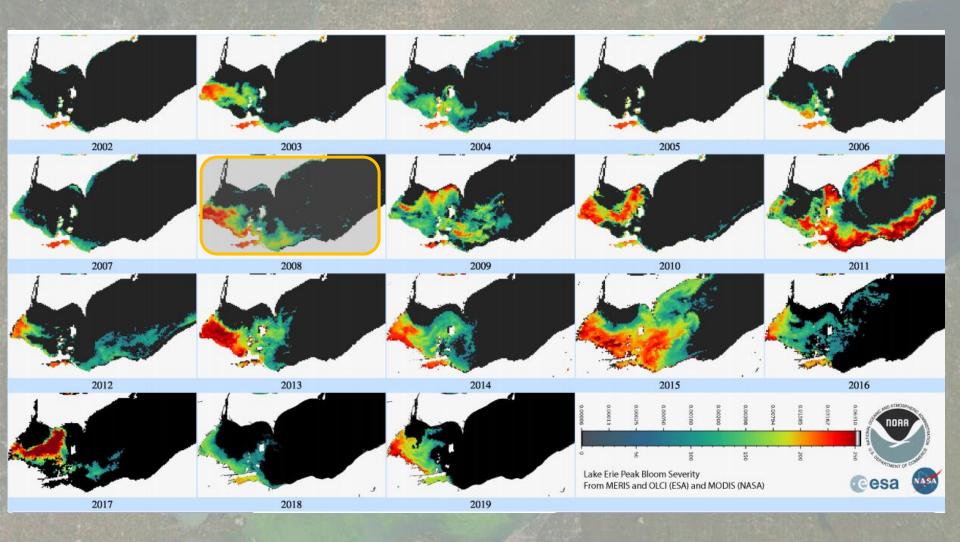
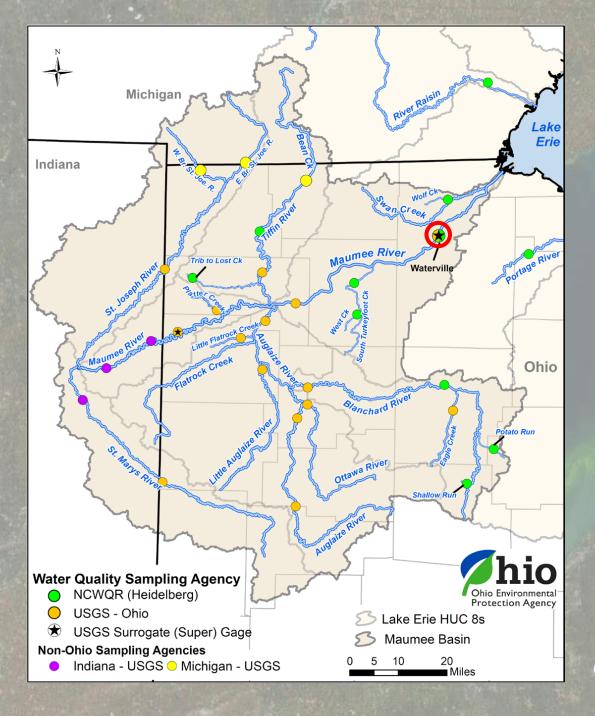
--- Operator Training Committee of Ohio ---

OHIO SEA GRANT AND STONE LABORATORY


Lake Erie Algae, Research Efforts, Nutrient Loading, and Farmer Decision Making

Dr. Chris Winslow, Director Ohio Sea Grant and Ohio State University's Stone Lab May 11th, 2021



Our Recent History of Blooms

Maumee River in Waterville

- One of 28 stations in Maumee Watershed
- Samples collected 3x/day, year-round
- Sampled since 1975 for all major nutrients and sediments (45 years!!)

courtesy of....

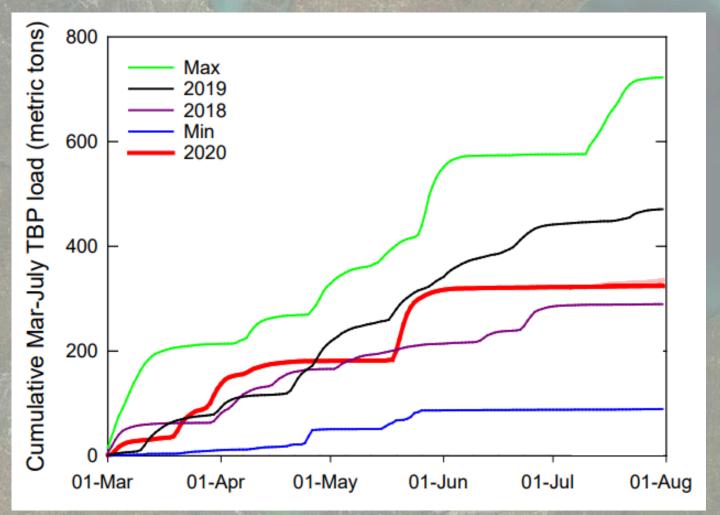
TP = DRP + TPP

What is TBP? Portion of P available to algae that doesn't settle between Waterville and Erie

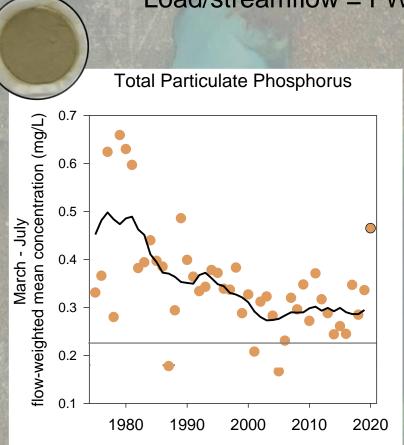
TBP = DRP + 0.08(TPP)

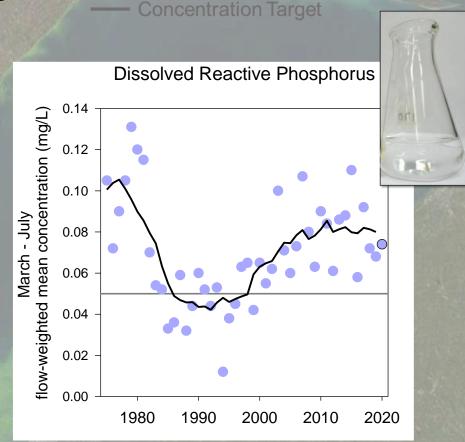
Total Bioavailable P

Dissolved Reactive P


Total Particulate P

courtesy of....

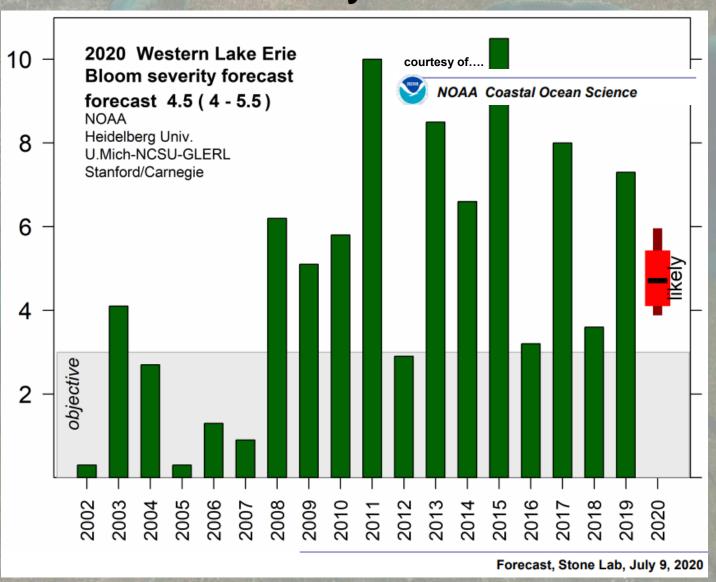

Maumee River Nutrient Loading: Drives Bloom Severity



Maumee River in Waterville March-July Flow-Weighted Mean Concentrations

Load/streamflow = FWMC

Currently \rightarrow 0.47 mg/L (0.23 mg/L)



5 year running average

Currently \rightarrow 0.075 mg/L (0.05 mg/L)

Western Basin Lake Erie Bloom Severity Forecast

The Economic Impact of Tourism in the Lake Erie Region of Ohio

Total Tourism Impact

Lake Region, Ohio

Sales \$15.1 billion

Wages \$4 billion

Taxes \$1.9 billion

Employment 127,852

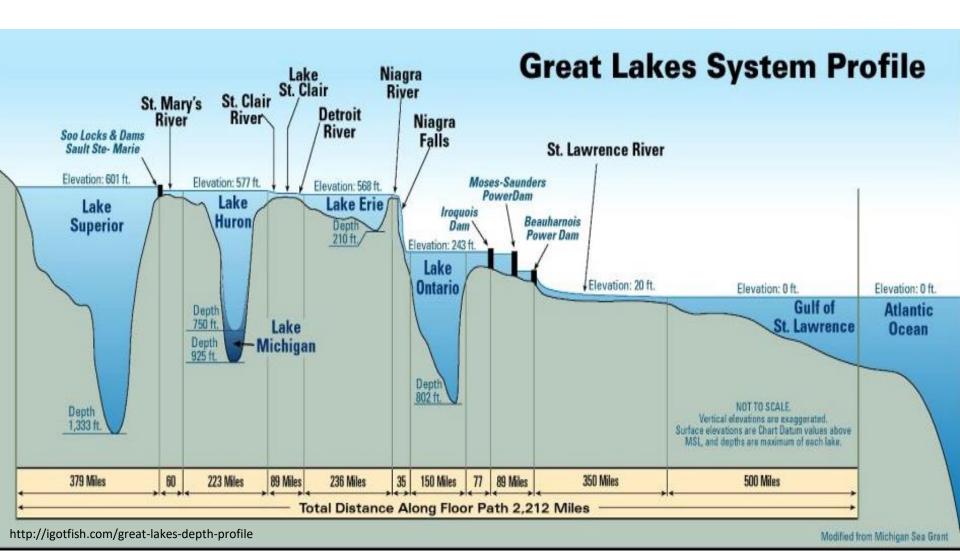
AN OXFORD ECONOMICS COMPANY

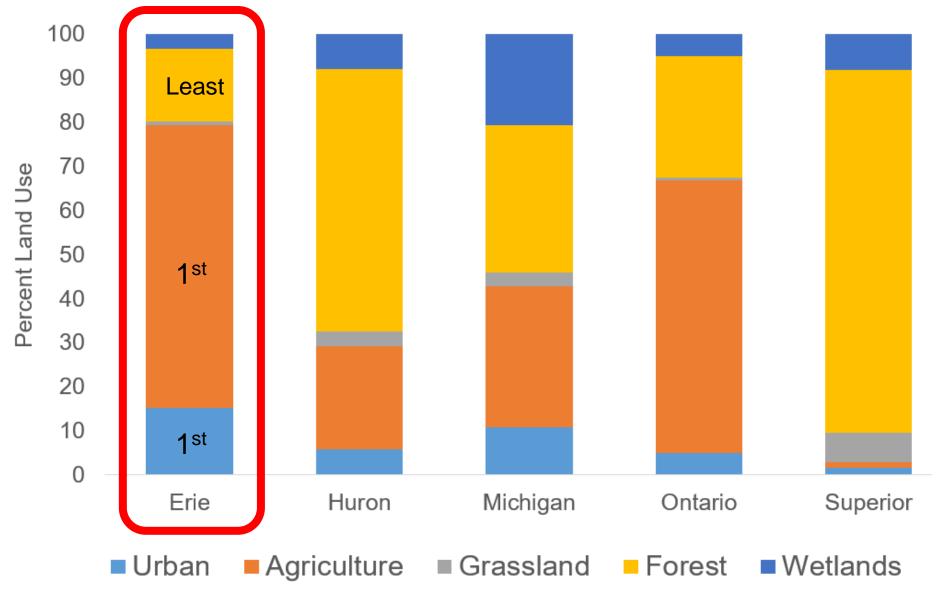
Cost of removing toxins from drinking water

Cost to communities w/ drinking water advisory

Charter captain and marina industry

Impact on fishery and tie to "deadzone"?




Jobs and revenue brought into state b/c of agriculture

Setting the Stage for Lake Erie HABs

10%

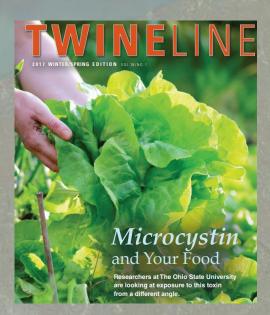
Great Lakes Watershed Land Use

Microcystis near Marblehead

HAB Research Initiative

- Has provided solutions and practical guidance about producing safe drinking
- Has filled critical knowledge gaps about the risks that algal toxins present for <u>human health</u>
- Has identified how blooms behave
- Is addressing <u>nutrient runoff</u> into aquatic ecosystems

Truly Collaborative



Real Impact

- HABRI has expanded quality and frequency of collaborations (researchers and agencies)
- Early warning systems in Maumee and Sandusky bays and researchers are working directly with plant operators
- ODNR has changed fish sampling protocol; i.e., more frequently and across a larger range
- OEPA has modified its permitting for water treatment residuals

Nutrient Sources Today

- Maumee and Sandusky Rivers are largest phosphorus loaders
 - 87-93% of phosphorus from nonpoint sources (N 89-96%)
 - Agri. is dominant land use in watersheds (>70%)
- 70-90% of phosphorus loads occur during highest 20% of flows (2002-13)
 - Most loading occurs during ~10 storm events/year (Baker et al., 2014)

Nutrient Sources Today

- Since mid 70's, >75% reduction in phosphorus from WWTPs; contribute <7% of Phosphorus today
- CSOs: Long Term Control Plans in place (i.e., by 2020, 40 of 62 communities will have addressed)
 - 2013, CSOs in Maumee contributed <1% of Phosphorus
- In Maumee, septic systems contribute ~3% Phosphorus
 - Recent state regulations will continue to reduce
- Scott's Miracle-Gro removed Phosphorus from lawn care products (since 2013)
 - o 95% market followed Scott's lead
- "Internal loading" of Phosphorus ~3-7% of total load (vs.)

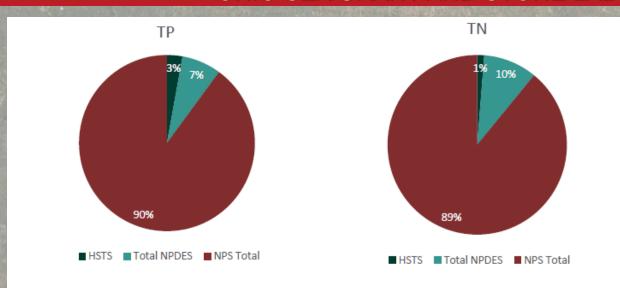


Figure 12 — Proportion of total phosphorus and nitrogen load from different sources for the Maumee watershed, average of five years (wy15-wy19).

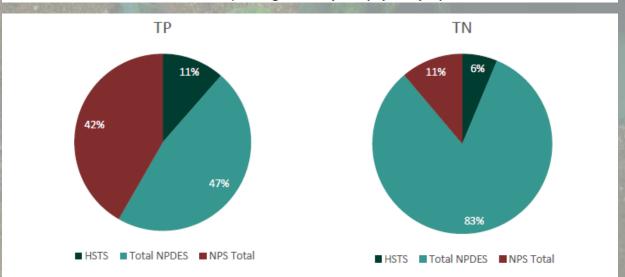


Figure 59 — Proportion of total phosphorus and nitrogen load from different sources for the Cuyahoga watershed, average of 5-years (wy15-wy19).

Nutrient Mass Balance Study for Ohio's Major Rivers 2020

Understanding Agricultural Nutrient Loss

- 70s to mid-1990s, phosphorus applied at 10-40 lbs. P₂O₅
 above crop removal rates, resulting in accumulation
- Since the mid-1990s:
 - ~5 lbs. P₂O₅ below removal rates (Mullen 2013)
 - NRCS (2016), on average, 5.5 lbs. P₂O₅ above removal rates; YET:
 - 58% of fields below crop removal rates
 - 42% of acres accounted for 78% of Phosphorus runoff and 80% of sediment loss

We are Directionally Correct

- 4R Nutrient Program (SB 150):
 - Right fertilizer source (i.e., manure)
 - Right time (i.e., rain/frozen ground)
- Right rate (i.e., amount)
- Right place (i.e., needed)
- Avoiding frozen application of fertilizer and manure (SB1)
- No "fertilizer" when rain is in forecast and on saturated soils (SB1)
- Eliminate broadcast application and adopt subsurface placement
- Soil testing of all fields to prevent application of excess phosphorus
- Need for water management (Disconnect hydrologic pathways)
- Non-Agriculture:
 - Lawn Care recommendations
 - Reduce property runoff
 - WWTP recommendations
 - Septic tanks

Plus

cover crops, DWCS, buffers, bioreactor, drainage H₂O recycling

H2Ohio **Phosphorus Reduction Impact**

Soil testing:

Testing results give farmers information on where to place fertilizer and fertilizer application rate.

Cover crops:

When planted after the main harvest, cover crops reduce erosion, hold nutrients in the soil, and improve soil health.

Variable-rate fertilization:

Applying specific fertilizer levels based on the need of each sub-acre to reduce fertilizer application without risk of losing vield.

Drainage water management:

Slowing down runoff to give phosphorus more time to settle back in the soil.

Subsurface nutrient application:

Applying specific fertilizer below the surface to reduce nutrient loss.

Two-stage ditch construction:

Creating modified drainage ditches to slow water flow and allow the phosphorus to settle.

Manure incorporation:

Mixing manure into the soil to keep it in place and minimize nutrient loss.

Edge-of-field buffers:

When trees, shrubs or strips of grass are planted along farm fields in the right place, the plants hold on to phosphorus and prevent its release into the water.

Conservation crop rotation:

Planting certain crops that reduce erosion and enrich the soil thus reducing runoff and sediment delivery.

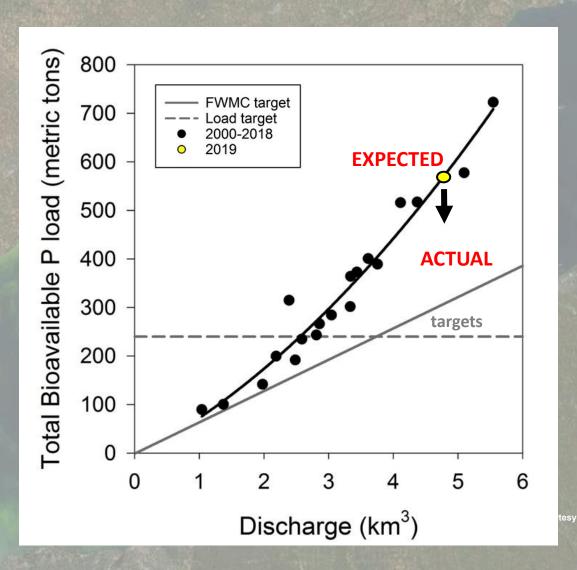
Wetlands:

Wetland vegetation and soils absorb phosphorus. slow down the movement of water, offer a natural filtering process, and allow phosphorus to settle.

H₂Ohio's "Top Ten" **BMPs**

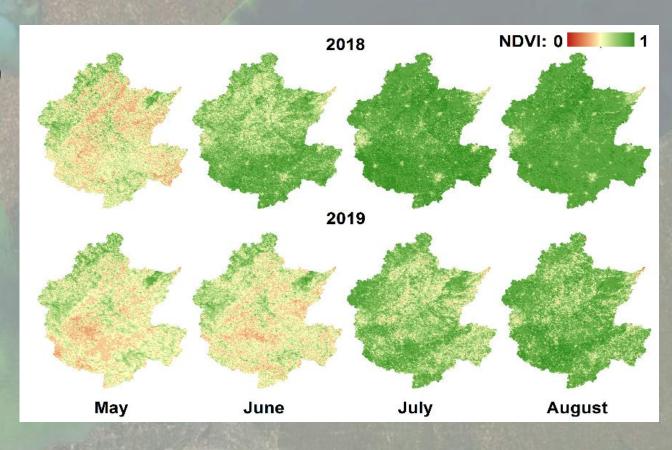
OHIO DEPARTMENT OF AGRICULTURE

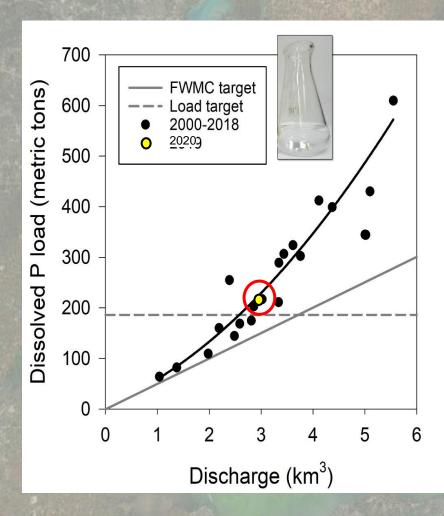
REDUCING AGRICULTURAL PHOSPHORUS RUNOFF mitted to helping farmers re Department of AGRICULTURE FAQS



"Legacy P" and what we learned from 2019

TBP loads were 24% lower than expected based on flow


Why?


Maumee Watershed Normalized Difference Vegetation Index

- 41% of land unplanted in 2019 (5% in 2018)
- ~46% of typical commercial P amounts were sold
- ~15% of typical manure application from March-May

2019 vs. 2020

Dissolved P loads as expected in 2020

Particulate P loads higher than expected

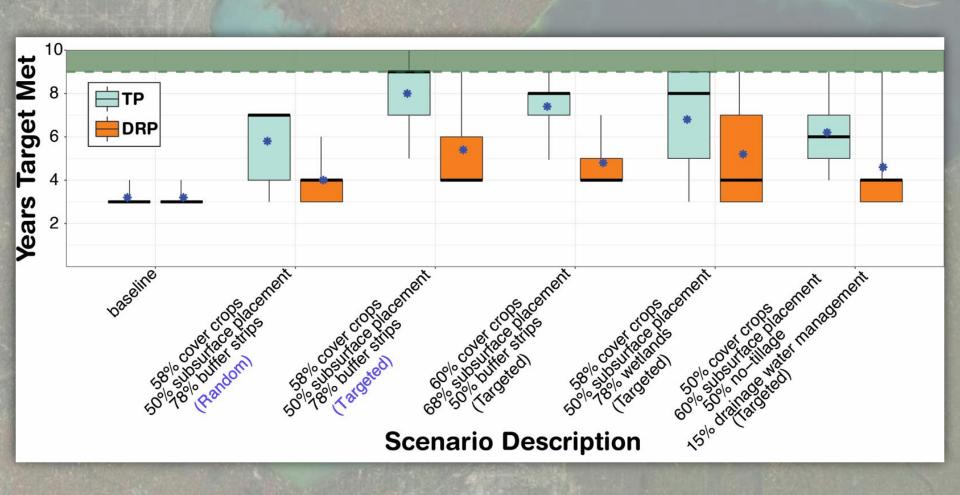
Estimating Source Contributions From the Maumee Inorganic + Manure

Year	Fraction of total TP (DRP) load (%) from each source					"Legacy"
	Point Sources	Inorganic P Fertilizer	Manure P Fertilizer	Land / Applied	Soil Sources	11/2
2005	20 (38)	28 (32)	4 (4)	32 (35)	49 (28)	
2006	12 (26)	32 (37)	5 (6)	36 (42)	53 (33)	
2007	5 (17)	34 (43)	5 (8)	38 (49)	57 (34)	
2008	5 (14)	36 (47)	6 (9)	41 (54)	54 (32)	
2009	7 (20)	34 (42)	5 (7)	39 (46)	55 (34)	Kast et al. 2021 Journal
2010	7 (16)	36 (45)	6 (8)	41 (51)	52 (33)	of Env. Magt
2011	3 (9)	39 (55)	7 (9)	44 (61)	53 (30)	
2012	15 (33)	35 (38)	6 (7)	40 (43)	46 (25)	
2013	5 (15)	40 (49)	7 (9)	45 (55)	50 (30)	
2014	4 (13)	41 (53)	8 (13)	47 (61)	49 (26)	
2015	4 (12)	43 (56)	7 (10)	48 (62)	47 (25)	grant .
Average	8(19)	36 (45)	6(8)	41 (51)	51 (30)	

Order of DRP contributions: Order of TP contributions:

¹⁾ Inorganic Fertilizers 2) Legacy 3) Point Sources 4) Manure

¹⁾ Legacy 2) Inorganic Fertilizers 3) Point Sources 4) Manure


Why Legacy Sources Matter

- Legacy P can serve as a chronic source of pollution to surface waters for decades
- Untreated sources of legacy P can mask the effects of present-day conservation efforts
- P management strategies will vary depending on the primary source of P (legacy vs. contemporary, in-field vs. instream)

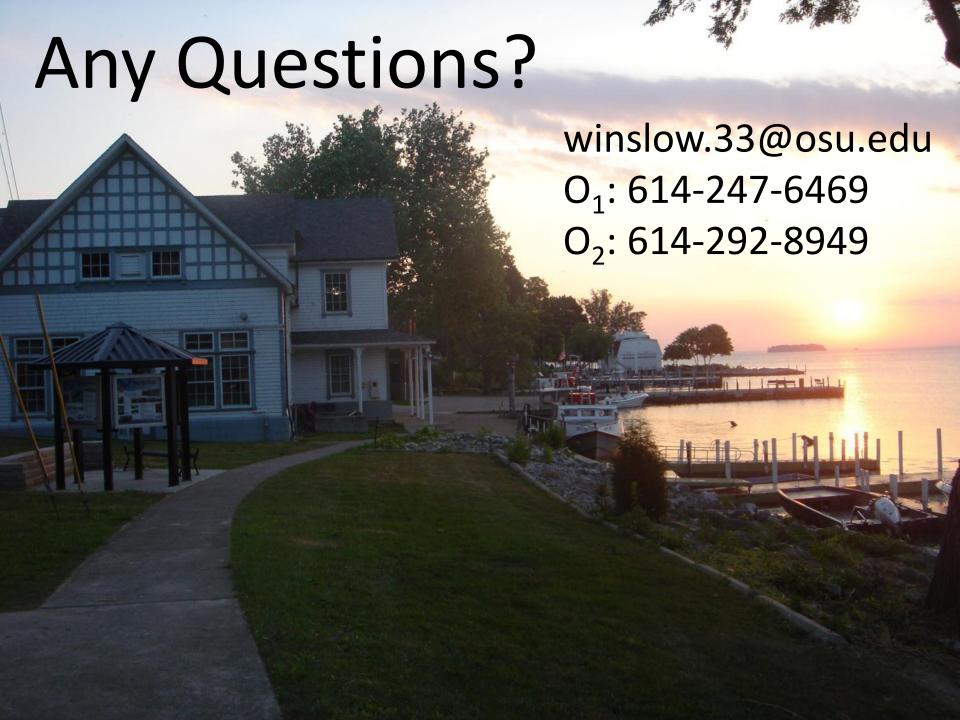
Fraction of total TP (DRP) load (%) from each source

Year				
	Soil			
	Sources			
2005	49 (28)			
2006	53 (33)			
2007	57 (34)			
2008	54 (32)			
2009	55 (34)			
2010	52 (33)			
2011	53 (30)			
2012	46 (25)			
2013	50 (30)			
2014	49 (26)			
2015	47 (25)			
Average	51 (30)			

Legacy "Tools" Are Going to Be Critical

Farmer Decisions

- Not all BMPs are equally promising from a farmer behavior standpoint:
 - Likely: soil tests at sufficient frequency to inform nutrient application (94%)
 - Likely: timing related practices (94%)
 - Likely: subsurface placement (74%)
 - Difficult: incentives to off-set short-term cost and risk



Farmer Decisions Continued...

- "Barriers" linked to legitimate logistical issues:
 - Access to needed equipment or supplies (e.g., subsurface placement)
 - Limited windows for application (SB1 and real-time weather)
- Why "barrier": Self efficacy and response efficacy
 - Self: can appropriately perform/implement practice
 - Response: BMP effective at reducing P loading

