Lead & Copper Rule When Blending Different Water Sources

Damon K. Roth, PE, BCEE

OTCO's 4th Annual Compliance Workshop Columbus, OH October 16, 2018

Overview

- Corrosion Control Theory
 - Corrosion control treatment (CCT) strategies
 Impact of changing DIC
- Case Study 1
 - Bench-scale test plan
 - Pb release:
 - Existing conditions
 - GW Orthophosphate CCT
 - SW Orthophosphate CCT
 - SW pH/alkalinity CCT
- Case Study 2

- Pb release

CORROSION CONTROL THEORY

Lead & Copper CCT

- Old Strategies vs.
 - Passivation (pH / Alkalinity)
 - Passivation (PO₄, Silicate)
 - CaCO₃ precipitation

- What We Know Now
- Passivation (pH / Alkalinity)
- Passivation (PO₄)
- High Cl_2 resid Pb(IV) scale

- Decision Tree Approach
 - First consider PO_4 (pH from 7.2 to 7.8)
 - If can't, consider increasing pH>9 units
 - Possibly optimize DIC if adjusting pH
 - If can't, consider increasing Cl_2 residual to form Pb(IV) scale
 - ----- Also see next slide -----

Improved LCR Compliance Understanding

CCT is Source Water Dependent

- CCT can be influenced by multiple water quality parameters
 - pH
 - Dissolved Inorganic Carbon (DIC) / Alkalinity
 - Dissolved Oxygen (DO)
 - Total Dissolved Solids (TDS)
 - Chloride-to-Sulfate Mass Ratio (CSMR)

Classic Pb(II) Solubility

Fresh Surface, Effect of DIC

Source: Schock Presentation to NDWAC WG

- Cerrusite
 - $Pb(II)CO_3$ (s) lead carbonate
 - Less stable
 - More prone to sloughing, formation of particulate lead
 - Dissolves easily when WQ not favorable to production

- Hydrocerrusite
 - Pb(II)₃(CO₃)₂(OH)₂ (s) anhydrous lead carbonate
 - More stable
 - Dissolves at higher DIC

Pb Solubility and Oxidation Reduction Potential

Courtesy Chris Hill, Arcadis

CASE STUDY: Blending Surface Water and Ground Water

Case Study Source Water

- Surface water pH ~8.0 Alkalinity ~7 mg/L as CaCO₃ (~1.5 mg/L as C)
- Groundwater

pH ~8.0

Alkalinity ~90 mg/L as CaCO₃ (~22 mg/L as C)

- System might be supplied with:
 - -100% SW
 - SW supplemented with GW
 - 100% GW

Potential for Scale Change

Source: EES 1990

Potential for Scale Change

Source: EES 1990

Potential for Scale Change

Source: EES 1990

Modeled Pb scale equilibrium

Modeled scale species change

Change leads to increased lead solubility

Change leads to increased lead solubility

Bench-Scale Test Goals

- Compare relative performance of CCT
 - Orthophosphate to pH/alkalinity
 - Orthophosphate doses
 - pH/alkalinity
- Evaluate potential for Pb release under changing water quality conditions
 - $-\,100\%$ SW to SW:GW blend
 - 100% GW to SW:GW blend

CASE STUDY: Bench-Scale Test Plan

Overview of Study and Methods Test 1 - pH/Alkalinity Testing (Phase 1)

Source	SW	SW	SW	GW	
рН	8.0	8.6	9.3	8.0	
ALK	7	35	25	90	(mg/L as CaCO ₃)
[CU/PB	CU/PB	CU/PB	CU/PB	-
(РВ	РВ	PB	РВ	Replicates
[BR	BR	BR	BR	

Overview of Study and Methods Test 2 – Orthophosphate Testing (Phase 1)

Overview of Study and Methods Test 1 - pH/Alkalinity Testing (Phase 2)

Overview of Study and Methods Test 2 – Orthophosphate Testing (Phase 2)

1. EXISTING CONDITIONS

2. GW EQUILIBRATED ORTHOPHOSPHATE

3. SW EQUILIBRATED ORTHOPHOSPHATE

4. SW PH/ALKALINITY ADJUST

Existing Conditions Lead Coupons – All Blends

Existing Conditions Copper Pipes (Lead Solder) – All Blends

1. EXISTING CONDITIONS

2. GW EQUILIBRATED ORTHOPHOSPHATE

3. SW EQUILIBRATED ORTHOPHOSPHATE

4. SW PH/ALKALINITY ADJUST

GW Lead Coupons with Orthophosphate 15% Surface Water Blend

GW Lead Coupons with Orthophosphate 85% Surface Water Blend

GW Copper Pipes (Pb Solder) with Orthophosphate 85% Surface Water Blend

1. EXISTING CONDITIONS

2. GW EQUILIBRATED ORTHOPHOSPHATE

3. SW EQUILIBRATED ORTHOPHOSPHATE

4. SW PH/ALKALINITY ADJUST

SW Lead Coupons with Orthophosphate 85% Groundwater Blend

SW Copper Pipes (Pb Solder) with Orthophosphate 85% Groundwater Blend

1. EXISTING CONDITIONS

2. GW EQUILIBRATED ORTHOPHOSPHATE

3. SW EQUILIBRATED ORTHOPHOSPHATE

4. SW PH/ALKALINITY ADJUST

pH Stability Testing

- Phases 1 and 2 indicated pH was not stable in test reactors with alkalinity at 25 mg/L as CaCO₃
- New testing evaluated stability of pH 9.3 and pH 9.5 at 30, 34, 40, and 44 mg/L as CaCO₃
 - Samples with and without headspace were also evaluated

Post-Stagnation pH Values, Without Headspace During Coupon Study

Days since Start

Normalized Lead Concentration (µg/L-day)

CCT Comparison – Copper with Lead Solder Reactors

Additional Blending Testing

- Coupons equilibrated with GW were exposed to a blend of GW + SW at pH 9.3
 Blend ratios were 85:15 and 15:85 SW:GW
- Coupons equilibrated with SW treated with 0.75 mg/L as P were exposed to a blend of SW with 0.75 P + GW without P

– Blend ratios were 20% and 50% GW

Lead Coupons GW + SW at pH 9.3

Days since Start

Brass Coupons GW + SW at pH 9.3

Days since Start

Copper with Lead Solder Reactors GW + SW at pH 9.3

Lead Coupons SW with 0.75 P + GW with 0.0 P

→ 80% SW; 20% GW • ◆ 50% SW; 50% GW

Days since Start

Brass Coupons SW with 0.75 P + GW with 0.0 P

Days since Start

Copper with Lead Solder Reactors SW with 0.75 P + GW with 0.0 P

→ 80% SW; 20% GW • ◆ 50% SW; 50% GW

Normalized Lead Concentration (µg/L-day)

CASE STUDY: Blending Two Sources with Different PO₄ Doses and Disinfectant Residuals

Case Study Source Water

Source 1

 $PO_4 = 2.5 \text{ mg/L}$ (neutralized sodium orthophosphate) Disinfectant = 1.2 mg/L free Cl_2

• Source 2

 $PO_4 = 0.5 \text{ mg/L}$ (zinc orthophosphate) Disinfectant = 3 mg/L total Cl_2 (4.75 Cl_2 :NH₄-N)

- Blending is at system intertie
 - Flow is from Source 2 to Source 1's system
 - Blend ratio depends on system demands

Impact of Blending Sources

Case Study 1

- Both orthophosphate and pH/alkalinity reduced Pb release
 - Ortho CCT had lowest lead levels in lead coupons
 - High pH/alkalinity CCT had lead levels equal to ortho for brass coupons
 - pH could not be maintained in the lab for the copper/lead solder coupons
- If high pH is used for CCT important to maintain pH in system

Case Study 1, continued

- Condition with most potential for Pb release is GW to SW
 - Can be reduced or eliminated with CCT (orthophosphate or pH/alkalinity)
 - This should be monitored in the system if this method is selected
- When GW without ortho was blended into coupons exposed to SW + ortho, the data did not show an increase in lead after blending in GW

Case Study 2

- Blending between Source 1 and Source 2 at intertie can result in increased lead releases
- Lead releases are influenced by proportion of blended water
 - At 25% Source 2 water, lead levels revert to preblend levels within 1 to 3 weeks
 - At higher percentages of Source 2 water, lead may be sustained at higher levels
 - Impact is presumed to be related to diluted PO₄ dosages, although other factors may influence

Damon Roth, PE, BCEE droth@cornwell.engineering (757) 873-1534 x220

