

What's New with DI Pipe?

March 30, 2023

1

DIPRA Member Companies

- AMERICAN Ductile Iron Pipe Birmingham, AL
- Canada Pipe Company, LTD. Hamilton, Ontario
- McWane Ductile Coshocton, OH
- United States Pipe and Foundry Company Birmingham, AL

Ductile Iron Pipe

Strength and Durability for Life

SUBSCRIBE ORDER AN INSTALLATION GUIDE MEMBER LOGIN

Technical Resources About Ductile Iron Pipe Ask an Expert Advocacy News About DIPRA

d

Strength and Durability for LiFe[®]

From its inception more than 100 years ago, DIPRA has provided accurate, reliable, and essential engineering information about cast iron — and now Ductile iron — pipe to a wide variety of utilities and consulting engineers.

Ask ar Engine

How Can We Help You?

ABOUT DIPRA CALCULATORS ABOUT DUCTILE IRON PIPE DIPRA E-NEWSLETTERS TECHNICAL RESOURCES NEWS ASK AN EXPERT ADVOCACY

C104/A21.4	C116/A21.16
Cement-Mortar Linings	Fusion-Bonded Coatings for Fittings
C105/A21.5	C150/A21.50
Polyethylene Encasement	Thickness Design
C110/A21.10	C151/A21.51
Ductile-Iron and Gray-Iron Fittings	Ductile-Iron Pipe, Centrifugally Cast
C111/A21.11	C153/A21.53
Rubber-Gasket Joints	Ductile-Iron Compact Fittings
C115/A21.15	C600
Flanged Ductile-Iron Pipe	Installation of Ductile-Iron Water Mains

Learning Objectives

- History
- Manufacture, Features and Design
- Installation & HDD
- Sustainability
- Corrosion Control V-Bio Polyethylene & Design Decision Model (DDM)

Versailles, France (Installed 1664)

Century Club

 The Cast Iron Pipe Century Club recognizes water utilities with Cast Iron mains that have provided service for 100 years or more. 583 in US and Canada

BURIED NO LONGER:

Confronting America's Water Infrastructure Challenge

www.awwa.org/infrastructure

The Authoritative Resource on Safe Water®

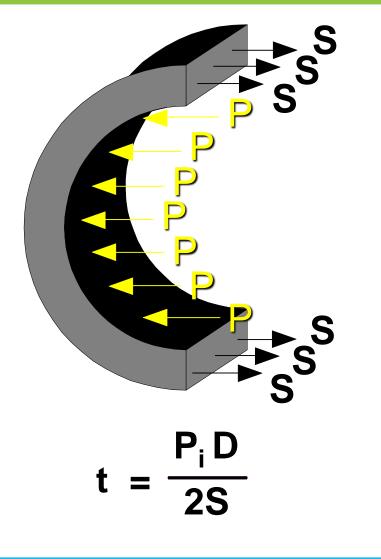
Buried No Longer

Average DI life (LSL) – 110 years

LSL = Relatively Long Service Life

Figure 5, p. 8

To Achieve a Century of Service from your DI Pipe...


- Design
- Installation
- Corrosion Control
- O & M

Thickness Design of Ductile Iron Pipe (From ANSI/AWWA C150/A21.50)

Internal Pressure

- t = Wall Thickness (in.)
- P_i = Design Pressure (psi)

= 2 (
$$P_w + P_s$$
)

- P_w = Working Pressure (psi)
- P_s = Surge Pressure (psi)
 - = 100 psi
- **D** = Outside Diameter (in.)
- S = Hoop Stress
 - = 42,000 psi (min.)

Pipe Wall Thickness

ANSI/AWWA C150/A21.50

12-inch Pressure Class 350 Design Pressure = 2(350 + 100) = 900 psi

INTERNAL PRESSURE DESIGN

0.14"

SERVICE ALLOWANCE

0.08"

CASTING TOLERANCE

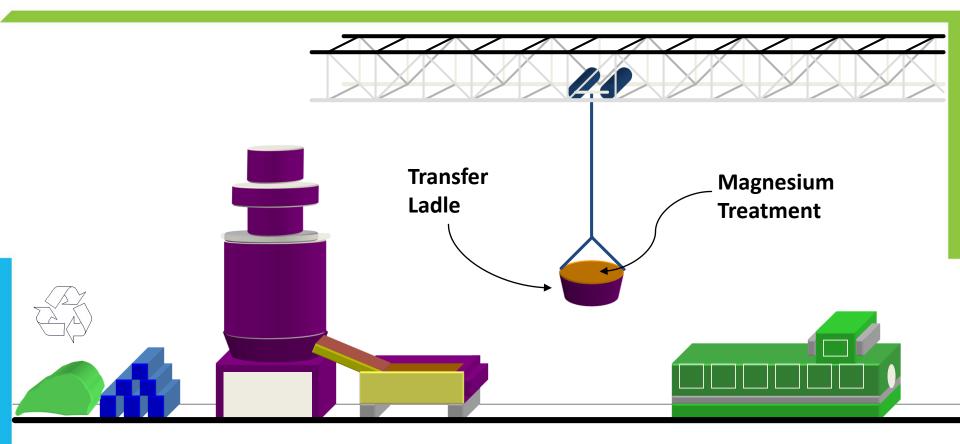
0.06"

TOTAL THICKNESS 0.28"

Nominal Thicknesses for Standard Pressure Classes of DIP (From Table 5 of ANSI/AWWA C150/A21.50)

Pipe	Outside	Pressure Class							
Size	Diameter	150	200	250	300	350			
(in.)	(in.)	Nominal Thickness (in.)							
3	3.96					0.25*			
4	4.80					0.25*			
6	6.90					0.25*			
8	9.05					0.25*			
10	11.10					0.26			
12	13.20					0.28			
14	15.30			0.28	0.30	0.31			
16	17.40			0.30	0.32	0.34			
18	19.50			0.31	0.34	0.36			
20	21.60			0.33	0.36	0.38			
24	25.80		0.33	0.37	0.40	0.43			
30	32.00	0.34	0.38	0.42	0.45	0.49			
36	38.30	0.38	0.42	0.47	0.51	0.56			
42	44.50	0.41	0.47	0.52	0.57	0.63			
48	50.80	0.46	0.52	0.58	0.64	0.70			
54	57.56	0.51	0.58	0.65	0.72	0.79			
60	61.61	0.54	0.61	0.68	0.76	0.83			
64	65.67	0.56	0.64	0.72	0.80	0.87			

Ductile Iron Pipe Research Association


* Calculated thicknesses for these sizes & pressure classes are less than those shown above. Presently, these are the lowest nominal thicknesses available in these sizes. From Table 15 of ANSI A21.50 Special Thickness Classes of Ductile Iron Pipe

Pipe	Outside	Thickness Class								
Size	Diameter	50	51	52	53	54	55	56		
in.	in.	Thickness - in.								
3	3.96		0.25	0.28	0.31	0.34	0.37	0.40		
4	4.80		0.26	0.29	0.32	0.35	0.38	0.41		
6	6.90	0.25	0.28	0.31	0.34	0.37	0.40	0.43		
8	9.05	0.27	0.30	0.33	0.36	0.39	0.42	0.45		
10	11.10	0.29	0.32	0.35	0.38	0.41	0.44	0.47		
12	13.20	0.31	0.34	0.37	0.40	0.43	0.46	0.49		
14	15.30	0.33	0.36	0.39	0.42	0.45	0.48	0.51		
16	17.40	0.34	0.37	0.40	0.43	0.46	0.49	0.52		
18	19.50	0.35	0.38	0.41	0.44	0.47	0.50	0.53		
20	21.60	0.36	0.39	0.42	0.45	0.48	0.51	0.54		
24	25.80	0.38	0.41	0.44	0.47	0.50	0.53	0.56		
30	32.00	0.39	0.43	0.47	0.51	0.55	0.59	0.63		
36	38.30	0.43	0.48	0.53	0.58	0.63	0.68	0.73		
42	44.50	0.47	0.53	0.59	0.65	0.71	0.77	0.83		
48	50.80	0.51	0.58	0.65	0.72	0.79	0.86	0.93		
54	57.56	0.57	0.65	0.73	0.81	0.89	0.97	1.05		

Manufacturing

RawMelting FurnaceMaterials(Cupola)

Casting Machine

Casting Machine

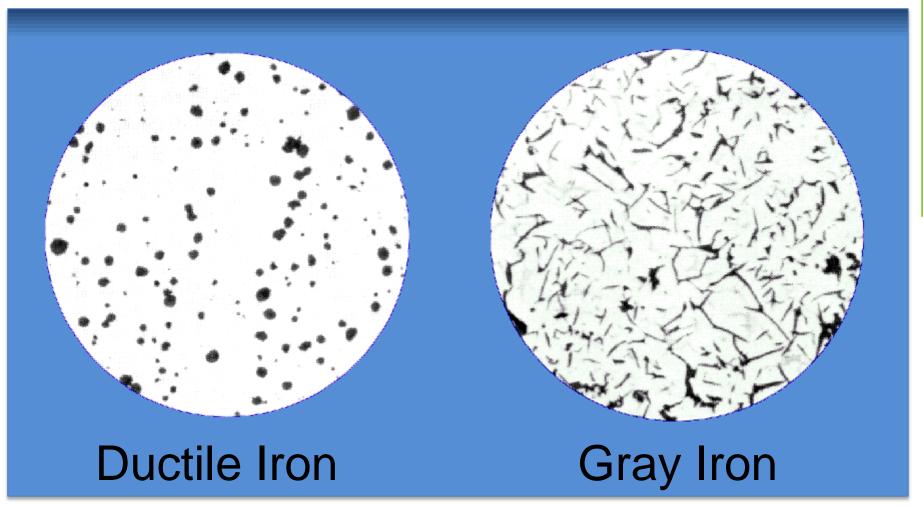
Manufacturing

Sustainable Infrastructure

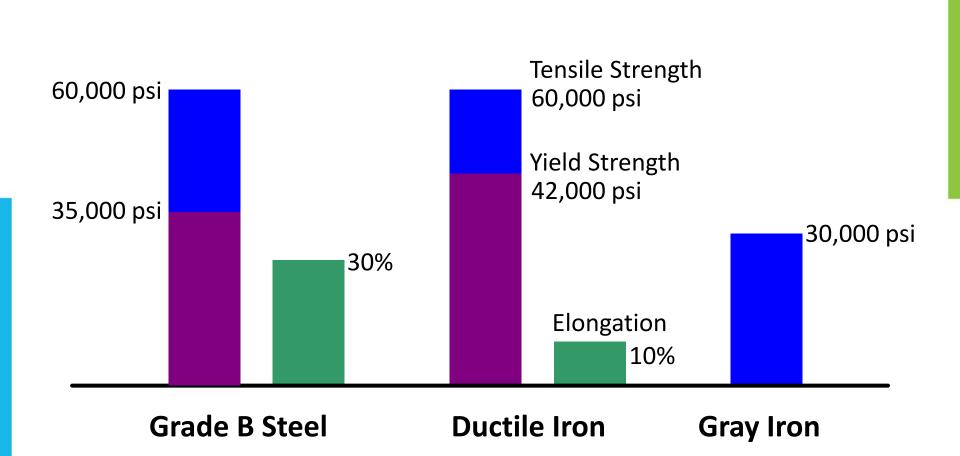
One standard length of 24-inch Ductile Iron Pipe can contain up to one recycled car's worth of Iron.

- Ductile Iron Pipe
 - Up to 95% recycled content
 - One standard length of Ductile Iron Pipe can contain up to one recycled car's worth of Iron
 - 100% recyclable

Magnesium Treatment



- Iron: Molten at 2,500° F
- Magnesium: Vaporizes at 2,050° F


Photomicrographs

Comparative Strength (Minimum Standard Values)

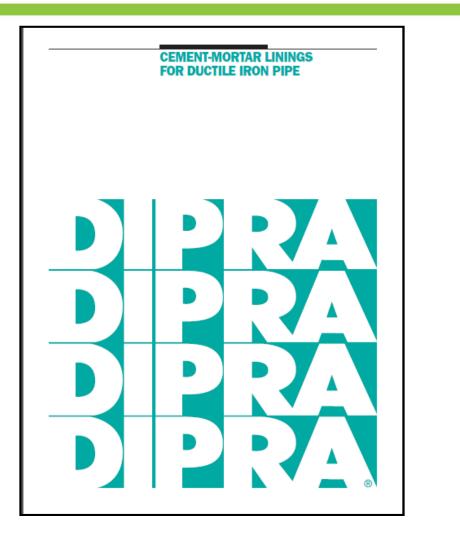
Ductile Iron Pipe

Diameters: 3- to 64-inch

Rated Working Pressures: up to 350 psi*

Lengths: 18 to 20 feet

* Ductile iron pipe is available for higher working pressures; check with the pipe manufacturer.



Conclusion

Cement-mortar-lined Ductile Iron pipe has a service record Flow Tests of Cement-mortar-lined Gray and Ductile Iron Pipe unequalled in the water works industry. Since first field-applied to After Extended Periods of Service Gray Iron pipe in 1922, cement-mortar lining has undergone numerous manufacturing improvements.

Table 2

Today, cement-mortar lining is applied either by the centrifugal process or the projection method, thus maintaining excellent quality control of the cement-mortar and lining operation. The linings produced by these methods are dense, smooth, and offer very little inctional resistance to the flow of water.

Cement-mortar-lined Ductile Iron pipe provides a Hazen-Wilsmaßow coefficient, or "C" value, of 140—a realistic value that is maintained over the fie of the pipe. This standard Ining, which is firmished in accordance with ANS/AWWA C104/A214, continues its tradition of dependable, trouble-free service. a

References

- 1 Helton, B., "Cracks and Looseness in Cement Linings of Cast Iron
- Teitor, R., Crasta and Loberts in Certeric Limits of Case tori and Ductile from Pipe and Fittings, "unpublished.
 Wagner, E.F., "Natogenous Healing of Cracks in Certert-Mortar Limitgs for Gray-Iron and Ductile-Iron Water Pipe," *Journal AWWA*, June 1974.
 Kennedy, Jr., H., "The New Ductile Iron Pipe Standards," *Journal Limits*, 2010. AWWA, November 1976.

Table 1

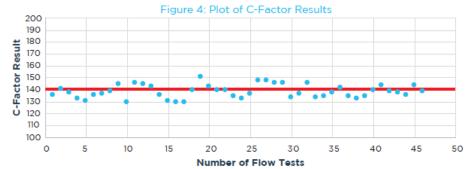
Flow Tests of Cement-mortar-lined Gray and Ductile Iron Pipe

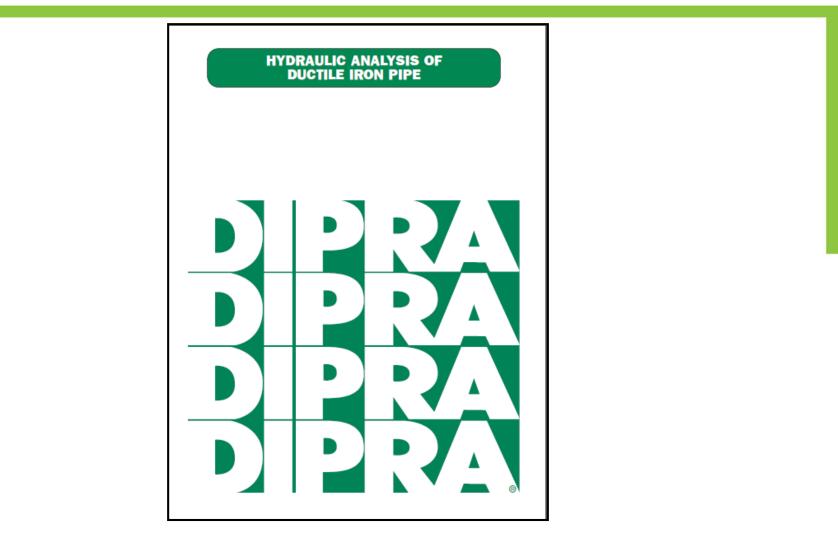
Location	Size Inches	Length Feet	Age Years	Hazen- Williams C
Alma, MO	6	23,800	1	137
Birmingham, AL	6	473	new	147
Bowling Green, OH	20	45,600	1	143
Casper, WY	12	500	new	141
Charleston, SC	6	300	DOW	145
Chicago, IL	36	7,200	1	147
Cleveland, TN	20	31,400	2	144
Colorado Springs, CO	20	7,000	3	137
Concord, NH	14	500	new	151
Copperas Cove, TX	8	28,100	1	144
Corder, MO	8	21,400	1	145
Corpus Christi, TX	36	74,000	DCW.	145
Fitchburg, MA	20	500	1	142
Gary, IN	20	8,000	1	140
Greensboro, NC	30	848	3	148
Hartford, CT	16	800	1	149
New Orleans, LA	12	37,300	1	141
Newton, IA	20	27,300	1	144
Safford, AZ	10	23,200	2	145
Simpsonville, SC	16	27,700	1	137
St. Louis, MO	30	17,700	new	151
Univ. of Illinois	6	400	new	151
Green Bay, WI	16	1,149	1	138

Location	Size Inches	Length Feet	Age Years	Hazen- Williams C
Baltimore, MD	12	909	18	136
Birmingham, AL	6	473	6	141
	6	473	14	138
	6	473	17	133
Catskill, NY	16	30,825	25	136
Champaign, IL	16	3,920	12	137
	16 16	3,920	22 28	139
	16	3,920 3,920	25	145
Charleston, SC	6	300	12	146
Unarieston, SU	6	300	12	146
	- 8	300	51	133
	8	300	59	130
	8	300	77	130
	12	500	15	145
	12	500	25	136
Chicago, IL	36	7,200	12	151
Concord, NH	12	500	13	143
	12	500	29	140
	12	500	36	140
Danyers, MA	20	500	31	135
	20	500	38	133
Greenville, SC	30	87,400	13	148
	30	87,400 50,700	20	146
	30	50,700	25	146
Greenville, TN	12	500	13	134
areenyine, Try	12	500	29	139
	12	500	36	146
Knoxville, TN	10	500	16	134
100,000	10	500	32	135
	10	500	39	138
Manchester, NH	12	550	5	142
	12	550	21	135
	12	1,955	45	133
Memphis, TN	10	1,070	31	135
Orange, CA	6	1,004	26	140
safford, AZ	10	23,200	16	144
S. Burlington, VT	24	1,373	8	138
Seattle, WA	8	2,686	29	139
Tempe, AZ	6	1,235	24	144
Tacoma, WA	8	2,257	16	136
Wister, OK	18	3,344	30	139

7

DIPRA Flow Tests Hazen-Williams Coefficient – C-Factor

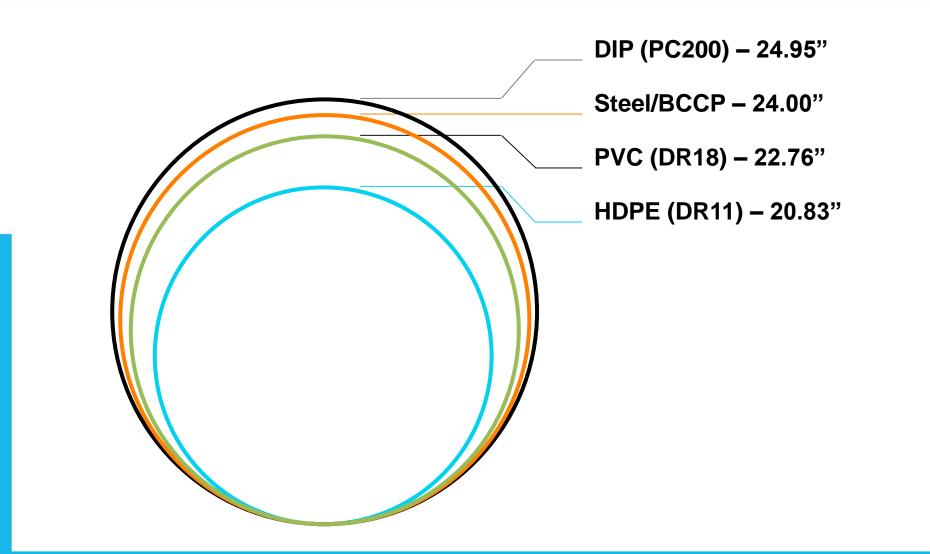



Figure 4: Flow test results from Table 2 - the basis for C of 140 for Cement-Mortar Lined Ductile Iron Pipe.

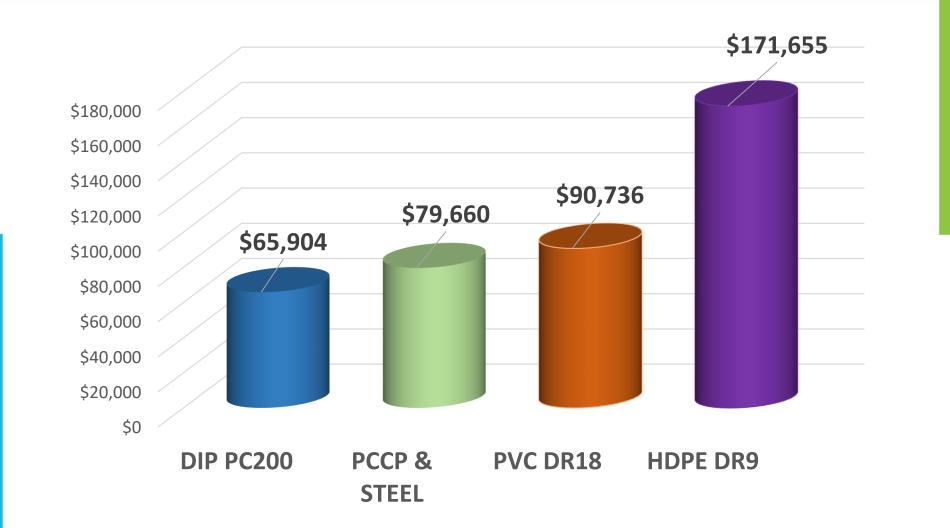
Location	Size (Inches)	Length (Feet)	Age (Years)	Hazen- Williams C
Baltimore, MD	12	909	18	136
Birmingham, AL	6	473	6	141
	6	473	14	138
	6	473	17	133
Blackwood, NJ	12	1546	11	131
Catskill, NY	16	30,825	25	136
Champaign, IL	16	3,920	12	137
	16	3,920	22	139
	16	3,920	28	145
	16	3,920	36	130
Charleston, SC	6	300	12	146
	6	300	16	143
	8	300	51	131
	8	300	59	130
	8	300	77	130
	8	300	97	140
	12	500	15	145
	12	500	25	136
Chicago, IL	36	7,200	12	151
Concord, NH	12	500	13	143
	12	500	29	140
	12	500	36	140

Wednesday, April 5, 2023

Hydraulic Analysis



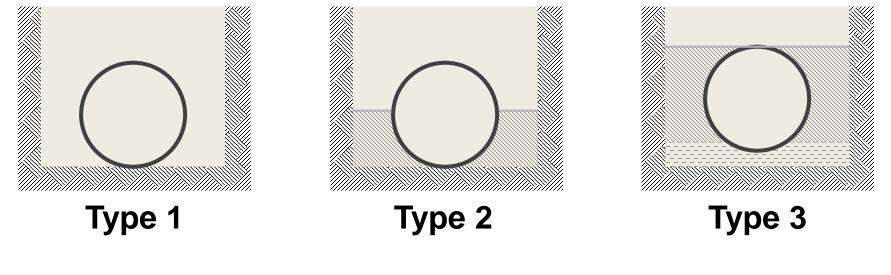
Energy Use

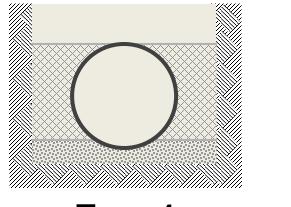

- Hazen-Williams "C Factor" is based n smoothness of the inside pipe wall.
- But is it the most important factor in selecting an energy efficient pipe material?

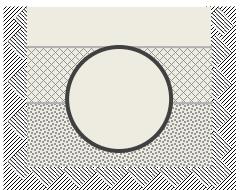
Material
TypeHazen-Williams
C FactorDuctile Iron140pccp/bccp140steel140pvc150hdpe155

Actual Inside Diameters

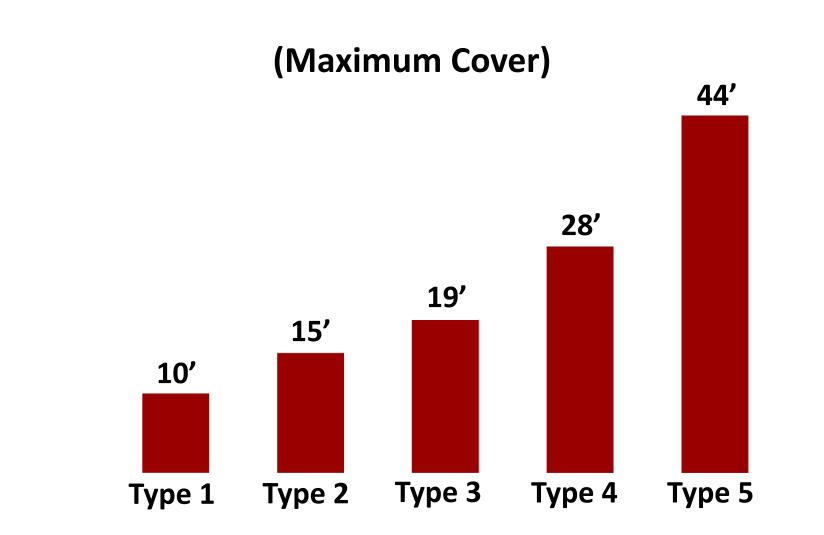
Annual Pumping Cost






Installation Operation Maintenance

Laying Conditions



Type 5

Effect of Laying Condition on 12 in. PC 350 DIP

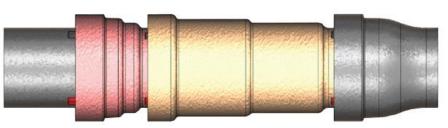
From Table 2 of ANSI A21.50 Descriptions for Standard Laying Conditions

Type 1 Flat-bottom trench. Loose backfill.

Type 2 Flat-bottom trench. Backfill lightly consolidated to centerline of pipe.

Type 3 Pipe bedded in 4-in. minimum loose soil. Backfill lightly consolidated to top of pipe.

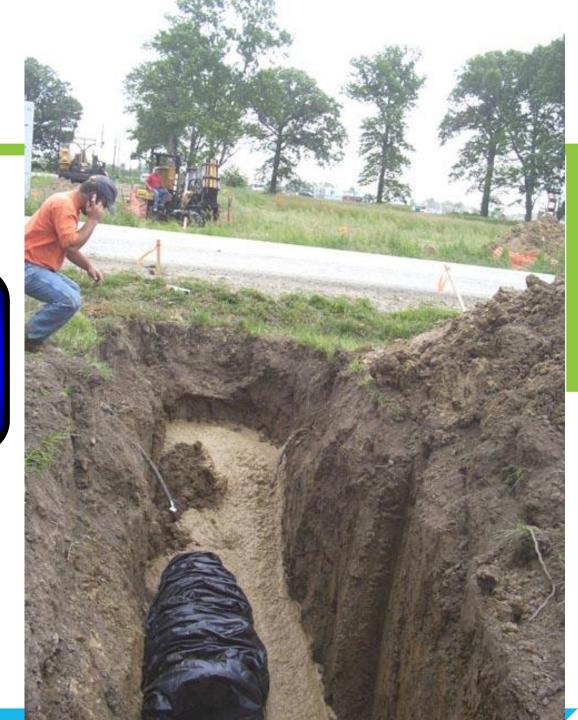
Available Joints



- Push-On
- Mechanical
- Restrained
- Flanged
- Grooved and Shouldered
- Ball and Socket (River Crossing)
- Seismic

Ductile Iron Pipe Seismic Joints dipra

AMERICAN Earthquake Joint System 6", 8", 12", 16", 20" & 24" Deflection: 6° - 8° Extension: ± 2.4"


Ductile Iron Pipe Research Association

McWane Seismic Flex Coupling® 4" - 24" Deflection: 10° - 11½° Extension: ± 5.33"

US Pipe TR-XTREME® 6", 8" 12" & 16" Deflection: 3° - 4° Extension: ± 1.45"

Carmel, Indiana (40 feet of 12-inch)

<u>San Marcos, Texas</u> 1,200' – 30"

Pittsfield Twp, MI

30,000 feet - 8inch

North American Society for Trenchless Technology (NASTT) No-Dig Show 2012

Nashville, TN March 11-15, 2012

Paper A-1-05

COMBINING TWO TRENCHLESS TECHNOLOGIES INTO AN 8 MILE WATER MAIN REPLACEMENT/REHABILITATION PROJECT

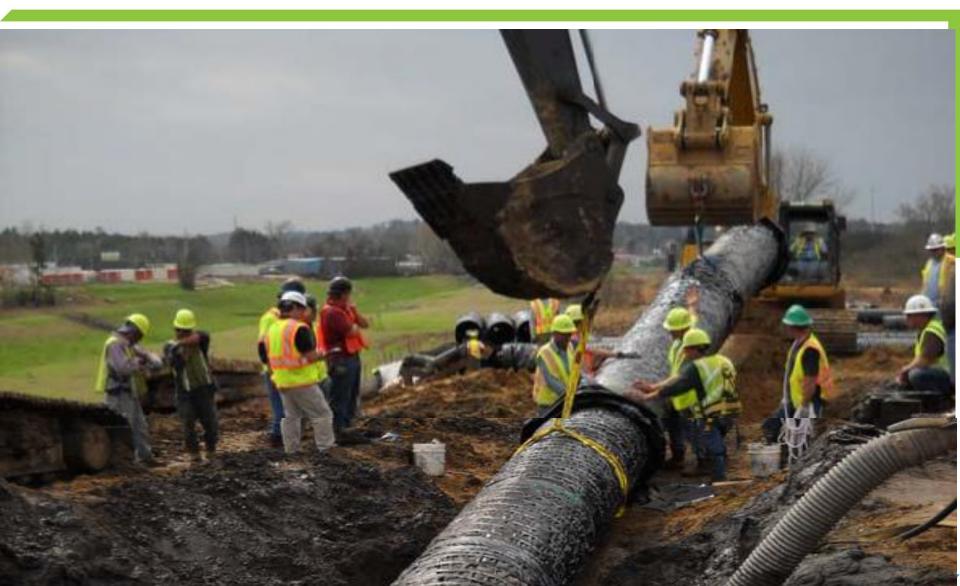
Damien R. Wetzel, P.E.1, and Craig A. Lyon²

¹ Stantec, Ann Arbor, MI

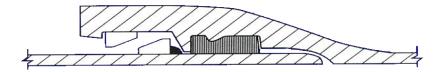
² Pittsfield Charter Township, Ann Arbor, MI

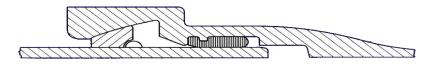
ABSTRACT: Pittsfield Charter Township is a 37,000 resident community outside the City of Ann Arbor, Michigan. In the 1960's, water service was provided to 600 parcels in the Washtenaw Heights Subdivision via cast iron water main. In less than 50 years, the water main deteriorated to a level that resulted in frequent breaks. The Washtenaw Heights Subdivision is a well established neighborhood with mature trees along the entire road right-ofway. The Township conducted pipeline locating, subsurface utility engineering, and condition assessment prior to any alternative analysis. Once the existing conditions were fully understood, alternative analysis was conducted between replacement and rehabilitation of the water main. Alternatives analyzed were open cut, pipe bursting, horizontal directional drilling, slip lining and cured-in-place lining, including analysis of multiple materials in each

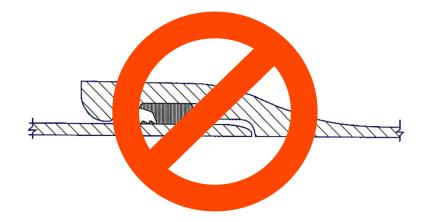
5. CONSLUSION AND LESSONS LEARNED

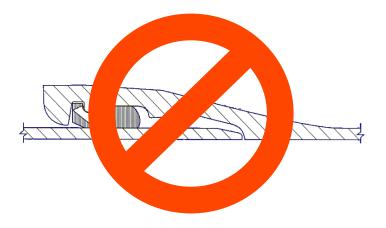

By October 2010 over 30,000 feet of 8-inch ductile iron pipe was installed using HDD and over 10,000 feet of 12inch water main was rehabilitated using CIPP. All the water main installed for this project was tested and accepted by November 2010.

At completion of the project the top three Township priorities were met. Considering safety was the number one priority; Township employees, Stantec staff and both contractors had zero lost time injuries (LTI) on the project. By avoiding long trenches and reducing construction traffic in the roads, typically associated with open cut excavation, many hazards were removed from the construction site. The second Township priority of tree preservation was accomplished by only removing only six trees on a project with tree lined streets; the community was extremely satisfied with the minimal impact to the existing trees and environment. The amount of road restoration costs saved by CIPP and HDD saved the Township an estimated \$600,000, not to mention the constructability issues associated with open cutting a corridor congested with multiple utilities.


One of the primary concerns at the beginning of the project was to ensure that the polyethylene encasement made it through HDD process. While excavating the new water main to install 550 taps our concerns were put to rest when not a single instance was observed where the polyethylene encasement had been pulled or torn from the pipe, confirming that when properly installed, polyethylene encasement is a reliable measure for corrosion protection in HDD applications.


Meridian, MS 1,640' of 36"





75 Years of Research

Corrosion and corrosion control of iron pipe: 75 years of research

ron was known to humans in prehistoric ages, and there is ample evidence of its use in early history. Human ability to cast pipe probably developed from or coincided with the manufacture of cannons, which occurred as early as 1313. There is an official record of cast-iron pipe manufactured at Siegerland, Germany, in 1455 for installation at the Dillenburg Castle. In 1664, Louis XIV of France ordered the construction of a cast-iron main

extending 15 mi (24 km) from a pumping station at Marly-on-Seine to Versailles to supply water for the town and its fountains. This cast-iron pipe provided continuous service for more than 330 years. Cast-iron pipe was first used in the United States around 1816 (AWWA, 2003).

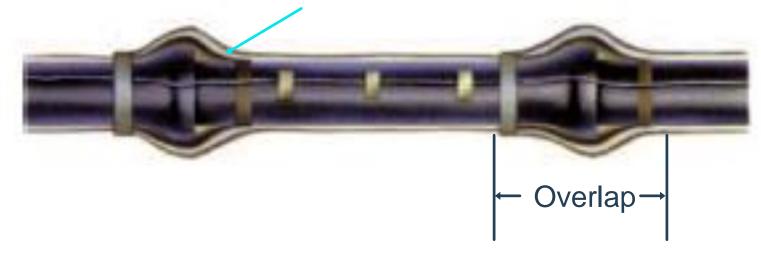
Ductile-iron pipe was cast experimentally for the first time in 1948 and was introduced to the marketplace in 1955. Since 1965 ductile-iron pipe has been manufactured in accordance with the Standard for Ductile-Iron Pipe, Centrifugally Cast, for Water and Other Liquids (AWWA/ANSI, 2002), using centrifugal casting methods that have been commercially developed and refined since 1925.

POLYETHYLENE ENCASEMENT FOR CORROSION CONTROL

Corrosion protection of these early installations was virtually nonexistent until the mid-1990s. Still, this early pipe fared well in most soil environments, and its longevity is well demonstrated. More than 600 utilities in the United States and Canada have had cast-iron pipe that provided more than 100 years of continuous

Pipe Investigation Princeton, Kentucky

10 Point Soil Evaluation



	-cm (based on water-saturated soil box): < 1,500	10
	≥ 1,500 - 1,800	8
	> 1,800 - 2,100	5 2
	> 2,100 - 2,500	
	> 2,500 - 3,000	1
	> 3,000	0
pH:		
	0 - 2	5
	2 - 4	3 0
	4 - 6.5	0
	6.5 - 7.5	0*
	7.5 - 8.5	0 3
	> 8.5	3
Redox potential:		
•	> +100 mV	0
	+50 to +100 mV	3.5
	0 to +50 mV	4
	Negative	5
Sulfides:		
	Positive	3.5
	Trace	2
	Negative	0
Moisture:		
	Poor drainage, continuously wet	2
	Fair drainage, generally moist	1
	Good drainage, generally dry	0

Polyethylene Encasement

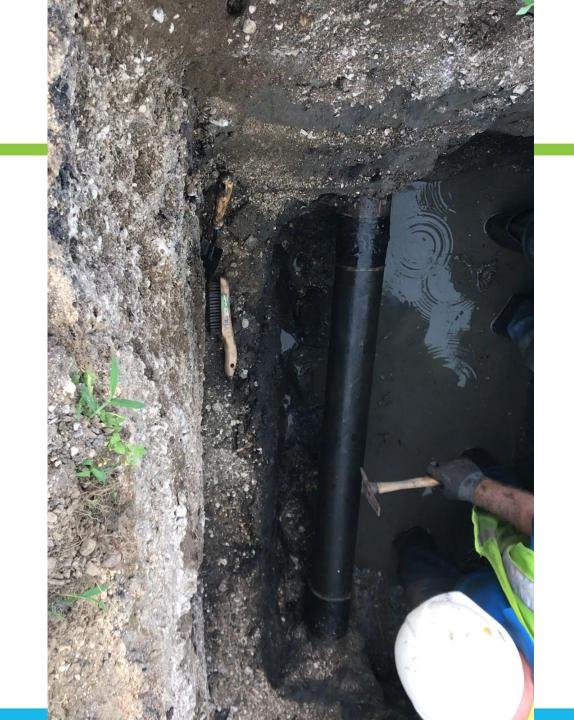
Possible Moisture

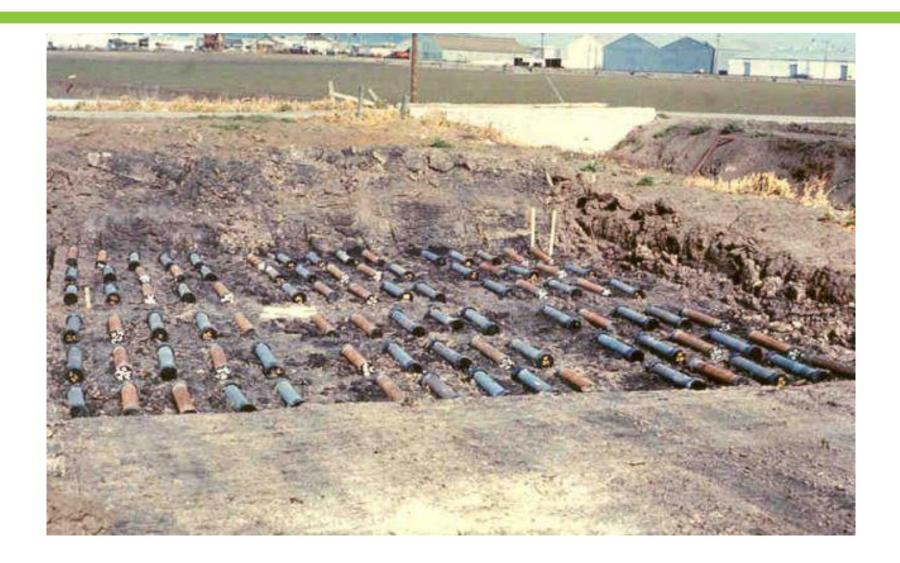
Los Angeles, CA – 47 Years

Latham, NY – 47 Years

Chicago, IL – 44 Years

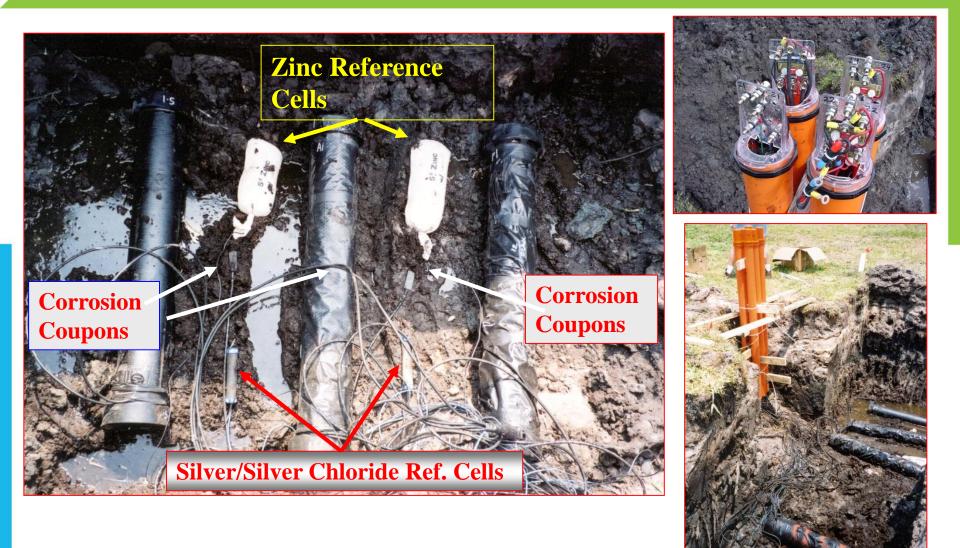
Sterling, CO – 41 Years

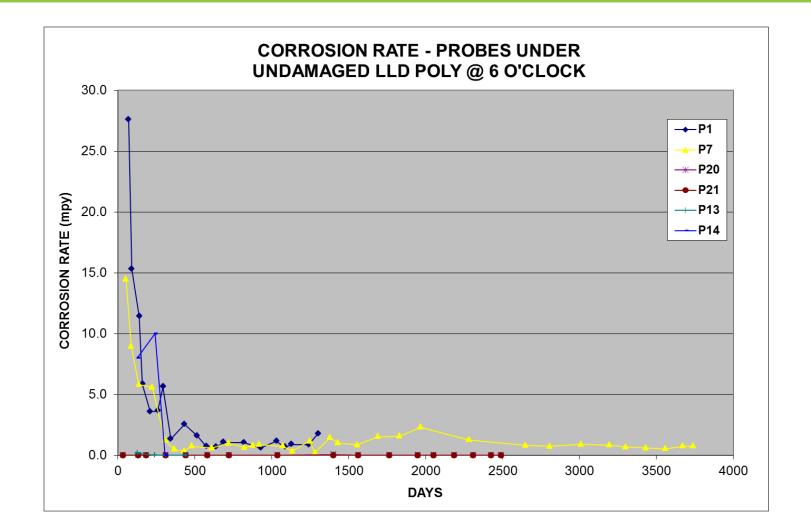




DIPRA Test Sites

Low profile Ductile Iron Probe

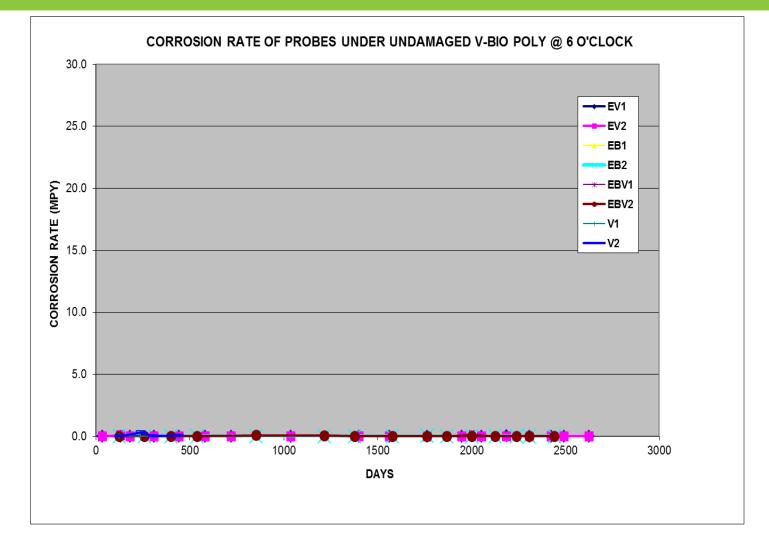



a

Ductile Iron Pipe

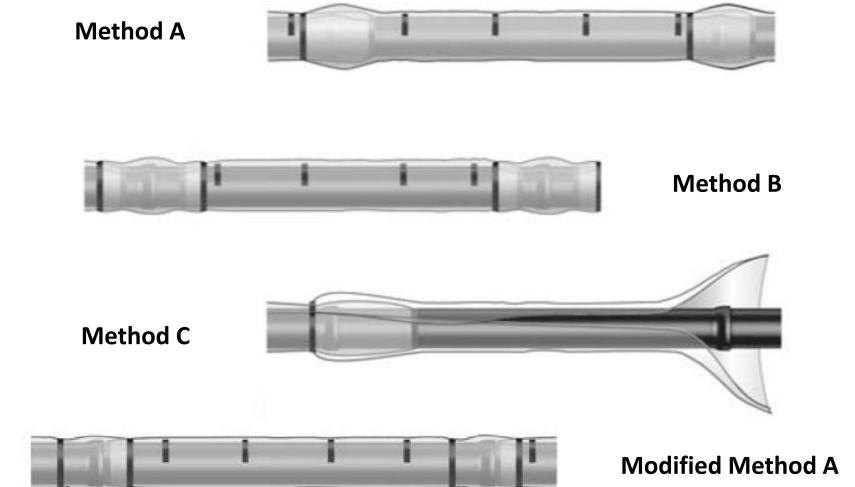
Florida Everglades Corrosion Testing (above ground monitoring)

Polyethylene Encasement V-Bio research


Ductile Iron Pipe

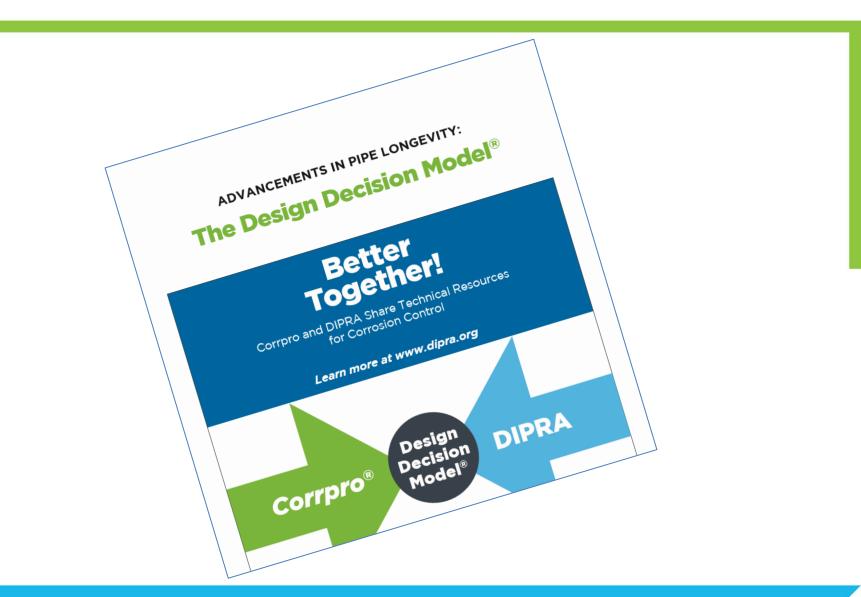
Research Association

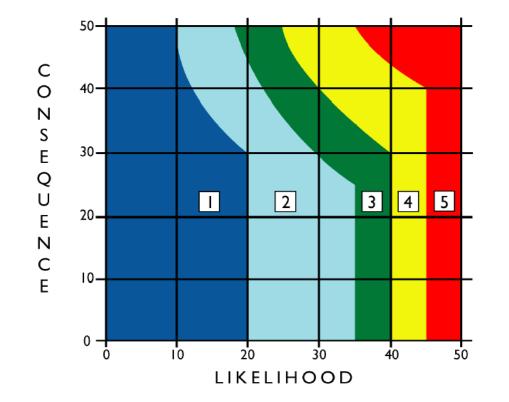
V-BioTM Polyethylene


Polyethylene Encasement V-Bio research

Ductile Iron Pipe Research Association

V-Bio Modified Method A




The Design Decision Model® (DDM[®])

Design Decision Model®

- 1. As-manufactured
- 2. VBio Polyethylene Encasement (VBio PE)
- 3. VBio PE or VBio PE with Bonded Joints
- 4. VBio PE with Metallized Zinc coating; or life-extension CP
- 5. VBio PE with Metallized Zinc Coating or Cathodic Protection (CP)

To Achieve a Century of Service from your DI Pipe...

Design Corrosion Control Installation

• O & M

Nominal Thicknesses for Standard Pressure Classes of DIP (From Table 5 of ANSI/AWWA C150/A21.50)

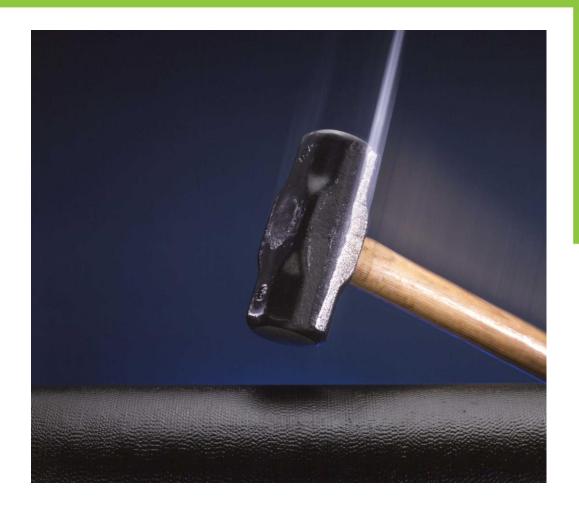
Pipe	Outside	Pressure Class				
Size	Diameter	150	200	250	300	350
(in.)	(in.)	Nominal Thickness (in.)				
3	3.96					0.25*
4	4.80					0.25*
6	6.90					0.25*
8	9.05					0.25*
10	11.10					0.26
12	13.20					0.28
14	15.30			0.28	0.30	0.31
16	17.40			0.30	0.32	0.34
18	19.50			0.31	0.34	0.36
20	21.60			0.33	0.36	0.38
24	25.80		0.33	0.37	0.40	0.43
30	32.00	0.34	0.38	0.42	0.45	0.49
36	38.30	0.38	0.42	0.47	0.51	0.56
42	44.50	0.41	0.47	0.52	0.57	0.63
48	50.80	0.46	0.52	0.58	0.64	0.70
54	57.56	0.51	0.58	0.65	0.72	0.79
60	61.61	0.54	0.61	0.68	0.76	0.83
64	65.67	0.56	0.64	0.72	0.80	0.87

Ductile Iron Pipe Research Association

* Calculated thicknesses for these sizes & pressure classes are less than those shown above. Presently, these are the lowest nominal thicknesses available in these sizes.

Detroit, Michigan 8-inch Ductile Iron Pipe Installed – 1974 Inspected - 1995

Resistivity:	1,320 ohm-cm		
pH:	7.4		
Redox:	-113 mv		
Sulfides:	Positive		
Moisture:	Saturated		



Questions?

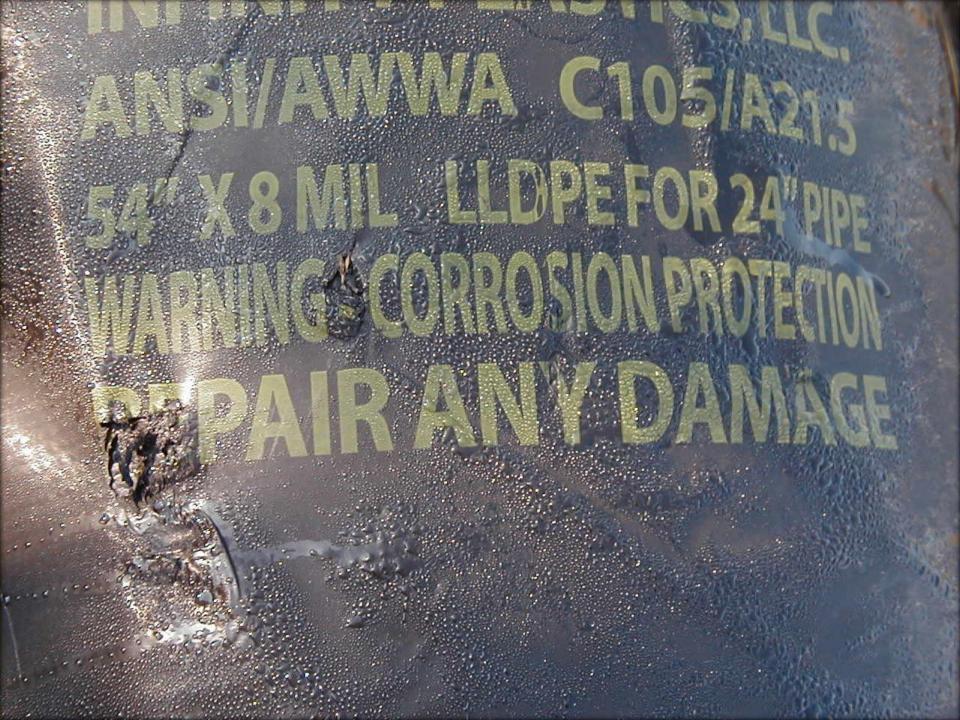
Strength and Durability for Life

www.dipra.org

Paul H. Hanson, PE Regional Director

Ductile Iron Pipe Research Association 10271 Normandy Ct. Fishers, IN 46040 205.790.6704 phanson@dipra.org www.dipra.org

4,000


1,600

42,000

1922 First Cement Lined Cast Iron Pipe Charleston South Carolina

75 Years of Research

Corrosion and corrosion control of iron pipe: 75 years of research

ron was known to humans in prehistoric ages, and there is ample evidence of its use in early history. Human ability to cast pipe probably developed from or coincided with the manufacture of cannons, which occurred as early as 1313. There is an official record of cast-iron pipe manufactured at Siegerland, Germany, in 1455 for installation at the Dillenburg Castle. In 1664, Louis XIV of France ordered the construction of a cast-iron main

extending 15 mi (24 km) from a pumping station at Marly-on-Seine to Versailles to supply water for the town and its fountains. This cast-iron pipe provided continuous service for more than 330 years. Cast-iron pipe was first used in the United States around 1816 (AWWA, 2003).

Ductile-iron pipe was cast experimentally for the first time in 1948 and was introduced to the marketplace in 1955. Since 1965 ductile-iron pipe has been manufactured in accordance with the Standard for Ductile-Iron Pipe, Centrifugally Cast, for Water and Other Liquids (AWWA/ANSI, 2002), using centrifugal casting methods that have been commercially developed and refined since 1925.

POLYETHYLENE ENCASEMENT FOR CORROSION CONTROL

Corrosion protection of these early installations was virtually nonexistent until the mid-1990s. Still, this early pipe fared well in most soil environments, and its longevity is well demonstrated. More than 600 utilities in the United States and Canada have had cast-iron pipe that provided more than 100 years of continuous

- 3 test sites (Everglades, Nevada & Hughes)
- 6 year results
 - Accelerated pitting on bonded coatings
 - Not accelerated for polyethylene encasement

Everglades Test Site

Polyethylene Encased

Polyurethane Coating

Damaged Polyethylene Encased DIP versus As-manufactured DIP

Pipe Condition	Number of Specimens	Mean Deepest Pitting Rate
Damaged Polyethylene Encasement	62	0.0125 in/yr
As-manufactured	89	0.0247 in/yr

Damaged polyethylene encasement does not result in the concentrated corrosion cells that occur with damaged bonded coatings