Disinfection Practices for Water and Wastewater (Advanced)

pmg Marvin Gnagy, P.E., President

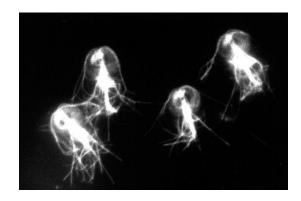
PMG Consulting, Inc.

OTCO Procrastinator's Workshop December 15, 2020

Agenda

- General Relationships
 - Physical and chemical interactions
 - Demand-causing substances and byproduct formations
 - Residual development and maintenance
- Disinfection Methods
 - Chemistry for common disinfectants
- Pathogen Destruction Mechanisms
 - Disinfectant speciation
 - Biological destruction pathways

- Chemical and physical relationships govern all disinfection chemistry
 - Knowledge of these relationships increases operator skills and troubleshooting abilities
 - Allows operators to control conditions that optimize disinfection practices
- Treatment processes are managed to disinfect water for consumption and to meet regulatory objectives

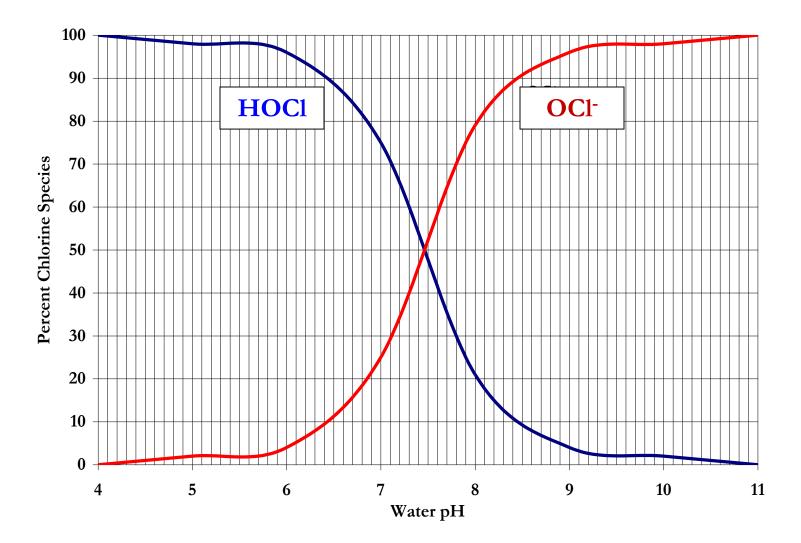

- Governing factors
 - Water pH
 - Mixing
 - Contact Time
 - Reaction Order
 - Residual concentration
 - Residual decay
 - Disinfecting power
 - Disinfection efficiency

Water pH

- High pH destroys microbial contaminants
- PH alters chemical species in water
- PH affects reaction rates and conversion rates

<u>High pH</u>

- Water-related microorganisms cannot tolerate pH values above about 7.8
- Lime/soda softening
 - 10.2 84% destruction
 - 10.6 92.4% destruction
 - 11.2 99.9% destruction
 - 11.5 99.99% destruction

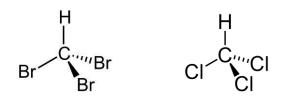


<u>Water pH</u>

- Chlorine more effective at low pH
 - Species at low pH predominantly hypochlorous acid (HOCl)
 - Species at high pH predominantly hypochlorite ion (OCl⁻⁾
- HOCl and OCl⁻ relationship based on pH and temperature
 - HOCl is 100 times more powerful than OCl⁻

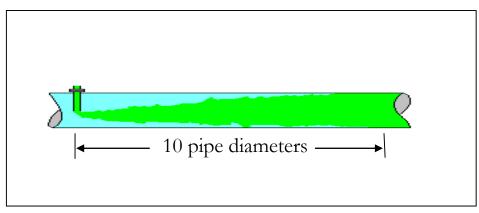
<u>Water pH</u>

- Affects conversion rates for free chlorine to monochloramine reactions
- Cl₂:N ratio 5, 25°C
 - pH 4 147 seconds
 - pH 7 0.2 seconds
 - pH 8.3 0.069 seconds
 - pH 12 33.2 seconds


<u>Mixing</u>

Mixing research ongoing since 1936

- Water treatment often neglects mixing for disinfection
 - Injection into a pipe is most common
 - Some mixing occurs depending on pipe length and flow turbulence
- Wastewater applications historically used mixing to disperse disinfectant
 - Mechanical mixing prior to contact strongly recommended (Recommended Standards for Wastewater Works TSS)

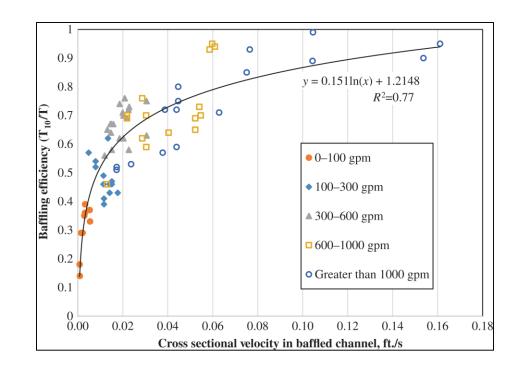

- Proper mixing increases disinfectant feed strength and reduces side reactions (White)
 - Chlorine/NH₄OH with mixing led to 85% monochloramine, 15% organo-chloramine formation
 - No mixing resulted in 45% monochloramine, 55% organochloramine formation
 - Other byproduct reactions also affected
 - DBP's, free ammonia, free chlorine, monochloramine, etc.

- Researchers suggest minimum 500 sec⁻¹ G value for disinfectant mixing
- Variations among researchers range from 500 sec⁻¹ to 1,000 sec⁻¹
 - Turbulence needed for chemical dispersion
 - Effective mixing known to reduce byproduct concentrations from side reactions

- Pipe mixing George White and others
 - Introduce chemical into middle of pipe flow
 - Turbulent flow conditions (Reynolds numbers greater than 100,000)
 - At least 10 pipe diameters travel length
 - Produce G values of at least 500 sec⁻¹

- G value equation Camp & Stein (1953)
 - Well understood relationships between mixing energy and water temperature
 - Colder water provides more efficient mixing
 - Warmer water needs more energy for the same G values

$$G = \sqrt{\frac{P}{\mu V}}$$


Contact Time

- Important for disinfection and microbial destruction
- Critical factors
 - Contact chamber design
 - Short-circuiting affects
 - Reaction rates
 - Competing reactions

Contact Time

- Other important factors
 - Water temperature
 - Water pH
 - Disinfectant residual
 - Type of disinfectant

Contact Time

- Disinfectant application does little for disinfection
 - Demand reactions compete for disinfectant
 - Mixing must disperse disinfectant quickly
- Persistent residuals needed for microbial destruction
 - Residuals function of pH, demand, contact time, water temperature
 - Residuals responsible for pathogen destruction

Reaction Order

- Disinfectants work in specific order of reaction
- Inorganics react first and consume oxidation potential
 Iron, manganese, NH₃, IA & IIA periodic table elements
- Organics react next and consume oxidation potential and disinfectant
 - Humic and fulvic acids, tastes and odors, hydrocarbons, cyanotoxins, proteins, carbohydrates, biopolymers, organic acids
- Microbials react last and consume disinfectant
 - Destruction mechanisms presented later

Disinfecting Power

- Type of disinfectant impacts residual development and disinfection process
 - Free chlorine 0.2 mg/L 10 minutes contact
 - Combined chlorine -1.0 mg/L 60 minutes contact
 - Chlorine dioxide 0.04 mg/L 15 minutes contact

(Based on reactions with E. Coli for 99.9% inactivation)

Disinfecting Power

OH radical (•OH-)	24,400,000
Ozone	18,000,000
Bicarbonate radical (•HCO ₃ -)	351,000
Hydrogen peroxide	347,000
Chlorine dioxide	263,000
Hypochlorous acid	10,000
Hypochlorite ion	100
Monochloramine	1.0
Fluorine	0.90
Bromine	0.63
Iodine	0.56


Disinfecting Power

OH radical (•OH-)	24,400,000
Ozone	18,000,000
Bicarbonate radical (• HCO_3^{-})	351,000
Hydrogen peroxide	347,000
Chlorine dioxide	263,000
Hypochlorous acid	10,000
Hypochlorite ion	100
Monochloramine	1.0
Fluorine	0.90
Bromine	0.63
Iodine	0.56

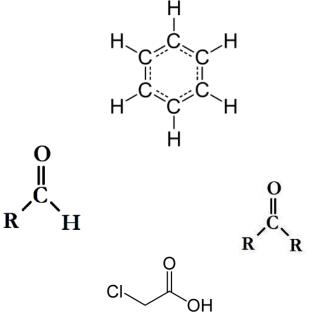
Short-circuiting

- Single most detrimental affect
 - Describes general flow path in basin
 - Defines stagnant areas where no disinfection occurs
 - Increases volume needed to demonstrate effective disinfection
 - Reduces process efficiency

Short-circuiting

Disinfection Byproducts

- Side reactions during disinfection
- Byproducts have no disinfecting power
 - Organo-chloramines
 - Hydrochloric acid (HCl)
 - Iron and manganese precipitates
 - Trihalomethanes (THMs)
 - Haloacetic acids (HAA5s)
 - Other DBPs
 - USEPA estimates more than 800 DBP's exist


Disinfectant Demand

- Demand = Dosage Residual
 - Dissolved gases
 - Chemical substances (ammonia, others)
 - Inorganic matter
 - Iron, manganese, NH₃, IA & IIA periodic chart elements
 - Organic matter
 - Biological organisms

Disinfectant Demand

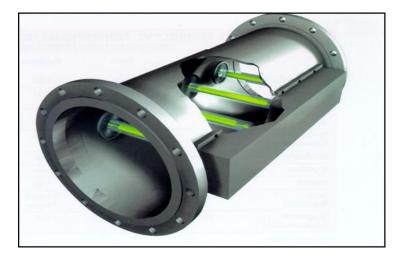
- Organic matter reacts to create DBPs
 - Humic acids
 - Fulvic acids
 - Transphilic acids
 - Hydrophilics
 - TOC, BOD, CBOD, and AOC
 - Aromatic hydrocarbons
 - Aldehydes, ketones, carbohydrates
 - Proteins, fats

Disinfectant Demand

- Ammonia and nitrogen compounds
 - Direct reaction with many chlorine forms
- Pathogenic microorganisms
 - Most removed by coagulation and filtration processes, or by secondary wastewater treatment processes
 - Some destroyed by chemical softening and high pH
 - Small remaining populations inactivated by disinfection

<u>Residual Maintenance</u>

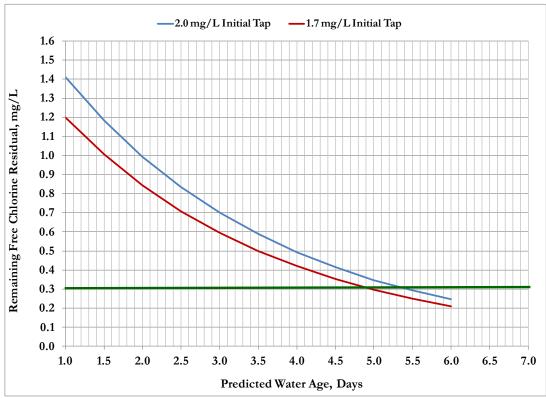
- Essential for effective disinfection
- Residuals have specific reactive life
- Residual decay
 - Time (water age in system)
 - Temperature (especially storage tanks)
 - Introduction of demand causing substances
 - Competing reactions
 - Aeration (very high air to water ratios)



Residual Maintenance

- Residual half-lifes
 - Ozone $t_{1/2}$ = 20 minutes in water
 - Free chlorine $t_{1/2} = 140$ minutes in water
 - Monochloramine $t_{1/2} = 1,680$ minutes in water
 - Chlorine dioxide $t_{1/2}$ = 93 minutes in water
- Begin decay after residual achieved
 - Decay dependent on water quality and temperature

Residual Maintenance

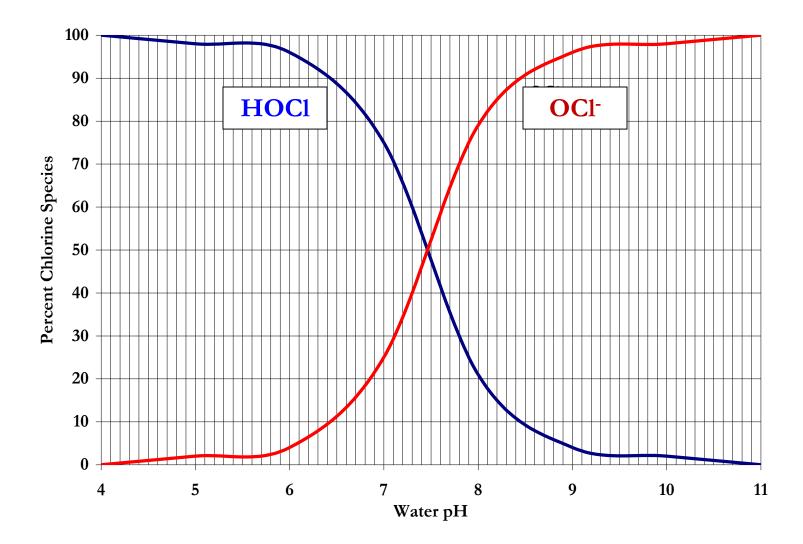

- Residuals regulated in drinking water
 - 0.2 mg/L free Cl₂
 - 1.0 mg/L combined Cl₂
 - 0.04 mg/L chlorine dioxide
 - 4.0 mg/L as Cl₂ MRDL
- UV produces no residualRequired secondary disinfectant

Residual Maintenance

Decay modeling can be helpful

 $C_{t} = C_{o}e^{-kt} -2.0 \text{ mg}$

Chlorine

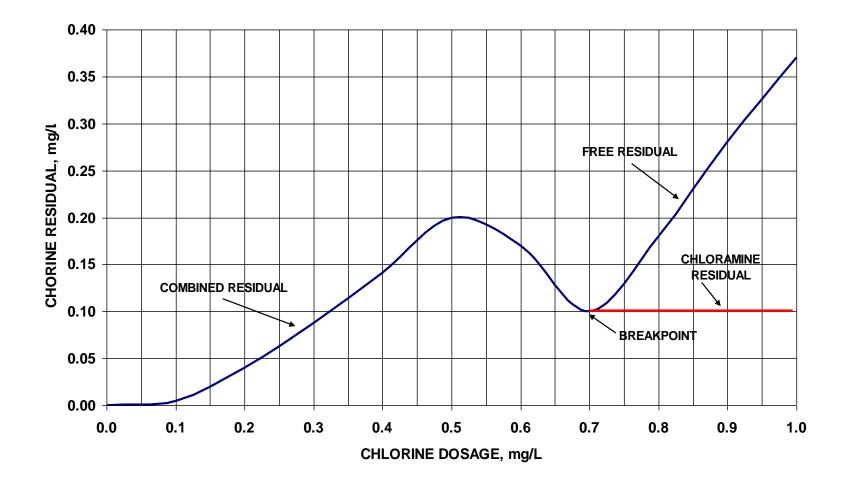


$Cl_2 + H_2O \Rightarrow HOCl + HCl$ $HOCl \Leftrightarrow OCl^- + H^+$

pH and temperature dependent

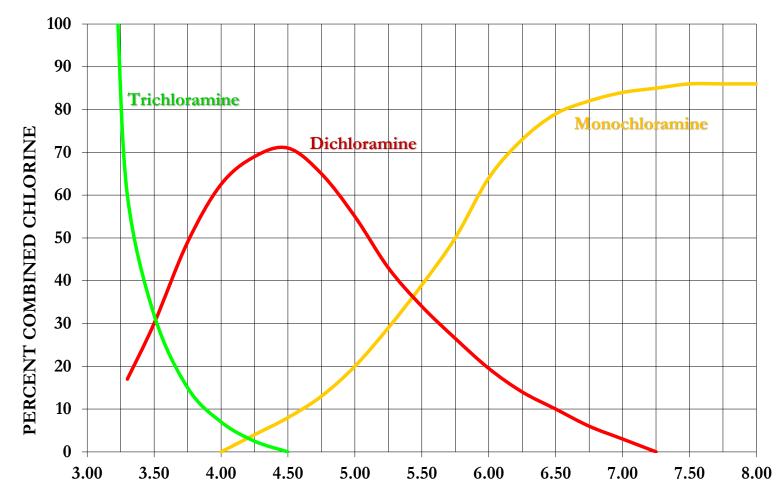


Chlorine



Chlorine

- Free chlorine
 - HOCl
 - OCl-
- Combined chlorine
 - Monochloramine
 - Other chloramine species
- Total chlorine
 - Free chlorine
 - Chloramine species



Breakpoint Chlorination

$NH_4^+ \leftrightarrow NH_3 + H^+$ $HOCl + NH_3 \leftrightarrow NH_2Cl + H_2O$

pH and temperature dependent Chlorine/nitrogen ratio dependent

WATER pH

- Three forms
 - Monochloramine
 - Dichloramine
 - Trichloramine
- Cl₂:N ratio dependency
 - Monochloramine 4.5:1
 - Dichloramine 7.6:1
 - Trichloramine 15:1

Equilibrium reverse reaction can lead to nitrification

$NH_2Cl + H_2O \Leftrightarrow HOCl + NH_3$

Conversion to hydroxylamines - high pH conditions

$NH_2Cl + OH^- \Longrightarrow NH_2OH + Cl^-$

- Chlorine gas and liquid sodium chlorite in special generator
- ClO₂ concentrations 200 mg/L to 5,000 mg/L
- 95% or greater conversion common
- Sight glass confirms ClO₂ generation <u>neon green color</u>

$$2NaClO_2 + Cl_2 \Rightarrow 2ClO_2 + 2NaCl$$

- 1 lb. Cl₂ gas plus 1.68 lbs NaOCl₂ makes 1 lb. ClO₂
- Byproducts from generation
 - Chlorite ClO₂⁻
 - Chlorate ClO₃⁻
 - Chloride Cl⁻
 - NaCl (can clog generator column)

Two chemical system

■ NaOCl₂

• Cl₂

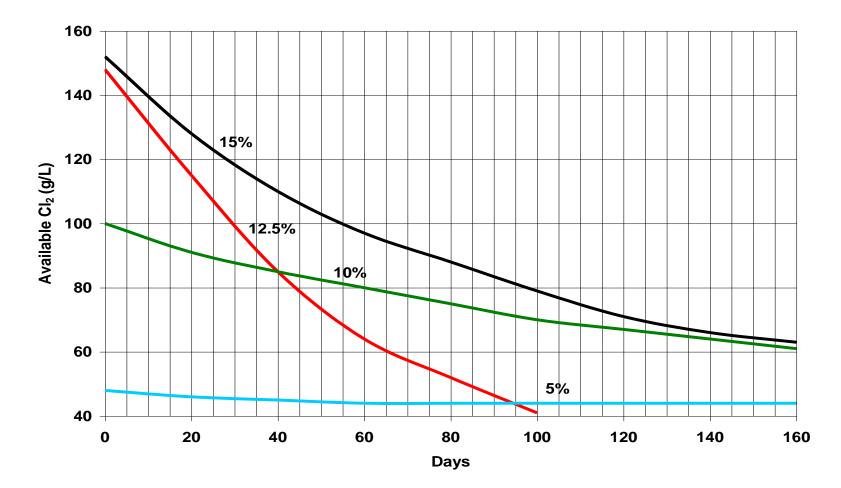
- Chlorite regulated in drinking water 1.0 mg/L
- ClO₂ and OH⁻ decomposes to byproducts

$ClO_2 + 2OH^- \Rightarrow ClO_3^- + ClO_2^- + H_2O$

- Chlorite regulated in drinking water 1.0 mg/L
- ClO₂ and OH⁻ decomposes to byproducts

$$ClO_2 + 2OH^- \Rightarrow ClO_3^- + ClO_2^- + H_2O$$

- 1 pound Cl₂ plus 1.13 pounds NaOH makes 1.05 pounds NaOCl
 - $Cl_2 + 2NaOH \Rightarrow NaOCl + NaCl + H_2O + heat$


 $NaOCl + H_2O \Longrightarrow HOCl + OH^- + Na^+$

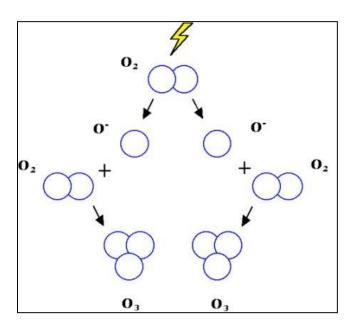
 $HOCl \Leftrightarrow OCl^- + H^+$

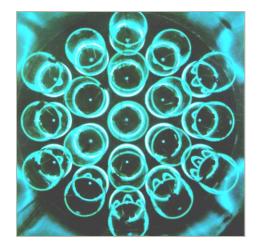
- NaOH added to maintain pH>12, reduce off gassing
- Onsite generation also available
 - 0.8 % and 12.5% strength

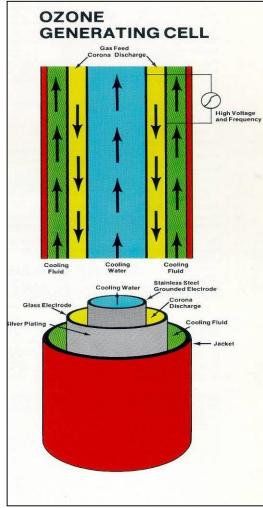
- Decay influenced by
 - Chemical concentration
 - Heat
 - UV light
 - pH (<11 rapid)
 - Heavy metal cations

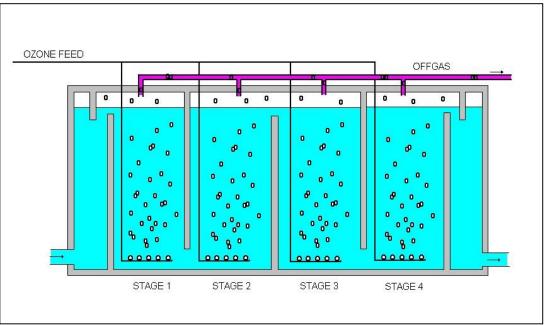
- Na⁺ does not disinfect
- OCl⁻ is the disinfectant
- 12.5% NaOCl
 - About 8.6% OCl
 - About 1.04 lbs/gal

- Check strength and adjust feed rate as solution decays
 Dropodures in Sodium Humophlorite Handbook (OriChem)
 - Procedures in Sodium Hypochlorite Handbook (OxiChem)


- Decomposition produces oxygen off gas and increased chlorite ion (ClO₂⁻)
- Off gas creates operating problems
 - Pumps
 - Valves



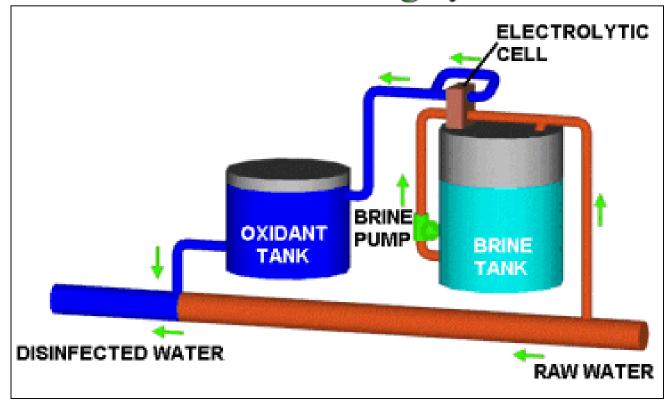

 $O_2 + \hbar \nu \Longrightarrow O^- + O^ O^- + O_2 \Longrightarrow O_3$


- Corona discharge operation
- Feed gas moisture free (-50°C)
- Dew point monitors and shutdown
- Ozone concentrations 1.5% to 10%

• 600 times to 3,000 times more effective than chlorine

- Gas not transferred into water becomes off gas
- Off gas destruction / reuse
 - Catalytic
 - Thermal
 - Reused into first stage contactor (Monroe, Michigan)

- Solution strength typically 0.8 percent (8,000 mg/L)
- Dilute solutions reduce off gassing and increase stability
- Eliminates safety concerns with chlorine
- Mixed oxidants more effective than single disinfectant
 NaOCl and HOCl


$2NaCl + 2H_2O + \hbar v \Longrightarrow 2NaOH + Cl_2 + H_2$

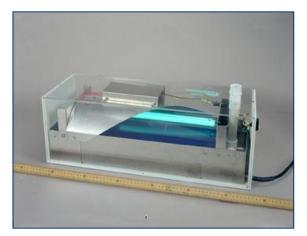
$Cl_2 + OH^- \Leftrightarrow HOCl + Cl^-$

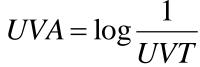
$HOCl \Leftrightarrow H^+ + OCl^-$

 $Na^+ + OCl^- \Leftrightarrow NaOCl$

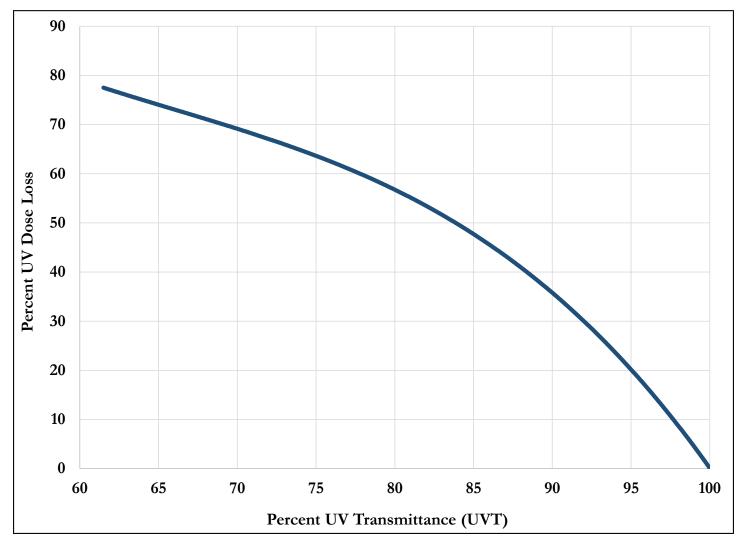
MIOX Generating System

- Four (4) pounds salt and four (4) kW current make one pound mixed oxidant
- Capacities up to 1,000 lbs/day
- Softened water important brine preparation
 Total hardness less than 20 mg/L
- Water temperature important
 - Must be greater than 40°F




- More common in wastewater
 - Fecal coliform reductions
 - No residual destruction
- Cryptosporidium inactivation requirements show need for UV in drinking water
 - Crypto cannot be inactivated by free chlorine

- UV-C light 100 nm to 280 nm likely has germicidal properties
- Transmittance dependent on
 - Turbidity
 - Suspended solids
 - Iron, manganese
 - Hardness
 - Hydrogen sulfide (H₂S)



	LP	LPHO	MP
Spectra	monochromatic	monochromatic	polychromatic
Power (W)	70-90	200-250	1,300-5,000
Temp, °C	40-60	100-200	600-900
Life, hours	8K-10K	8K-10K	3K-5K
No. lamps	10-15	4-8	1-6

- UV dose related to contact time and UV intensity
- Dosing is complex
 - Water quality
 - Lamp type
 - UV intensity
 - Reactor design
 - Hydraulic flow
 - Sensor performance

- No residual concentration
- Post disinfectant needed for residual maintenance in water
- Critical UV design parameters
 - Field validation of reactor dosing
 - Sleeve degradation due to fouling
 - Gradual decline of lamp output with age
 - 8% reduction in output decreases UV dose 38%

E. Coli9.6 mJ/cm²Hepatitis A10.2 mJ/cm²Salmonella typhi8.2 mJ/cm²Poliovirus30 mJ/cm²Rotavirus36 mJ/cm²Cryptosporidium parvum10 mJ/cm²Giardia lamblia10 mJ/cm²

Reactor dosing 3.5 to 4.5 times higher

Destruction Mechanisms

Chlorine

- Destruction mechanisms (free chlorine)
 - HOCl penetrates cell wall
 - HOCl reacts with enzymes used for glucose production
 - Reacts with nucleic acid effects respiration in viruses
 - OCl⁻ will not penetrate cell wall (negative charges repel)

Destruction mechanisms

- Electrochemical reaction with enzymes within microbial cell
- Disruption of enzyme system fails to repair/grow cells
- HOCl presence in NH₂Cl may increase disinfection capability

- Destruction mechanisms
 - Disruption of protein synthesis
 - Breakdown ability to maintain/repair cells
 - pH 6.5, ClO₂ kills 99% E. coli in 60 minutes
 - pH 8.5, ClO₂ kill 99% E. coli in 15 minutes
 - Virus kill like E. coli

- Destruction mechanisms
 - Physiological damage to DNA inactivating replication
 - Virus inactivation by nucleic acid damage
 - Ozone may diffuse through cell wall rather than by chemical reaction
- Residual ozone inactivates, not gas bubbles

- Destruction mechanisms
 - Alteration of DNA
 - Organism cannot reproduce, cannot infect

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931