# Measure Alkalinity for Better Process Control of Wastewater Treatment Plants

Cheap, Easy, and Effective Methods for Attaining Compliance

July 21, 2021

Jon van Dommelen Ohio EPA – Compliance Assistance Unit







Why Nitrify?

Free Ammonia (unionized Ammonia) is toxic to aquatic organisms

Ionized Ammonia (ammonium) is an oxygen demanding substance

Nitrogen in any form is a nutrient (fertilizer)... ...and algae is a plant

Inhibitions to Nitrification in WWTPs:

Not enough dissolved oxygen (inefficient blowers; clogged diffusers) Not enough temperature (winter) Not enough biomass (nitrifiers) Not enough time (capacity; high flows) Not enough **alkalinity** 

#### Nitrifying bacteria are: Chemo-litho-auto-trophs

Energy Source: Chemo : Chemical Reaction Photo : Photon Reaction Carbon Source: Auto: Inorganic Carbon Hetero: Organic Carbon

Troph: Eater

Electron Donor: Litho : Inorganic Chemicals Organo : Organic Chemicals

"Rock Eaters"





When the alkalinity is gone,

nitrification ceases...

until the alkalinity is replenished with influent,

and then nitrification proceeds,

until the alkalinity is gone again.

#### Typical Human Nitrogen Contribution in Domestic Wastewater: 16 grams/capita/d<sup>1</sup>

| Per capita<br>N | Per capita<br>Q | mg/L<br>NH3-N | Alkalinity for<br>Nitrification<br>(Bicarbonate Alkalinity) | Excess<br>Alkalinity<br>(Buffer) | Total Goal<br>Alkalinity |
|-----------------|-----------------|---------------|-------------------------------------------------------------|----------------------------------|--------------------------|
| 16 gm           | 200 gpd         | 5.3 mg/L      | 38 mg/L                                                     | 80 mg/L                          | 118 mg/L                 |
| 16 gm           | 100 gpd         | 10.6 mg/L     | 76 mg/L                                                     | 80 mg/L                          | 156 mg/L                 |
| 16 gm           | 50 gpd          | 21.2 mg/L     | 152 mg/L                                                    | 80 mg/L                          | 232 mg/L                 |
| 16 gm           | 25 gpd          | 42.4 mg/L     | 304 mg/L                                                    | 80 mg/L                          | 384 mg/L                 |

<sup>1</sup> Sedlak, *Phosphorus and Nitrogen Removal from Municipal Wastewater*, Lewis Publishers, 2<sup>nd</sup> Ed.,1991

## Village of O\*\*\* WWTP



## Village of O

| Parameter             | Dilution                    | Meter | Concentration | Alkalinity Required                                                  |
|-----------------------|-----------------------------|-------|---------------|----------------------------------------------------------------------|
| AT NH <sub>3</sub> -N | (1:9)                       | 0.94  | 9.4 mg/L      | 67 mg/L                                                              |
| AT NO <sub>3</sub> -N | (1:0)                       | 19.7  | 19.7mg/L      | -                                                                    |
| AT Alkalinity (LR)    | 12 drops (@5 mg / L / drop) | -     | 60 mg/L       | 67 (req) –<br>60 (available) + 80 (buffer)<br>= 87 mg/L (additional) |

The WWTP nitrifies until the alkalinity drops out.

When the Equalization Basin pumps influent into the aeration tank, nitrification continues, Until the alkalinity is gone again.

The County Water System is notorious for low alkalinity in the drinking water







- Trash Trap
- Flow Equalization
- Aeration: 2 trains 25,000 gallon each
- Clarifier: 2 trains one per train
- UFFM: 2
- Dosing Tank
- Sand Filters: 4
- UV Disinfection and Post Aeration

In 2004:

New High School Constructed On Site

Existing High School Converted to Middle School (modernized)

Existing Middle School Converted to Elementary (modernized)

**Average Design Flow** 

• 50,000 gpd

#### **Violations:**

• Ammonia

#### **Symptoms from Operator:**

• Aeration Pinched Back or the pH Drops Out



- WWTP Alkalinity Limited
- Drinking water was low in alkalinity (~80 mg/L)
- Considered Feeding NaHCO<sub>3</sub>



The School District Uses Well Water to Irrigate Athletic Fields

Well Alkalinity: > 400 mg/L

Started Dripping In Well Water



• Started with ~ 2000 gpd (about 1.5 gpm)

| Date | Day       | Alkalinity | рН  | NH3N | Temp | Notes                           |
|------|-----------|------------|-----|------|------|---------------------------------|
| 2/4  | Monday    | 300        | 7.2 | 27   | 7    | Started Well Feed<br>2000 gpd   |
| 2/5  | Tuesday   | 340        | 7.2 | 44   | 9    | Things worse! More Air?         |
| 2/6  | Wednesday | 300        | -   | 8    | -    | Full Aeration                   |
| 2/7  | Thursday  | 100        | 6.9 | 3    | 6.5  | Increased Well Feed to 7000 gpd |
| 2/8  | Friday    | 40         | 6.5 | 0.1  | 7.5  | Hit the Limit!                  |
| 2/11 | Monday    | 120        | 7.1 | 0.4  | 5.5  | Adjust Feed Rate                |



From February 2008 up to Today

- Checks ammonia, Alkalinity
- Operates only One Treatment Train
- Runs Aeration On/Off to promote denitrification (~ 15 hours/day)
- Feeds approximately <5000 gpd Well Water
- Influent Flow: 12,000 15, 000 gpd
- In Compliance.







10,000 gpd Package Plant

School Expanded and Remodeled in 2010

Water Conservation Plumbing

10,000 gpd Package Plant

School Expanded and Remodeled in 2010

Water Conservation Plumbing

<1000 gallons per day influent flow

Compliance Issues:

High Ammonia High cBOD5 High Total Suspended Solids

> No conversion No separation

**Compliance Issues:** 

High Ammonia High cBOD₅ High Total Suspended Solids

**High Operator Anxiety** 

# Hardin Northern School District Initial Observations

# Settleometer5 minutes500 (very turbid)30 minutes100 (still very turbid)

#### **Initial Observations**

Settleometer

5 minutes500 (very turbid)30 minutes100 (still very turbid)

**Centrifuge Spins** 

- Aeration Tank 1: 3.5
- Aeration Tank 2: 2.5
- Clarifier Core 1: 4.2
- Clarifier Core 2: 4.2
- RAS 1 : 3.5
- RAS 2 : 3.2

## **Initial Observations**

**Ammonia Profile** 

Influent (EQ)> 150 mg/LAeration Tank 15.0 mg/LAeration Tank 24.6 mg/LSand Filter Dosing Tank5.2 mg/L

#### **Initial Observations**

Aeration Tank Temperature: ~ 5 – 6 C

# Hardin Northern School District Initial Observations

Aeration Tank Temperature: ~ 5 – 6 C

Aeration Cycle: 1.5 hours ON / 1.5 hours OFF

#### **Initial Observations**

#### Aeration Tank Temperature: ~ 5 – 6 C

#### Aeration Cycle: 1.5 hours ON / 1.5 hours OFF

#### Aeration Tank Alkalinity: 40 – 50 mg/L

#### Dataloggers: Onset "HOBO" Pressure Transducer





## Datasondes: YSI 600 XLM









Aeration Tank 1



















**Compliance Plan** 

- Decrease EQ basin effective depth
  - More cycles over more of the day
- Time blower cycles to be OFF when EQ pumps energize with 15 minute bump.
  - Load the tank with carbon and mix it "anoxicly"
- Carefully watch pH/Conductivity
  - Check pH/Conductivity prior to EQ pump cycle
  - Add sodium bicarbonate to maintain > 7 pH

#### **On-going Compliance Plan**

- **Monitor Clarifier Effluent Ammonia**
- **Monitor Spins**
- **Monitor Settleometer**
- Make adjustments according to the data:
  - Adjust air (blower cycles)
  - Adjust wasting
  - Adjust alkalinity

### Alkalinity Problems?

Low alkalinity in drinking water (first example) Low flow plumbing, high ammonia influent (new schools, old WWTPs) High influent ammonia?

Village with 0.500 MGD Oxidation Ditch

Huge landfill pumps leachate to the Village 24/7

Leachate contains 600-1000 mg/L NH3-N

Combined influent is 100-250 mg/L NH3-N (25% leachate avg.)

Drips in alkalinity feed 24/7 and oxidizes ammonia to < 1 mg/L

No blanket in Clarifier: nitrate in effluent ~ 100 mg/L on average

#### Conclusion

- Nitrification depends on 5 conditions:
  - Enough dissolved oxygen
  - Enough water temperature
  - Enough bacteria
  - Enough detention time
  - Enough Alkalinity
  - Enough Process Control to <u>know</u> if there is enough
  - Measure... don't guess.

# **Questions**?

Jon van Dommelen Ohio EPA Compliance Assistance Unit jon.vandommelen@epa.ohio.gov

(614) 580-5069